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Abstract

Multiplicative processes and multifractals proved useful in various
applications ranging from hydrodynamic turbulence to computer net-
work traffic. Placing multifractal analysis in the more general frame-
work of infinitely divisible laws, we design processes which possess at
the same time stationary increments as well as multifractal and more
general infinitely divisible scaling over a continuous range of scales.
The construction is based on a work by Barral & Mandelbrot [4] where
a Poissonian geometry was introduced to allow for continuous multi-
plication. As they possess compound Poissonian statistics we term
the resulting processes Compound Poisson Cascades. We explain how
to tune their correlation structure, as well as their scaling properties,
and hint at how to go beyond pure power law scaling behaviours to-
wards more general infinitely divisible scaling. Further, we point out
that these cascades represent but the most simple and most intuitive
case out of an entire array of infinitely divisible cascades allowing to
construct general infinitely divisible processes with interesting scaling
properties.

Modelling complexity through scaling. Scale invariance and related
phenomena have received considerable attention in the past from the point
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of view of both, analysis and estimation as well as modelling and synthesis.
Various kinds of scaling form an undisputable component of empirical data
observed in a wide variety of applications ranging from natural phenomena
such as hydrodynamic turbulence [11], biology and body rhythms [21] to
purely human phenomena created by mankind’s activities such as computer
networks [15, 18] and financial markets [16]. Often, the existence of scaling
has its toll, e.g., leading to high volatility in markets and to large waiting
queues in networking. Being of major importance scaling phenomena call
for both, appropriate tools of analysis with known accuracy as well as novel
models with controllable parameters leading to deeper understanding and
allowing for physical interpretations.

Most prominently, self-similar processes have been favored as models for
scale invariance for their simplicity. Indeed, any self-similar process X(t)
with stationary increments spots an appealing and simple scale invariance.
Indeed, let δτX(t) = X(t+ τ)−X(t) denote its increments over a lag τ , then

IE|δτX(t)|q = cq · |τ |qH , (0.1)

where H is the Hurst parameter. This relation is independent of t and holds
irrespective of τ which is best described as the absence of a characteristic
scale. However, one has to acknowledge the restrictive character of rela-
tion (0.1) that imposes severe constraints for the empirical analysis of actual
data. To provide processes with more realistic scaling which are able to
match real world data, multiplicative cascades and the framework of mul-
tifractal analysis were introduced, allowing a non-linear dependence on the
order q of exponents ζ(q) �= qH in (0.1) so that:

IE|δτX(t)|q = cq · |τ |ζ(q). (0.2)

Lamenting the restrictive nature of both, the statistical self-similar scaling
of (0.1) and the multifractal scaling of (0.2) this paper sets off to construct
processes with more flexible and natural scaling properties with the following
properties on the progression of moments: (i) it may depend in an arbitrary
way on the order, (ii) it can be determined between arbitrary scales, and
(iii) it may depend in an arbitrary way on scale, not necessarily in form of a
power law. To this purpose, one can place multifractal analysis in the more
general framework of log infinitely divisible cascades (LIDC) [2, 5, 6, 22]
characterized by:

IE|δτX(t)|q = cq exp[−H(q) · n(τ)]. (0.3)
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Note how the framework of LIDC encompasses scaling in the form of power
laws by setting n(τ) = − log(τ). The extra degree of freedom in scale de-
pendence was found highly useful for the analysis and modelling of empirical
data in turbulence [7] and computer network traffic [22].

While a collection of theoretical as well as practical synthesis procedures
is known and used for the fractional Brownian motion, the synthesis of pro-
cesses that possess a priori prescribed multiscaling properties as well as other
casual characteristics such as second-order stationarity of the increments or
a continuous rather than discrete scaling region proved extremely difficult.
The celebrated martingale of Mandelbrot studied in [14] for instance as well
as the wavelet based cascades more recently introduced in [1] do have mul-
tifractal properties that can be prescribed but present neither second-order
stationary increments nor continuous scale invariance. Very recently, a small
number of attempts were made to improve this situation, see [3, 4, 17, 20].

We intend to contribute to the pavement of this difficult path by propos-
ing the definition of new processes that not only match prescribed multiscaling
exponents, have stationary increments and continuous scale invariance, but
will on top of it not assume a priori power law behaviors of the moments.
This paper mainly focuses on the simplest case of such processes, namely
compound Poisson cascades already introduced by Barral & Mandelbrot in
[4]. We explain how to tune their correlation structure, as well as their scal-
ing properties, and hint at how to go beyond scaling in form of pure power
laws towards more general infinitely divisible scaling. Further, we point out
that these cascades represent but the most simple and most intuitive case
out of an entire array of infinitely divisible cascades allowing to construct
general infinitely divisible processes with interesting scaling properties (see
[8, 9, 10] for a detailed presentation). Relying on the idea of infinitely di-
visible processes the construction of a wide class of LIDC cascades becomes
feasible, allowing for instance to introduce log-normal as well as log-stable
LIDC cascades. While such generality is beyond the scope of this paper and
has to be postponed to forthcoming papers [8, 9, 10] we shortly present below
a more intuitive solution.

Poisson cascading noise. The construction is based on a Poissonian ge-
ometry to allow for continuous multiplication. As they possess compound
Poissonian statistics we term the resulting processes compound Poisson cas-
cades. The basic building blocks for the construction of infinitely divisible
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Figure 1: Compound Poisson cascading. (left) The basic multiplier of
the Poisson cascade takes the simple form of a random rectangular functions
Pi(t); (middle) the cascade is defined as Qr(t) ∝

∏
i Pi(t). Only those pulse

processes Pi(·) will contribute to Qr(t) for which |ti − t| < ri/2 ;(right)
consequently, Qr(t) can be viewed as the product of a random number of the
random multipliers Wi located in the trapezoid Cr(t).

compound Poisson cascades are the following functions Pi :

Pi(t) =

⎧⎨
⎩

1 if |t − ti| ≥ ri

2
,

Wi if |t − ti| <
ri

2
.

(0.4)

where (ti, ri)i∈I and Wi are defined as follows (see Figure 1). (ti, ri)i∈I is a
planar Poisson point process with local arrival rate described by a control
measure dm(t, r) which we assume to be supported on the half-strip R×]0, 1]
and which we require to be time-invariant, meaning that the control measure
necessarily takes the form,

dm(t, r) = g(r)drdt, (0.5)

for a proper density function g. The multipliers {Wi}i∈I are independent
identically distributed positive random variables, independent of the point
process (ti, ri)i∈I . The set (ti, ri, Wi)i∈I is usually called a marked Poisson
process.

Infinitely divisible cascades will be built on the product of these pro-
cesses Pi, an idea that goes back to Mandelbrot who coined them ”cylindrical
pulses” [4]. In preparation for defining the cascade consider a fixed point in
time t. It follows immediately from (0.4) that only those pulse processes Pi
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Figure 2: Sample of a realization of Qr(t) (left), Ar(t) (middle) and Vr(t)
(right).

will contribute to the product for which |ti − t| < ri/2 (see Figure 1):

(ti, ri) ∈ Cr(t) =

{
(t′, r′) : r′ > r and t′ − r′

2
< t < t′ +

r′

2

}
. (0.6)

The number of points falling into Cr(t) is a Poisson random variable of mean
m(Cr(t)). We define Poisson cascading noise as

Qr(t) = exp [(1 − IEW )m(Cr(t))]
∏

1>ri>r

Pi(t) = exp [(1 − IEW )m(Cr(t))]
∏
Cr(t)

Wi

(0.7)
where the normalization factor in front of the product renders Qr(t) a mean
1 process. A sample of Qr is shown in Figure 2 (left). Note that Qr is
stationary. A further simple property of Qr is that if forms a T -martingale
[13].
Poisson cascading motion. Where there is noise there is motion. We
introduce the Poisson cascading motion via

Ar(t) =

∫ t

0

Qr(s) ds. (0.8)

Indeed, the increments δτA(t) = A(t+τ)−A(t) =
∫ t+τ

t
Qr(s) ds of A inherit

stationarity directly from Qr. Furthermore, IE[Ar(t)] =
∫ t

0
IE[Qr(s)] ds = t

for all t and all r. At least under certain conditions, Ar(t) is a positive
martingale and must converge almost surely. We denote this limit by

A(t) = lim
r→0

Ar(t). (0.9)
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We establish conditions for convergence of A in L2. A special case of the
present cascade A has been studied with great care in [4]. For a sample of a
process Ar(t) see Figure 2 (middle).
Poisson cascading Brownian motion In contrast with Ar(t) obtained
from a deterministic integral, we introduce the Poisson cascading Brownian
motion Vr(t) that appears as a stochastic integral of Qr(t):

V (t) = lim
r→0

Vr(t), (0.10)

where

Vr(t) =

∫ t

0

√
Qr(s)dB(s), (0.11)

whenever it exists, with
√

Qr(s)dB(s) the corresponding Poisson cascading
Gaussian noise. For a sample of a process Vr, see Figure 2 (right). Let us
point out that the increments of Vr are (second order) un-correlated while not
independent since they inherit higher order correlations from Qr(s). Mandel-
brot calls this the ”blind spot of spectral analysis”. Motivated by [12, 19], let
us consider the process B(t) = B(Ar(t)) where B denotes the ordinary Brow-
nian motion. It constitutes a form of ”multifractal random walk” similar to
[3]. They are called warped Gaussian noise in [19]. We remark that1

Vr(τ)
fdd
= B(Ar(τ)). (0.12)

Statistical properties in the scale invariant case. In search for the
choice of dm(r, t) providing the most classical form of scaling, i.e., power
laws, we simply set

dm(t, r) =
c

r2
drdt for 0 < r ≤ 1, (0.13)

and zero elsewhere. This special case of a Poisson cascading noise was stud-
ied in [4], in particular the issue of convergence, establishing the so-called
multifractal formalism which relates the function H(q) to local scaling prop-
erties of the paths of the Poisson cascading motion. The moments of Qr,
A(t) and V (t) follow power law behaviors given by:

IE[Qq
r(t)] = rc(H(q)−qH(1))

IE[A(t)q] ∼ tq+c(H(q)−qH(1)),
IE[Vr(t)

q] ∼ tq/2+c(H(q/2)−q/2 H(1)) ∀t ∈ [0, 1],
(0.14)

1The concept is easily extended to Levy motion or fractional Brownian motion.
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where H(q) = 1 − IEW q. We emphasize the fact that these scaling be-
haviors are continuously valid through the scales, not only for a particular
set of discrete scale ratios. Thus, A and V follow an LIDC at least ap-
proximatively. Similar scaling laws hold as well for the wavelet transform
TA(a, t) =

∫
ψa,t(s)A(s)ds of A.

Conclusion. We have defined here a process A(t) that is characterized by
(positive) stationary increments as well as rich scaling properties which hold
for a continuous range of scales and which can be easily prescribed from the
definitions. We also introduced the companion processes Qr(t) and V (t) that
share the specification of A(t). We believe that the combined advantages of
fast numerical synthesis together with well-controlled scaling properties make
these processes ideal for modeling and studying real world signals with com-
plicated scaling phenomena which are observed, e.g., in computer networks
and in hydrodynamic turbulence. The corresponding Matlab synthesis pro-
cedure is available upon request or from our WEB pages. We refer the reader
to [8, 9, 10] for a more detailed presentation. We have paid special attention
here to the particular case of compound Poisson cascades which exhibits ex-
act scale invariance, i.e., multifractal scaling in the classical form of power
laws. Our main goal, remains to synthesize processes obeying to an arbitrary,
prescribed LIDC (recall (0.3)), possibly departing from the reference situa-
tion of exact scale invariance or power laws. Furthermore, compound Poisson
cascades form only a specific case of infinitely divisible cascades of particular
practical interest. It takes only little, however, to extend the definitions of
the processes Qr(t), A(t) and V (t) given in this paper using general stochastic
infinitely divisible measure, providing us, e.g., with log-normal cascades of
continuous scales. We will elaborate on both extensions, beyond power laws
and beyond compound Poisson cascades, in forthcoming papers [8, 9, 10].

References

[1] A. Arneodo, E. Bacry, and J.F. Muzy. Random cascade on wavelet dyadic
trees. J. Math. Phys., 39(8):4142–4164, 1998.

[2] A. Arneodo, J.F. Muzy, and S. Roux. Experimental analysis of self-similarity
and random cascade processes: application to fully developed turbulence data.
Journal de Physique II France, 7:363–370, 1997.

[3] E. Bacry, J. Delour, and J.F. Muzy. Multifractal random walk. Phys. Rev.
E, 64:026103, 2001.

7



Chainais, Riedi et Abry

[4] J. Barral and B. Mandelbrot. Multiplicative products of cylindrical pulses.
Probab. Theory Relat. Fields, 124:409–430, 2002.

[5] B. Castaing, Y. Gagne, and E. Hopfinger. Velocity probability density func-
tions of high Reynolds number turbulence. Physica D, 46:177–200, 1990.

[6] P. Chainais. Cascades log-infiniment divisibles et analyse multirésolution.
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