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ABSTRACT
Understanding the nature and characteristics of Web robots
is an essential step to analyze their impact on caching. Us-
ing a multi-layer hierarchical workload model, this paper
presents a characterization of the workload generated by
autonomous agents and robots. This characterization fo-
cuses on the statistical properties of the arrival process
and on the robot behavior graph model. A set of criteria
is proposed for identifying robots in real logs. We then
identify and characterize robots from real logs applying a
multi-layered approach. Using a stack distance based an-
alytical model for the interaction between robots and Web
site caching, we assess the impact of robots’ requests on
Web caches. Our analyses point out that robots cause
a significant increase in the miss ratio of a server-side
cache. Robots have a referencing pattern that completely
disrupts locality assumptions. These results indicate not
only the need for a better understanding of the behavior
of robots, but also the need of Web caching policies that
treat robots’ requests differently than human generated
requests.

1. INTRODUCTION
Robots play a particularly central role in information econ-
omy. Robots automatically search the internet for infor-
mation, goods and services on behalf of customers. In-
deed, directories and search engines are among the most
popular sites of the Internet. At the same time, with the
dawn of e-business and time-sensitive information, such
as news and financial data, came along a steep growth

of dynamic documents on the web. Thus, search engines
require exhaustive crawling work to maintain and update
their indices to the increasingly time-sensitive web con-
tent. Currently, publicly indexed documents exceed one
billion in numbers [1]. In addition to the general-purpose
crawlers, an ever growing number of focused crawlers se-
lectively seek out documents that are relevant to a spe-
cific pre-defined set of subjects [2]. To obtain informa-
tion about a product or service requested by a customer
(e.g., price, expected delivery time, etc.) might require
to query hundreds of sites within seconds. For example,
www.shopper.com claims to compare 1,000,000 prices on
100,000 specific products.

The growing popularity of crawlers, shopbots, and other
robots on the web, demands for an understanding of their
behavior and their impact on the infrastructure of the In-
ternet, in particular on the performance of Web caching.
Towards this end, we analyze three different types of logs
from actual web sites: an online bookstore, servers for
the 1998 FIFA World Cup, and the site of the Computer
Science Department at UC Berkeley.

The goals of this paper are twofold. We first aim at iden-
tifying, characterizing and eventually distinguishing two
major categories of robots, namely “Crawlers” and “Shop-
Bots” solely based on observations at the server. These
two classes produce quite distinctively different streams
of requests. A typical Crawler will request a site’s Home
Page, wait for the response, parse it and determine the
links present in the page. It then waits for a predeter-
mined amount of time (possibly zero), and sequentially
issues requests for each link found, repeating the process
for each page received. On the other hand, PriceBots is-
sue requests triggered by human action on a remote site,
for example the search for a book by author in a price
comparison site. One should expect the arrival process of
requests and the popularity of objects requested to dif-
fer substantially for the two classes, which is what we set
out to show. Second, it is impossible to ignore the im-



pact of web robots on Web caching. Using a stack dis-
tance based model, we analyze the interaction between
robots and server-side caches. Based on actual logs we
compute cache hit ratios for different types of robots and
analyze their impact on the cache behavior.

There are very few studies on Web robots available. Most
concentrate on defining architectures and implementations
for crawlers and shopbots. In [8], the authors survey the
state-of-the-art of Web robots and discuss robot crawling,
a technique for building indices for search engines. In [3],
the authors examine the problem of identifying naviga-
tional patterns of Web robot sessions using standard clas-
sification techniques but do not cover features and sta-
tistical characterization of robot accesses. Reference [4]
searches for invariants in e-business workloads. The au-
thors studied the workload of two actual e-business sites
and found the presence of robots in the workload. They
also estimate that robot requests correspond to roughly
16% of the total workload of the sites analyzed.

Section two shows our hierarchical approach to character-
izing robot workloads and summarizes the main features
of the three actual logs used in this study. Section three
models in detail the robot requests found in the bookstore
logs. Section four assesses the impact of robots’ requests
on web caches. Finally, section five presents concluding
remarks.

2. ROBOT WORKLOAD MODELING
This section describes the approach used for characteriz-
ing robot workloads. The resulting characterization not
only provides information about the behavior of the vari-
ous classes of robots but also allows for the determination
of the resource demands imposed by them. Since not all
robots identify themselves to the server, the task of char-
acterizing robot workload is a combination of two highly
intervowen sub-tasks: identifying robots for analysis, and
an analysis which allows to characterize and thus identify
robots. Identification may result from clues as diverse as
session length, patterns, and others, as we are about to
elaborate on.

Our starting point is the multi-layer hierarchical model
proposed by Menascé et. al. [4]. The model proposes a
three-layer characterization strategy (see Fig. 1) to facili-
tate the understanding of how business-level decisions im-
pact the resource level. The business strategy of robots is
quite simple: gather information from the e-business site
for tasks such as indexing or price/product comparison.
The session layer focuses on the session length and on the
overall behavior of each robot in terms of functions (e.g.,
search) invoked per session. The function layer specifies
features associated with each function, such as their pa-
rameters, inter-arrival times, and the number of embedded
files (e.g.,images) requested when a function is invoked.
The request layer characterizes the individual HTTP re-
quests in terms of an analysis of their arrival process on
multiple time scales. Finally, the resource level character-
izes all components of the computational platform of the
e-commerce server.

3. User Level

2. Application Level

1. Protocol Level

Business Level

Session Layer

Function Layer

HTTP Request Layer

Resource Level

Figure 1: A hierarchical workload model.

Robots behave quite differently from humans; they invoke
a smaller variety of functions and exhibit different repe-
tition patterns and search strategies. The major simplifi-
cation is that we do not expect robots to present a buy-
ing behavior, that is, they usually do not select products
for later acquisition (“add to cart”) and, in consequence,
never purchase. However, we expect that the evolution of
agent technology will allow such tasks to be performed au-
tomatically in the future. On the other hand, the process
of robot characterization demands not only the determi-
nation of visiting patterns and arrival process, but also
the nature of the parameters requested by robots. For
instance, a crawler visits each object served by the Web
site just once, producing an access pattern that is quite
different from human users.

Inspired by [3, 4] we introduce now several criteria, based
on the aforementioned hierarchical model, which allow us
to identify robots in real logs. We group these characteris-
tic criteria according to the three layers of the hierarchical
model.

2.1 The Robot Criteria
2.1.0.1 Session Layer
The session-layer criteria for identifying robots are session
length and function. Session length is defined as the num-
ber of functions invoked during a session. It is intuitive
that thousands of requests within a few hours is highly
atypical for a single human user, making session length an
obvious criterion for identifying robots. But robots and
humans differ also in terms of the type and variability of
functions they invoke. For instance, some robots perform
only searches and others visit systematically all the pages
of a site, whereas humans typically follow some procedure
of “narrowing the search and potentially “buying’.

2.1.0.2 Function Layer
The criteria used at the function layer are the execution of
human-like functions and the occurrence of embedded files
in the request stream. The “human-like function criterion’
discards sessions in which products are bought or added to
a shopping cart as being non-robotic. This criterion might
fall short of being accurate in the future as robots start
to buy on behalf of human customers. Robots usually do
not request embedded files, since their goal is to obtain
the textual information resulting from the requests.



2.1.0.3 Request Layer
At the request layer the criteria are self-identification and
request inter-arrival times. Some robots identify them-
selves by requesting the robots.txt file, which specifies
the actions that may be performed by robots. This par-
ticular file request is a reliable identifier of robots since the
file is hardly of any interest to a human. Unfortunately,
not all robots check this file, though highly recommended
by net etiquette. The request arrival process generated by
human users typically exhibits an exponential distribution
for inter-arrival times, while robots produce more periodic
arrivals and, thus, quasi constant inter-arrival times.

2.2 The Logs
The above criteria are applied to three actual logs. Ob-
taining HTTP logs from actual e-commerce sites can be a
challenge since these logs may contain information that is
quite revealing about the nature and degree of success of
the business. We are grateful to an online bookstore which
was kind enough to provide us with a sanitized version of
their HTTP logs. Due to a non-disclosure agreement we
are unable to name the company or to provide information
on sale-related matters. The other two logs used in this
paper are publicly available: logs from the UC Berkeley
CS department Web server [11] and logs from the servers
for the 1998 FIFA World Cup [10].

The characteristics from these logs are presented in Ta-
ble 1. Notice that the number of functions issued by robots
is largest for the bookstore. Because the site is a bookstore
we found some ShopBots in the log, justifying the larger
number of functions associated with robots. Notably, the
logs of the bookstore and the World Cup servers contain
more images than the Berkeley log due to the nature of
the sites. Bookstores hope to improve sales by displaying
images of book covers. The World Cup site used pictures
of soccer players and games to attract visitors to the site.
The Berkeley site, on the other hand, is an institutional
site and does not exhibit a large amount of image files.

Let us now discuss the application of the robot identifica-
tion criteria to the three logs. Table 2 summarizes the re-
sults obtained for the bookstore log. Each column header
labels a specific criterion and each line corresponds to a
single robot. The id numbers are extracted from the logs
and are used throughout this section to uniquely identify
each robot. For each position in the table, except for col-
umn 2, a “•” sign indicates that the robot was identified
by that specific criterion.

2.3 Applying the Criteria
The criterion “session length” (session layer) simply says
that if a session has a length (in number of requests to
functions) larger than a threshold, it is a robot with high
probability. Figure 2 plots the probability that a given
session has more than x requests. Notice a sharp change
in behavior at about 500 function-requests after which a
heavy tail appears. We conjecture that this change is
due to the increased fraction of robot sessions as the ses-
sion length increases. Consequently, we used this value as
the “session length threshold”: sessions longer than 500
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Figure 2: Tail of the distribution of session lengths
(1 - CDF) for all sessions in the bookstore log.

requests to functions are considered to be originated by
robots.

This criterion is very effective, and all the sessions we clas-
sified finally as robotic satisfy it. False positives, on the
other hand, mainly mistake proxy servers for robots.

The criterion “function” (session layer) regards the fre-
quency of requests for each of the store’s functions. The
letters “C” and “S” in the table indicate a behavior that
would be expected for Crawlers (C) or for ShopBots (S).
Some robots, previously identified as crawlers by manual
inspection of their sessions had at least 65% of their func-
tions corresponding to “browse” or “info” requests, while
manually identified ShopBots exhibit 95% of “search” re-
quests. We used these numbers as criteria for automat-
ically classifying other sessions. This procedure requires
a semantic analysis of the frequency distribution of func-
tions, and it cannot be used alone to determine the type
of robot because these numbers may not always be valid,
even though they showed to be effective in determining
whether or not a session is robotic.

The “human-likely function” criterion (function layer) says
that a session is not associated with a robot if a func-
tion from a well-defined pool of typically human functions
is present. For instance, in the case of the bookstore, a
session with any request to the function “pay” is consid-
ered non-robotic. It is important to note that this is a
negative criterion: it does not imply that a given session
exhibits human like behavior, but rather that it contains
non-robotic functions. This criterion, unfortunately, did
not classify any of the sessions in Table 2 as a robot.

The “embedded files” criterion says that sessions with no
or very few requests to embedded files are considered to
be initiated by robots. This criterion may fail in the pres-
ence of some client or proxy cache configurations, because
cached images might not be requested. Nevertheless, even
cached images generally result in “if modified since” re-
quests, which appear in the log.



Source Bookstore Berkeley WorldCup Site
Interval 01-15 Aug 1999 01-30 June 2000 23 May 1998
Number of requests 3,630,964 3,643,208 2,225,475
Percent of images 74% 44% 84%
Number of functions 955,818 2,038,249 340,719
% of robot’s functions 33.51% 16.53% 6.46%
Number of sessions 130,314 371,242 33,995
Avg. robot’s session length 2,409.60 1,324.93 1,398.16

Table 1: Characteristics of the Log Files

Robot Session Function Human-Likely Embedded Self IAT
Id Length Function Files Identification Distribution
2 • S •
6 • S •
8 • S •
25 • S •
104 • S •
3784 • C • •

0 • C •
45282 • C • • •
584 • C • • •

47277 • C • •

Table 2: Criteria used for the identification of the ten most important robots in the bookstore log

The “self identification” criterion (request layer) assumes
that only robots request the robots.txt file before access-
ing a site, since it describes the policies for robot access to
the various site resources, such as which can be indexed
and/or fetched.

The last criterion concerns the inter-arrival time distribu-
tion. Poisson processes generate exponentially distributed
inter-arrival times (IAT). The request generation process
for some automated robots is almost periodic with quasi-
deterministic IAT. In fact, as we shall see, the IAT dis-
tribution for some robots was found to be very close to
a log-normal distribution which concentrates around one
value. This criterion is positive if the IAT distribution is
not exponential, possibly indicating a request generation
process not driven by humans.

The result of applying the above criteria to the sessions
present in the log showed that no single criterion is always
effective but a consensus among two or more of the pre-
sented criteria generally suffices for identifying a session
as generated by a robot.

3. ROBOT WORKLOAD CHARACTERI-
ZATION

In this section we identify and characterize robots from
real logs applying our multi-layered approach (see sec-
tion 2). Thereby, we concentrate on the bookstore log
because of its significant robot workload, but also because
we identified a more diversified mix of robots than on the
other logs.

The bookstore log shows requests that are not directly
generated by browsers of human users. Through our anal-

ysis, we identified search engines’ crawler agents, which
are part of a broader class of agents that perform resource
discovery and retrieval functions. In this class we can also
find email address collectors, off-line browsers, site main-
tenance agents which probe the site at regular intervals
to check whether it is alive, as well as database dumpers
which, in the case of a bookstore, perform extensive ISBN
searches for price comparison or retrieve information on
books.

These agents are the actual robots, as they are entirely
automated and have a request generation process that is
not human-driven, but rather the consequence of a com-
puter program. In this study we collectively call robots of
this class Crawlers.

Another class of robots is that of agents associated with
meta search engines and price comparison sites. We call
them ShopBots. ShopBots are employed, e.g., by sites
which search for prices of items in several e-tailers and
present the findings summarized in a single page to the
user. What is seen from the perspective of the bookstore is
a long stream of requests coming from a single IP address,
which can account for a significant portion of the store’s
load.

Proxy servers are a third source of requests that do not
come directly from user browsers, but rather appear to the
store as a long sequence of requests coming from a single
IP address. By maintaining state information on the user,
however, the store can identify the different user sessions
present in the stream. We did not consider this type of
request generating process, as it is essentially analogous
to the direct human interaction.



3.1 Request Layer Characterization
We first analyze the distributions of the inter-arrival times
(IAT) for each individual robot, and then show our results
for the arrival rate sampled at multiple time scales.

3.1.1 Distribution of Inter-arrival Times
As mentioned, requests triggered by human interaction
have a high potential to possess characteristics of a Pois-
son process, i.e., exponentially distributed IATs. In fact,
over 1/2- to 1-hour periods, session arrivals on Internet
links have been shown to be consistent with a homoge-
neous Poisson process (e.g., see [6] for ftp and telnet
sessions, and [7] for Web sessions). Systematic crawlers,
on the other hand, should be expected to show more regu-
lar, periodic behavior, i.e., IAT distributions which cluster
heavily around an average value.

Figure 3 displays the probability distribution function for
the interarrival times (IAT) for Crawlers and ShopBots.
The distribution for Crawlers exhibits a well defined peak,
which varies from one robot to the other.

Crawlers, dumping a database or following links system-
atically and without human interaction will show a fairly
periodic pacing of requests, i.e., a strong clustering of
the IAT around their mean. Variability might be caused
by network transfer delays—known to be sharply peaked
log-normal [9]—and servicing delays. Indeed, we were
able to successfully fit, by minimizing the sum of the
squared residuals, sharply peaked log-normal distributions
for the IAT of crawlers. The probability density function
(pdf) for the log-normal distribution is given by p(x) =

1/Sx
√

2πe−(ln x−M)2/(2S2), where M and S are the mean
and standard deviation of ln(x), respectively. The param-
eters of the distribution, as well as the mean and variance
thereof can be seen in Table 3.

Shopbots, on the other hand, show IAT distributions that
are fairly well approximated by exponential distributions
with pdf given by p(x) = λe−λx for x > 0, as can be seen
on the plot at the bottom of Fig. 3. A slight mismatch
can again be explained by accounting for the convolution
with transfer delay (for an exponential, a convolution with
a sharply peaked log-normal distribution has little effect).
Again, the parameters for the fitted distributions for the
Shopbots can be seen in the left half portion of Table 3.

3.1.2 Multi-scale Time Analysis
In this section we study the arrival rate of robot requests
on different time scales, i.e., sampled in time intervals of
varying length. Figures 4 and 5 show the results for sam-
pling intervals of 1 minute, 30 minutes, and 4 hours. A
visual inspection of the plots reveals completely different
behavior for Crawlers and Shopbots, at least on interme-
diate to large time scales.

Crawlers turn on sporadically, send requests at a high
steady rate through the duration of their activity and pro-
duce clearly visible bursts of activity, not necessarily fol-
lowing any daily patterns. Human-triggered agents such
as the Shopbots produce request arrivals that show charac-
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Figure 3: Probability density functions of the IAT
for Crawlers (top) and ShopBots (bottom). Plot-
ted next to each curve is the fitted log-normal or
exponential theoretical curve, which show under-
lying machine and human triggered request gen-
eration processes, respectively.

teristics similar to the overall requests (all clients). Here,
trends emerge which show in terms of long sequences of in-
crease or decrease of volume, particularly pointed at inter-
mediate time scales of the order of minutes. This reflects
the overall pattern of the human work-cycle.

It is also interesting to indicate the effectiveness of the
multi-scale analysis to point out short bursts of activity,
seen only on finer times scales. For example, in the case of
Crawlers the arrival rate averaged over periods of 1 minute
peaks at close to 2 requests per second (Fig. 4). These
peaks are averaged out when larger sampling intervals are
considered since they are of short duration. This can be
invaluable when planning to handle bursts.

3.2 Function Layer Characterization
In this section we consider, at the function level, the pat-
tern of object references of different robots. Here the term
“object” is employed in a broad sense, representing the in-
formation targeted by a request, such as the query string
for a search request, and the name of the category for a
browsing request. For example, given a Search request, its
parameter is the query string, and given a Book Info re-



ShopBots Crawlers
ID λ mean σ ID M S mean σ
2 0.0407 24.57 24.57 3784 0.448 1.3280 3.78 8.31
6 0.0188 53.19 53.19 0 0.230 0.9120 1.90 2.17
8 0.0280 35.71 35.71 45282 1.733 0.3750 6.06 2.35
25 0.0639 15.64 15.64 584 3.403 0.0031 30.05 0.09
104 0.0120 83.33 83.33 47277 1.057 0.1764 2.92 0.51

Table 3: Parameters for the fitted distribution of IAT’s
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Figure 4: Arrival process for the Crawlers com-
bined, considering bins of 1 minute, 30 minutes,
and 4 hours, showing well defined, short, and ir-
regular bursts of requests

quest, its parameter is the book itself. Intuitively, crawlers
should request several items approximately the same num-
ber of times. Shopbots, on the other hand, should follow
an object popularity similar to that of the human users
that trigger the activation of the Shopbots, as discussed
in more detail in what follows.

Consider a crawler that indexes a site or downloads the
entire book database of an online bookstore. During its
session, the crawler would typically visit each page once
(or a constant number of times). Let the popularity of an
object be defined as the number of times it is requested in
a session, divided by the total number of requests in the
session. For a crawler session, the popularity of all objects
should be very similar.

The popularity of objects referenced by human beings,
on the other hand, is far from constant. In fact, it has
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Figure 5: Arrival process for the ShopBots com-
bined, considering bins of 1 minute, 30 minutes,
and 4 hours, showing a well defined pattern that
follows the days of the week at the coarser scale,
a very human pattern

been shown in several domains that the distribution of
the popularity among objects of a referenced set is highly
concentrated. If we rank the objects by the number of
references, i.e., the most referenced objects first, Zipf’s
law states that the popularity is inversely proportional
to the rank. Thus, in a doubly logarithmic plot of the
popularity versus the rank Zipf’s law appears as a straight
line with negative slope given by a parameter α. The
larger the absolute value of the slope, the more skewed the
distribution is. This behavior should also determine the
reference pattern of ShopBots, since they re-issue search
requests that originate from humans.

Figure 6 plots the rank versus the popularity for objects
referenced by a typical Crawler and by a typical Shop-
Bot, in a log-log scale, for the robots with identifications
0 and 25, respectively. We can see that they differ con-



siderably. In the top plot, the Crawler exhibits very large
quasi-horizontal regions, indicating near uniform referenc-
ing patterns for large groups of objects. In fact, for one
of the crawlers we found that more than 90% of the ob-
jects were referenced only once. In the bottom plot, the
ShopBot conforms very closely to a Zipf-like distribution.
By using a linear least-squares fit we found a good fit
for α = 0.49. The popularity distribution for the objects
referenced in the sessions which were classified as human-
generated sessions exhibits a similar behavior, i.e., a Zipf-
like distribution with α = 0.62, indicating a more skewed
distribution.
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Figure 6: Rank vs. popularity graph for a typical
Crawler (top) and a typical ShopBot (bottom).

3.3 Session Layer Characterization
In this layer,we target the session lengths of the robots and
the semantics derived from the access pattern to functions
as represented by the Customer Behavior Model Graph
(CBMG) [5]. This is a state transition graph used to de-
scribe the behavior of groups of customers who exhibit
similar navigational patterns. The graph has one node for
each possible state (e.g., home page, browse, search, se-
lect, add, and pay) and transitions between these states.
A probability is assigned to each transition. Different
types of users may be characterized by different CBMGs
in terms of the transition probabilities. From the CBMG
one can derive the session length and the average number
of visits per session to each state, and the semantics of the
access pattern.

We represent the CBMGs as square matrices, where an
entry i, j represents the percent probability of going to
state j from state i. We removed the states that had no
visits.

Entry Exit Home Search
Entry 0 0 0.118 99.882
Home 0 0 0 100
Search 0 0.003 0 99.997

Table 4: ShopBot CBMG.

Function Function Distribution(%) # of Visits
home 0.12 36
other 0.05 14
search 99.83 30391

Table 5: ShopBots Function Distribution and
Number of Visits

Table 4 shows the averaged CBMG for the ShopBots. It
shows a simple structure: the first state is almost always
“search’, and the robot leaves the “search” state with a
very low probability. This is confirmed by Table 5, which
shows the distribution of visits to each state per session,
derived from the CBMG. The behavior indicates that the
ShopBots perform (almost) exclusively searches, and that
usually they have long sessions.

Table 6 shows the averaged CBMG for the different crawlers.
The first observation is the much broader pool of states
that are visited. This is only natural, since some of the
crawlers tend to visit the whole site. This involves span-
ning various states, with the exception of the “Humanoid
Functions”. Most of the visits are to “browse” and “view”
(information on specific items). Visits to the search state
are rare, and they are usually associated with the initial
search page that is reached by the crawler (see Table 7).

The CMBG is very effective in identifying the type of a
robot, but it is worth noting that it should be used in
conjunction with the other criteria, such as the arrival
process characterization to correctly classify the robots.
Indeed, we found a Crawler (actually a database dumper)
that performed only searches.

Function Function Distribution(%) # of Visits
view 38.34 6221
browse 36.53 5926
aux 13.61 2208
home 4.41 716
search 2.56 415
acc 2.24 364
add 2.09 339
other 0.21 34
robot 0.01 1

Table 7: Crawler Function Distribution and Visits



Entry Exit Home Browse Search View Add Acc Robo Aux
Entry 0 0 33.333 33.333 0 33.333 0 0 0 0
Home 0 0.0196 16.606 24.29 0.031 8.794 30.332 4.061 0.016 15.844
Browse 0 0.006 8.088 68.817 0.098 2.783 0.053 0.002 0.006 20.146
Search 0 0 1.426 54.028 16.125 25.716 0 0 0 2.705
View 0 0.0020 1.240 4.182 0.783 92.601 0.124 0.015 0 1.052
Add 0 0 6.979 0 0 0 11.419 81.119 0 0.483
Acc 0 0 2.292 0.040 0.040 0 3.023 13.485 0 81.121
Robo 0 0 50.000 0 0 0 0 0 0 50.000
Aux 0 0 1.832 26.017 32.916 13.273 0.060 0 0 25.903

Table 6: Crawler CBMG.

4. IMPACT OF ROBOTS ON WEB CACHES:
A FIRST CUT

In this section we assess the impact that robots have on
Web caching. Our discussion applies mostly to server-side
caches or to other types of caches that are part of the
server cluster.

We concentrate our analysis on the bookstore log. We
start by partitioning the log using the criteria of Sec. 2
into three categories: crawlers, shopbots, and others (i.e.,
requests generated directly by human beings). This pro-
cedure yields three new logs, which we compare with the
original complete log, leaving us with a total of four data
sets. In order to compare the effectiveness of caching, we
assume a server-side cache system which is able to cache
results of dynamic requests, specifically search and info
requests. From the four logs we derive the corresponding
request streams that the cache would be subject to, by
isolating the objects referenced in the requests to search
and info functions.
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Figure 7: Miss ratio as a function of cache size (in
number of objects)

Figure 7 plots the expected miss ratio on a cache subject
to the four streams discussed above, as a function of cache
size, measured as the number of objects it can hold. We
consider all objects to be equally sized. This model, al-
beit simplistic, can give us insight on the behavior of the
cache for the different streams. We use the marginal dis-
tribution of Least Recently Used (LRU) stack distances to
determine the cache miss ratio [12, 14] under the LRU pol-

icy. If D is the random variable corresponding to the stack
distances and FD is the cumulative distribution function
of D, then the miss ratio m (x) for a cache of size x is
given by P [D > x] = 1 − FD(x) = m (x).

We start by noting the significant difference in the asymp-
totical miss ratio of the four streams, i.e., if the cache had
infinite size. The asymptotical miss ratio is due to the
mandatory miss caused by the first reference to each ob-
ject, and thus relates to the number of different objects
in the reference stream. The ‘No Robots’ curve has the
lowest miss ratio, lower than 25%, almost half that of the
‘Full’ log. It is also the one that decreases the most as
we increase the cache size. The ‘ShopBots’ curve shows
an asymptotical miss ratio close to 57%. The log we ana-
lyzed is from a specialized bookstore that has books from
restricted domains. We conjecture that the human users
that access the site know this and thus submit queries
that are also restricted to a narrower domain. The Shop-
Bots, on the other hand, submit queries to this and to
other bookstores on behalf of users that are not aware of
the domain of these backend bookstores. This behavior
would tend to increase the number of different objects re-
quested. The ‘ShopBots’ curve is also much less sensitive
to increases in cache size. This is very much in tune with
the observation that the inclination of the popularity ver-
sus rank curve is much lower for the Shopbots than it is
for human users, indicating a less skewed distribution.

The ‘Crawlers’ curve is very different from the others, with
very pronounced steps. It presents regions in which the
miss ratio remains almost the same as the cache expands,
to fall abruptly after threshold cache sizes. This is a con-
sequence of the non-human request generating process,
which can be also seen in Figure 6 that shows the popular-
ity distribution as a function of rank. The crawlers have
a ‘round-robin’ like referencing pattern, requesting each
object approximately the same number of times. Some
crawlers have a list of items which they request sequen-
tially, while others crawl the site in breadth-first order. In
the database literature, it is well known that repeatedly
reading a relation sequentially can render an LRU cache
useless, unless the cache can hold the entire relation [13].
We interpret each step in the curve as the size of the set
of pages requested by each different crawler, but this re-
quires further investigation. Another interesting observa-
tion from the ‘Crawler’ curve is that with a cache of size 1
we can verify a hit ratio of almost 15%, while at the same



size the other curves exhibit hit ratios close to 0%. We
inspected the logs and found out that this is due to one
particular crawler that always requests the same object
twice within a very short interval. Even on a cache of size
1 the second references always generate a hit.

The main conclusion drawn from the above is that the
presence of robots causes a significant increase in the miss
ratio of a server side cache. Crawlers have a referenc-
ing pattern that completely disrupts locality assumptions,
while ShopBots show a reference stream with less refer-
ence locality. Further, the arrival process of both Crawlers
and ShopBots poses a significant additional load on the
servers, which have to handle the costs associated with
both a higher miss ratio and the requests submitted by
robots. This suggests that robots should be treated dif-
ferently than humans by the cache and by the server.

5. CONCLUSIONS
Very few studies have been published regarding the be-
havior of robots on the Web and we are not aware of any
studies that focus on the impact of robots on cache per-
formance. This paper used a hierarchical approach for
workload characterization of requests generated by robots.
Using several criteria, the paper shows the presence of dif-
ferent types of robots in logs from actual web sites. The
characterization was done at the session, function, and
request levels. Statistical analyses of the robot request
arrival process was carried out at different time scales.
Using information derived from the log of a real online
bookstore, the paper then discusses the impact of robots
on the performance of Web caches. From the reference
locality perspective, the presence of robots causes a sig-
nificant increase in the miss ratio of a server side cache,
resulting in higher costs for request responses, which affect
already overloaded servers by the robot requests them-
selves. These results suggest the need for strategies of ser-
vice differentiation between robots and human users, not
only guaranteeing the response time of the later, but also
the efficacy of cache mechanisms employed by the server.
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