ELEC 533 Homework 8

Due date: In class on Friday, November 21, 2003

Instructor: Dr. Rudolf Riedi

- 30. Let $\{N_t, t \in \mathbb{R}\}$ be a Poisson process with intensity λ . This means that $\{N_t, t \in \mathbb{R}\}$ is a renewal process, such that for any fixed t the r.v. N_t is a Poisson r.v. with mean λt , the number of arrivals over disjoint intervals are independent, and the interarrival times X_k between events are independent exponential r.v. with parameter λ .
 - (a) Compute the second order joint statistics $F_{N_tN_s}$, i.e. compute $P[N_t = n, N_s = m]$. Hint: Increments.
 - Hint: Increments
 - (b) Poisson processes are constructed pathwise, so their f.d.d. are automatically consistent. For exercise, verify the consistency for the second order statistics, i.e. verify that

$$\sum_{m=0}^{\infty} P[N_t = n, N_s = m] = P[N_t = n].$$

31. Suppose X_i $(i \in \mathbb{N})$ is a sequence of iid random variables and suppose

$$P[X_i = 1] = P[X_i = -1] = 1/2$$

for all *i*. Define a random process $\{Y_t, t \in \mathbb{R}\}$ by

 $Y_t = X_i$ for all t such that $i - 1 < t \le i$.

- (a) Sketch a typical sample path of $\{Y_t, t \in \mathbb{R}\}$.
- (b) Find the mean and autocorrelation function of $\{Y_t, t \in \mathbb{R}\}$. Is the process wide sense stationary (wss)? Show your argument.
- (c) (voluntary exercise; not required) Suppose A is a r.v. independent of the X_i and uniformly distributed in [0,1]: $A \sim \mathcal{U}([0,1])$. Define the random process $\{Y_t, t \in \mathbb{R}\}$ by

$$Z_t = Y_{t+A}$$

Sketch a typical sample path of $\{Z_t, t \in \mathbb{R}\}$.

- (d) Is Z_t wss? Is Z_t second order stationary? Why or why not?
- 32. Suppose A and B are independent Gaussian random variables, i.e. $A \sim \mathcal{N}(0,1)$ and $B \sim \mathcal{N}(0,1)$. Define the random process $\{X_t, t \in \mathbb{R}\}$ by

$$X_t = A + Bt + t^2.$$

- (a) Compute the following marginal distributions: ϕ_{X_t} for arbitrary t and ϕ_{X_1,X_5} .
- (b) Are X_1, X_2, \ldots, X_5 jointly Gaussian?
- (c) Find $\mathbb{E}[X_5 | X_0]$. This is a prediction of X_5 knowing X_0 , and it is a random variable. Compute its variance.
- (d) Find $\mathbb{E}[X_5 | X_0, X_1]$. This is a prediction of X_5 knowing X_0 and X_1 , and it is also a random variable. Compute its variance.