
Measurement-Based Analysis, Modeling, and Synthesis of
the Internet Delay Space ∗

Bo Zhang†, T. S. Eugene Ng†, Animesh Nandi†‡,
Rudolf Riedi†, Peter Druschel‡, Guohui Wang†

†Rice University, USA ‡Max Planck Institute for Software Systems, Germany

ABSTRACT
Understanding the characteristics of the Internet delay space (i.e.,
the all-pairs set of static round-trip propagation delays among edge
networks in the Internet) is important for the design of global-scale
distributed systems. For instance, algorithms used in overlay net-
works are often sensitive to violations of the triangle inequality and
to the growth properties within the Internet delay space. Since de-
signers of distributed systems often rely on simulation andemula-
tion to study design alternatives, they need a realistic model of the
Internet delay space.

Our analysis shows that existing models do not adequately cap-
ture important properties of the Internet delay space. In this paper,
we analyze measured delays among thousands of Internet edgenet-
works and identify key properties that are important for distributed
system design. Furthermore, we derive a simple model of the In-
ternet delay space based on our analytical findings. This model
preserves the relevant metrics far better than existing models, al-
lows for a compact representation, and can be used to synthesize
delay data for simulations and emulations at a scale where direct
measurement and storage are impractical.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms
Measurement, Performance, Experimentation

Keywords
Internet delay space, measurement, analysis, modeling, synthesis,
distributed system, simulation

∗This research was sponsored by the NSF under CAREER Award
CNS-0448546, and by the Texas Advanced Research Program un-
der grant No.003604-0078-2003. Views and conclusions contained
in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or
implied, of NSF, the state of Texas, or the U.S. government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’06, October 25–27, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-561-4/06/0010 ...$5.00.

1. INTRODUCTION
Designers of large-scale distributed systems rely on simulation

and network emulation to study design alternatives and evaluate
prototype systems at scale and prior to deployment. To obtain
accurate results, such simulations or emulations must include an
adequate model of theInternet delay space: The all-pairs set of
static round-trip propagation delays among edge networks.Such
a model must accurately reflect those characteristics of real Inter-
net delays that influence system performance. For example, having
realistic clustering properties is important because theycan influ-
ence the load balance of delay-optimized overlay networks,and the
effectiveness of server placement policies and caching strategies.
Having realistic growth characteristics [16] in the delay space is
equally important, because the effectiveness of certain distributed
algorithms depends on them. Many distributed systems are also
sensitive to the inefficiency of IP routing with respect to delay.
Such inefficiency manifests itself as triangle inequality violations
in the delay space, and must be reflected in a model as well.

Currently, two approaches are used to obtain a delay model.
The first approach, adopted for instance by the P2PSim simula-
tor [25], is to collect actual delay measurements using a tool such
as King [13]. However, due to limitations of the measurement
methodology and the quadratic time requirement for measuring a
delay matrix, measured data tends to be incomplete and thereare
limits to the size of a delay matrix that can be measured in practice.
To its credit, P2PSim provides a 1740×1740 delay space matrix,
which is not a trivial amount of data to obtain.

The second approach is to start with a statistical network topol-
ogy model (e.g. [45, 48, 8, 10, 18]) and assign artificial linkdelays
to the topology. The delay space is then modeled by the all-pair
shortest-path delays within the topology. The properties of such
delay models, however, tend to differ dramatically from theactual
Internet delay space. This is because these models do not ade-
quately capture rich features in the Internet delay space, such as
those caused by geographic constraints, variation in node concen-
trations, and routing inefficiency.

A delay space model suitable for large-scale simulations must
adequately capture the relevant characteristics of the Internet delay
space. At the same time, the model must have a compact repre-
sentation, since large-scale simulations tend to be memory-bound.
The naive approach of storing 16-bit delay values for all pairs of
a 100K node network, for instance, would require almost 20GBof
main memory! Finally, to enable efficient simulation, generating a
delay value for a given pair of nodes must require very littlecom-
putation and no disk accesses.

One approach is to build astructural model of the Internet, us-
ing BGP tables, traceroute, ping and other measurements to capture
the coarse-grained (e.g., AS-level) topology of the Internet and the

associated static link delays [22]. Given such a model, the delay
for a given pair of IP addresses can be estimated by adding thelink
delays on the predicted route through the topology. If the topol-
ogy model captures the coarse-grained structure of the Internet well
enough, the resulting delays should preserve the characteristics of
the Internet delay space. However, it remains unclear how detailed
such a model has to be to preserve the relevant characteristics.

Another approach is to build astatistical model, designed to pre-
serve the statistical characteristics of a measured Internet delay data
set. Unlike a structural model, a statistical model cannot predict the
delay between a particular pair of real Internet IP addresses. For the
purposes of distributed systems simulations, however, it suffices
that the statistical properties of the model adequately reflect those
of the measured delay data. Statistical models lend themselves to a
compact representation and can enable efficient generationof delay
data at large scale. Since we are primarily interested in enabling ac-
curate, efficient, large-scale simulations, we decided to pursue this
approach in this paper.

We have measured a sample of the Internet delay space among
3,997 edge networks. We then characterize the measured sam-
ple with respect to a set of metrics that are relevant to distributed
system design. Based on these analytical findings, we develop
a method to model measured Internet delay spaces. The result-
ing model has a compactO(N) representation (as opposed to the
O(N2) matrix representation) that adequately preserves the rele-
vant delay space characteristics, and can model missing measure-
ments. We then extend our model and develop a method to syn-
thesize an artificial delay space. The method exploits the scaling
characteristics found in the measurements and makes it possible
to synthesize a delay space much larger than the measured delay
space, while preserving the characteristics of the measured data.
We make two primary contributions in this work:
• We systematically quantify the properties of the Internet delay
space with respect to a set of statistical, structural, and routing met-
rics relevant to distributed systems design. This leads to new fun-
damental insights into Internet delay space characteristics that may
inform future work.
• We develop a set of building block techniques to model and syn-
thesize the Internet delay space compactly, while accurately pre-
serving the relevant metrics. The compact representation enables
accurate and memory efficient network simulations at large scale.

We emphasize that our goal is to provide a model of the Internet
delay space that enables accurate large-scale simulations. We do
not attempt to provide either anexplanatory model of Internet de-
lay, which explains the underlying technical, economic andsocial
forces that shape Internet delays, nor do we attempt to provide a
predictive model that can estimate the delay between a given pair
of real IP hosts. Building such models is also an interestingre-
search direction, but is beyond the scope of this paper.

2. METHODOLOGY AND MODELS
We begin by describing our measurement methodology and the

existing delay space models we use in this study.

2.1 Measured Internet Delay Space
We use the King tool [13] to measure the all-pair round-trip static

propagation delays among a large number of globally distributed
DNS servers, where each server represents a unique domain and
typically one edge network. To choose DNS servers, we start with
a list of 100,000 random IP addresses drawn from the prefixes an-
nounced in BGP as published by the Route Views project [32]. For
each IP address, we perform a reverse DNS lookup to determine
the associated DNS servers. Each reverse lookup returns a set of

DNS serversDIPi
. We keep only the DNS server sets in which at

least one server supports recursive queries, since King requires it.
If two DNS server setsDIPi

andDIPj
overlap, then only one of

the two sets is kept since they do not represent distinct domains.
If there is more than one server in a set, the set is kept only ifall
the servers in the set are topologically close. We check thisby per-
forming traceroutes to all the servers in the set. By making sure
the servers in the set are physically co-located, we ensure different
measurement samples are measuring the same network. Among
the remaining DNS server sets, we choose one server per set that
supports recursive query. We then use 5,000 such DNS serversto
conduct our measurements.

Care must be taken during the measurement process. The mea-
sured delays include the DNS server processing delays as well as
network queuing delays. We collect multiple measurement sam-
ples and keep only the minimum value to approximate the static
delay. However, high packet loss rates can cause insufficient mea-
surement samples. Also, because King measures the delay between
two servers, sayD1 andD2, by subtracting the delay toD1 from
the delay toD2 via D1, it is possible to end up with a very small
or even negative delay value if the measurements were tainted by
processing or queuing delays.

To ensure the subsequent analysis is based on accurate data,we
adopt a fairly stringent methodology. We measure the round-trip
delay between two DNS servers from both directions by using ei-
ther server as the recursive server. For each direction, we make up
to 50 attempts to measure the recursive delay toD2 via D1, and
up to 50 attempts to measure the delay toD1 via D2. At least 20
measurement samples must be obtained in each case. The min-
imum value across the samples is used as the propagation delay.
After the subtraction step, if the delay is negative, or if the delay
is greater than 2 seconds or smaller than 100 microseconds, it is
discarded. These unrealistic delay values are likely caused by pro-
cessing and queuing delays that affected the measurements.Also, if
the obtained delay betweenD1 andD2 measured in each direction
disagrees by more than 10%, we discard the measurement. Finally,
we remove data from DNS servers that are consistently failing to
provide valid measurements: After we assemble the delay space
matrix, if any row/column has more than 25% of the values miss-
ing, the entire row/column is removed.

We collected the measurements in October 2005. Among the
collected 5000×5000 delay data, 16.7% have insufficient measure-
ments samples, 8.1% have inconsistent samples, 0.16% are smaller
than 100 microseconds, and 0.51% are larger than 2 seconds. After
removing suspicious measurement values, the remaining delay ma-
trix has 3997 rows/columns with 13% of the values in the matrix
unavailable. To characterize the distribution of the missing values,
we partition the delay matrix into its three largest clusters. These
clusters correspond to IP hosts in North America, Europe andAsia.
We find that the percentage of missing values are distributedas fol-
lows:

From/To North America Europe Asia
North America 14% 11% 12%

Europe 11% 15% 11%
Asia 12% 11% 18%

To understand the properties in the data set under scaling, we
consider four different random sub-samples of the measureddata
with the sizes 800, 1600, 2400, and 3200. To reduce the sensi-
tivity to a particular random sample, for each sub-sample size, we
consider five random sample. Results presented in this paperare
averages over the five samples.

2.2 Topology Model Delay Spaces
We also generate delay matrices based on existing topology mod-

els and compare them against the measured Internet delay space.
The two generators we use are Inet [46] and GT-ITM [48]. The
Inet generator creates a topology that has power-law node degree
distribution properties. The GT-ITM generator is used to generate
a topology based on the Transit-Stub model. We include the Inet
and GT-ITM topology models in this study because they are often
used in distributed system simulations.

For Inet, we create a 16000-node topology. To generate the de-
lays, we use the standard method of placing nodes randomly ina
plane and then use the Euclidean distance between a pair of con-
nected nodes as the link delay. All-pairs shortest delay routing is
then used to compute end-to-end delays. Finally, we extractthe
generated delays among the 5081 degree-1 nodes in the graph in
order to model the delays among edge networks. No triangle in-
equality violations are introduced. For GT-ITM, we create a4160-
node transit-stub topology. Note that GT-ITM annotates links with
routing policy weights and artificial delays. Shortest pathrouting
is performed over the topology using routing policy weightsas the
link costs. End-to-end delays are then computed by summing the
artificial link delays along the selected paths. Some triangle in-
equality violations are then introduced artificially in theresulting
delay space. Finally, we extract the delays among 4096 stub routers
to model the delays among edge networks.

We scale the delays in the two artificial delay matrices such that
their average delay matches the average delay in the measured de-
lay data. This constant scaling does not affect the structure of the
generated delay spaces. We do this only to simplify the presenta-
tion of results.

2.3 Limitations of Measured Delay Data
Our analysis is based on a carefully collected set of measured

Internet delay data. The data set, however, does have limitations.
First, the measurements are among DNS servers. The data set thus
represents the delay space among edge networks in the Internet.
No explicit measurements were collected among hostswithin a lo-
cal area network. For example, even though a university campus
may have thousands of hosts, we most likely pick only one of its
DNS servers to include in the measurement. Therefore, this study
addresses only the delay space properties among edge networks in
the wide area, but not the delay space properties within a local area
network. Secondly, to increase our confidence in the data, wehave
discarded questionable measurements. We therefore proceed with
the assumption that the missing delay values do not have signifi-
cantly different properties than the available data.

3. INTERNET DELAY SPACE ANALYSIS
In this section, we first identify a set of metrics that are known

to significantly influence the performance of distributed systems.
Then, we analyze measured Internet delay data with respect to these
and other statistical and structural properties. The results give in-
sight into the characteristics of the Internet delay space,and they
inform the design of an appropriate model.

3.1 Systems-motivated Metrics
The metrics presented below are known to strongly influence dis-

tributed system performance and capture a wide range of important
issues in distributed system design and evaluation.
Global clustering - This metric characterizes clustering in the de-
lay space at a macroscopic level. For instance, the continents with
the largest concentration of IP subnetworks (North America, Eu-
rope and Asia) form recognizable clusters in the delay space. This

1

2

Nearest neighbor edge
Node in delay space

1st cluster head

2nd cluster head

Not drawn to exact scale

1

2

3

3rd cluster head3
4

Not a cluster head; extracted
by cluster 1

4

Figure 1: Nearest neighbor directed graph analysis technique.

global clustering structure is, for instance, relevant to the place-
ment of large data centers and web request redirection algorithms
(e.g. [29]).

Our algorithm to determine the global clustering works as fol-
lows. Given N nodes in the measured input data, it first treatseach
node as a singleton cluster. The algorithm then iterativelyfinds two
closest clusters to merge. The distance between two clusters is de-
fined as the average distance between the nodes in the two clusters.
A cutoff delay value determines when to stop the merging process.
If the distance between the two closest clusters is larger than the
cutoff, the merging process stops. By varying the cutoff value and
monitoring the resulting cluster sizes, the global clustering proper-
ties can be determined.
Local clustering - This metric characterizes clustering in the delay
space at the local level. It is based on analyzing the in-degree dis-
tribution of the directed graph formed by having each node point
to its nearest neighbor in the delay space. Moreover, we use the
graph to identify a set of local cluster heads (or centers). We se-
lect the node with the highest in-degree as a local cluster head and
remove it and its immediate children from the graph. This step is
applied repeatedly to identify the next local cluster head until no
more nodes remain. Since a local cluster resembles a star graph,
we sometimes simply call it a star. The process is illustrated in Fig-
ure 1. The importance of the local cluster heads will become clear
in subsequent sections.

Local clustering is relevant, for instance, to the in-degree and
thus the load balance among nodes in delay-optimized overlay net-
works (e.g. [5]). For example, dense local clustering can lead to
an overlay node having an unexpectedly high number of neighbors
and can potentially create a load imbalance in the overlay.
Growth metrics - Distributed nearest neighbor selection is a hard
problem, but efficient algorithms have been identified to solve the
problem for growth-restricted metric spaces [16]. These algorithms
are used, for instance, in Tapestry [49] and Chord [41] to select
overlay neighbors. In a growth-restricted metric space, ifthe num-
ber of nodes with a delay of at mostr from some nodei is Bi(r),
thenBi(2r) ≤ c · Bi(r), wherec is a constant. We characterize
the growth properties of a delay space by evaluating the function
B(2r)/B(r).

A related metric is theD(k) metric. Letd(i, k) be the average
delay from a nodei to its k closest nodes in the delay space and
N be the set of nodes, thenD(k) = 1

|N|

P

i∈N
d(i, k). Structured

overlay networks like Chord, Tapestry and Pastry employ proxim-
ity neighbor selection (PNS) to reduce the expected delay stretch
S, i.e., the ratio of the delay of an overlay route over the direct
routing delay averaged over all pairs of nodes [14, 4, 30, 5].We
choose to include theD(k) metric because analysis has shown that
in Tapestry and Pastry, the expected delay stretchS in the overlay
can be predicted based on the functionD(k) [5].

Triangle inequality violations - The triangle inequality states that
given pointsx, y andz in a Euclidean space, the distancedij be-
tween pointsi andj satisfiesdxz ≤ dxy + dyz. The Internet delay
space, however, does not obey the triangle inequality, since Internet
routing may not be optimal with respect to delay. Unfortunately,
many distributed nearest neighbor selection algorithms rely on the
assumption that the triangle inequality holds [33, 16, 44].Thus, it
is important to characterize the frequency and severity of the viola-
tions in the Internet delay space.

3.2 Analysis Results
We now present an analysis of the measured delay data with re-

spect to the metrics described above, and some basic properties like
the delay distribution. For comparison, we also show the relevant
properties of the delays produced by the Inet and GT-ITM models.

We begin with a comparison of the delay distribution. In Fig-
ure 2(a), we can observe that the delay distributions of the mea-
sured data set have characteristic peaks at roughly 45ms, 135ms,
and 295ms. This suggests that the nodes form clusters in the data.
Analysis of random data sub-samples indicates that the delay dis-
tribution is also independent of sample size. In contrast, the delay
distributions for the topology models do not indicate such behavior.
Clearly, there are rich features in the Internet delay spacethat are
not captured in the delays derived from these topology models.

To visualize the locations of nodes, we first embed the data sets
into a 5D Euclidean space using a dimensionality reduction proce-
dure that is robust to missing data. Then, we do a principal com-
ponent analysis on the 5D Euclidean coordinates to get the first 2
principal components. Several techniques exist to computethe 5D
embedding [24, 7, 35, 6, 19, 43]. Here, we use a slightly modified
version of the Vivaldi [7] method that avoids the missing measure-
ments. We use 32 neighbors per node in Vivaldi.

Figure 2(b) displays the scatter plots of the first two principal
components of the 5D embedding for different data sets. The visual
differences between the measured data and the topology models are
striking. It is easy to see that there exists clustering structure in the
measured data. In contrast, the nodes in the topology modelsare
distributed more uniformly in the space, and their resulting delay
distributions are approximately normal.

To quantify the global clustering properties in the measured data
set, we apply the described global clustering algorithm andplot the
percentage of nodes in the largest cluster against different cluster-
ing cut-off thresholds in Figure 2(c). Regardless of the sample size,
the largest cluster’s size increases sharply at cutoff values 155ms
and 250ms. These sharp increases are caused by the merging oftwo
clusters at these thresholds. The steps suggest that there are three
dominant clusters. By setting the threshold to 120ms, nodescan
be effectively classified into the three major clusters. They account
for 45% (the North America cluster), 35% (the Europe cluster),
and 9% (the Asia cluster) of the nodes, respectively. The remain-
ing 11% are nodes that are scattered outside of the major clusters.
These global clustering properties can be used to guide the global
placement of servers and the design of load-balancing algorithms.
In contrast, there is no clear clustering structure in the Inet model.
The clustering structure of the GT-ITM model also does not resem-
ble that of the measured data.

The global clustering analysis reveals the coarse-grainedstruc-
ture of the delay space. To understand the fine-grained structure,
we conduct the nearest neighbor directed graph analysis on the
data sets. We emphasize that these results characterize theprop-
erties among edge networks in the Internet; theydo not charac-
terize the properties among end hosts within local area networks.
Figure 3(a) shows the in-degree distributions for different sample

Sample size # Cluster heads Percentage
800 185 23.1%
1600 363 22.7%
2400 547 22.8%
3200 712 22.3%
3997 (all data) 884 22.1%

Table 1: Average fraction of nodes classified as cluster heads in
measured data.

sizes. Observe that the in-degree distribution for the measured data
has an exponential decay (note the log-linear scale). Interestingly,
we discover that the distribution is consistent across different sam-
ple sizes. If a straight line is fitted over 99.9% of the distribution
(i.e., ignoring the 0.1% of nodes with the largest in-degrees), the
line has a y-intercept of -0.8565 and a slope of -0.6393. These pa-
rameters can be used to model the nearest-neighbor in-degree dis-
tribution among edge networks in the Internet. In the future, when
delay data for hosts within local area networks become available,
the model can be hierarchically extended by assigning end hosts
appropriately to each edge network in the model.

We classify the nodes into local cluster heads (or star heads) and
non-heads using the procedure described in 3.1. Table 1 shows that
the proportion of nodes in the data that are classified as local cluster
heads is quite stable across different sample sizes. This observation
is also true when each major global cluster is considered separately.
This property will be useful when we turn to the synthesis of delay
spaces later in this paper.

In contrast, as shown in Figure 3(b), the in-degree distribution
for the Inet topology follows closely the power-law (note the log-
log scale). If a straight line is fitted over 99.9% of the distribution,
the line has a y-intercept of -3.7852 and a slope of -1.3970. Thus,
the Inet model does not reflect the local clustering properties among
edge networks in the measured delay data. For the GT-ITM topol-
ogy, as shown in Figure 3(c), the distribution is close to exponen-
tial, the best fit line in the log-linear plot has y-interceptof -0.0080
and slope of -1.1611. Thus, this distribution is also different from
that found in the measured data.

Next we analyze spatial growth. Figure 4(a) shows the median
B(2r)/B(r) growth of the data sets. We plot the median because,
unlike the mean, it is insensitive to the extreme outliers and can bet-
ter characterize the dominant trends. As can be seen, the topology
models have far higher peak spatial growth than the measureddata
(note the log-linear scale) and have very different trends.In the
measured data, the initial growth is higher when the ball is expand-
ing within a major cluster. As soon as the ball radius covers most
of the nodes within the same major cluster, growth slows downas
expected. When the ball radius reaches a size that begins to cover
another major cluster, the growth increases again. Eventually most
of the nodes are covered by the ball and the growth ratio steadily
drops to one. This growth trend in the measured data is invariant
across different sample sizes. These new findings can help fine tune
distributed system algorithms that are sensitive to the ball growth
rate. On the other hand, the growth trends in the Inet and GT-ITM
topology models do not reflect the structure of the measured data.

In terms of theD(k) metric, we also observe dramatic differ-
ences between topology models and the measured data. Figure4(b)
indicates that in the Inet and GT-ITM topology models, from the
perspective of an observer node, there are very few nodes whose
delays are substantially smaller than the overall average delay. In
contrast, in the measured data, from an observer node, we canfind
many more nodes whose delays are substantially smaller thanthe

200 400 600 800 1000
0

1

2

3

4

5

6

7

8
x 10

−3

Delay (ms)

P
ro

b
a

b
ili

ty

Measured
Inet
GT−ITM

−200 0 200
−400

−200

0

200

400

1st Component

2
n

d
 C

o
m

p
o

n
e

n
t Inet

−200 0 200
−400

−200

0

200

400

1st Component

2
n

d
 C

o
m

p
o

n
e

n
t GT−ITM

−200 0 200
−400

−200

0

200

400

1st Component

2
n

d
 C

o
m

p
o

n
e

n
t Measured

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Cutoff (ms)

L
a

rg
e

st
 C

lu
st

e
r

P
e

rc
e

n
ta

g
e

Measured 800

Measured 1600

Measured 2400

Measured 3200

Inet

GT−ITM

(a) (b) (c)

Figure 2: Global clustering properties. (a) Delay distribution. (b) 2D coordinates scatter plot. (c) Clustering results.

0 10 20 30
10

−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Measured 800
Measured 1600
Measured 2400
Measured 3200
Best fit

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Inet
Best fit

0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

GT−ITM
Best fit

(a) (b) (c)

Figure 3: Local clustering analysis. (a) Exponential-likein-degree distribution for measured data (log-linear scale). (b) Power-law-
like in-degree distribution for Inet (log-log scale). (c) Exponential-like in-degree distribution for GT-ITM (log-l inear scale).

Figure 5: Type 1 triangle inequality violations for Measured
Data (white color is most severe).

overall average. Thus, a random probing strategy for findinga
close-by neighbor would be much more successful in the real In-
ternet than in the Inet and GT-ITM topology models. This is an
example of how using an inadequate delay space model for sim-
ulation can potentially lead to misleading results. Finally, it can
be observed that theD(k) metric is also invariant across different
sample sizes. This empiricalD(k) function can be applied to com-
pute the expected delay stretch in the Pastry and Tapestry overlays
when deployed over the global Internet [5].

We next analyze the measured data set with respect to properties
related to triangle inequality violations. We say that an edge ij
in the data set causes a Type 1 triangle inequality violationif for
some nodek,

dik+dkj

dij
< 1, and it causes a Type 2 violation if

|dik−dkj |

dij
> 1. Intuitively, better overlay paths can be found for

edges that cause Type 1 violations, and edges that cause Type2
violations can potentially provide short-cut overlay paths.

For each edgeij, we count the number of Type 1 violations it
causes. To illustrate how the number of triangle inequalityviola-
tions are distributed over the major clusters, we present a matrix
in Figure 5 for the measured data. To produce this figure, we first
reorganize the original data matrix by grouping nodes in thesame
clusters together. The top left corner has indices (0,0). The matrix
indices of the nodes in the largest cluster (North America) are the
smallest, the indices for nodes in the second largest cluster (Eu-
rope) are next, then the indices for nodes in the third largest cluster
(Asia), followed by indices for nodes that did not get classified into
any of the 3 major clusters.

Each point(i, j) in the plot represents the number of Type 1
violations that the edgeij is involved in as a shade of gray. A
black point indicates no violation and a white point indicates the
maximum number of violations encountered for any edge in the
analysis. Missing values in the matrix are drawn as white points.

It is immediately apparent that clustering is very useful for classi-
fying triangle inequality violations. It can be seen that edges within
the same cluster (i.e. the 3 blocks along the diagonal) tend to have
significantly fewer Type 1 violations (darker) than edges that cross
clusters (lighter). Also, the number of violations for edges con-
necting a given pair of clusters is quite homogeneous. Note that
the white wavy lines roughly parallel to the diagonal are simply
showing the missing data. Our measurement methodology mea-
sures the data in sequences parallel to the diagonal to evenly spread
the traffic among the probed DNS servers. Thus, when a measure-
ment station fails, an entire diagonal can be missing. The lines are
not straight because whole rows and columns are removed fromthe
data set if they have more than 25% of the values missing. Due to
space limitations, we do not include the matrix picture for Type 2
violations, but as expected, the relative shades are the reverse of
those in Figure 5. These results imply that, if two nodes are within

0 100 200 300 400 500
10

0

10
1

10
2

r (ms)
M

ed
ia

n
B

(2
r)

/B
(r

)

Measured

Measured 800

Measured 1600

Measured 2400

Measured 3200

Inet

GT−ITM

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k/N

D
(k

)/
D

(N
)

Measured

Measured 800

Measured 1600

Measured 2400

Measured 3200

Inet

GT−ITM

(a) (b)

Figure 4: Growth metrics. (a) B(2r)/B(r) metric (log-linear scale). (b)D(k)/D(N) metric.

the same major cluster, then the chance of finding a shorter over-
lay path is far lower then when the nodes are in different clusters.
Moreover, edges that are used to form better overlay paths are most
likely found inside a cluster. Interestingly, observe thatit is least
likely to find better overlay routes for paths within the Asiacluster,
but it is easiest to find better overlay routes for paths across the Asia
and Europe clusters.

We show in Figure 6(a) and Figure 6(b) the cumulative distri-
butions of Type 1 and Type 2 violation ratios for different sample
sizes. Observe that the distribution is very stable across sample
sizes. Intuitively, since triangle inequality violation is an inherent
property of the inefficiency of Internet routing, the amountof trian-
gle inequality violations observed is not expected to depend on the
number of data samples. This invariant is useful in synthesizing the
Internet delay space.

3.3 Summary
Our analysis confirms some existing knowledge about the Inter-

net delay space, such as the characteristic delay distribution and
continental clustering. In addition, the analysis provides a number
of new insights:
• The in-degree distribution of the directed nearest neighbor graph
of the measured data resembles an exponential distributionand is
stable across sample sizes. The relative number of local clusters
also appears stable across sample sizes. These findings can be used
to model local clustering properties in the Internet delay space.
• The ball growth metrics reflect the continental clustering struc-
ture of the delay space and the observed growth rate is low. These
properties can inform the design of distributed algorithms, for in-
stance to find the nearest neighbor. TheD(k) function empirically
derived from the data shows that it is not difficult to encounter a
close-by neighbor by random probing. The function can also be
used to compute the expected delay stretch in structured overlay
networks.
• The potential benefit of overlay routing for a pair of nodesij
and the utility of the pair for overlay routing can be predicted by
the clusters thati and j belong to. In particular, it is hardest to
find better overlay routes for paths within the Asia cluster,but it is
easiest to find better overlay routes for paths across the Asia and
Europe clusters.
• Delay spaces derived from existing Internet topology models are
dramatically different from the Internet delay space. Understand-
ing these differences can help practitioners to design better evalua-
tion methodologies, more correctly interpret their results, and avoid
drawing incorrect conclusions.

4. INTERNET DELAY SPACE MODELING
Using measured Internet delay data to drive distributed system

simulations allows system designers to evaluate their solutions un-
der realistic conditions. However, there are two potentialconcerns.
First of all, our ability to measure a large portion of the Internet de-
lay space is limited by the time required and the difficulty ofdealing
with network outages, measurement errors and accidentallytrig-
gered intrusion alerts. The second concern is that theO(N2) stor-
age requirement of a measured delay matrix representation does not
scale.

To address these concerns, we develop techniques to model a
measured Internet delay space. This model adequately preserves
the relevant properties of the measured data, and it has onlyO(N)
storage overhead. Later in this paper, we will also present tech-
niques to synthesize realistic delay data for a much larger delay
space than can be measured in practice so as to enable realistic
large-scale simulations.

4.1 Building Block Techniques
Technique 1: Low-dimensional Euclidean embedding- The first
technique we use is to model an Internet delay space using a low-
dimensional Euclidean embedding. That is, we compute Euclidean
coordinates for each node and use Euclidean distances to model
the delays in the delay space. Such a Euclidean map has a scalable
O(N) representation.

Although several techniques exist to compute a Euclidean em-
bedding robustly [24, 7, 35, 6, 19, 43, 40, 39], and previous studies
have shown that an Internet delay space can be overall well approx-
imated by a Euclidean embedding with as little as 5 dimensions,
such an embedding tends to inflate the small values (< 10ms) in
the delay space too much [17].

In order to create a model that also preserves small values, we
first use the Vivaldi algorithm to create a 5D Euclidean embed-
ding of the measured delay space, then we explicitly adjust the
Euclidean coordinates of nodes as follows. First, extract the set
S of all node pairs(i, j) with measured delaydij less than 10ms.
Next, among these node pairs, select the node pair(m, n) whose
Euclidean distancêdmn in the embedding is smallest. If̂dmn >
30ms, the procedure terminates. Otherwise, the coordinates of
nodem andn are adjusted so that̂dmn becomes identical todmn.
Then,(m, n) is removed fromS and the procedure repeats. The
effect of this procedure is that small values in the measureddelay
space that are mildly distorted in the initial Vivaldi 5D Euclidean
embedding are well preserved by the final set of adjusted Euclidean
coordinates. These adjusted Euclidean coordinates serve as the
starting point for our model.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Average Type 1 Violation Ratio (%)
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

Measured 800

Measured 1600

Measured 2400

Measured 3200

200 400 600 800
0

0.2

0.4

0.6

0.8

1

Average Type 2 Violation Ratio (%)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured 800

Measured 1600

Measured 2400

Measured 3200

(a) (b)

Figure 6: Triangle inequality violation ratio distributio ns. (a) Type 1 violations. (b) Type 2 violations.

0 200 400 600 800 1000
0

1

2

3

4

5

x 10
−3

Delay (ms)

P
ro

ba
bi

lit
y

Measured

5D

5D no missing

Figure 7: Delay distribution of the 5D Euclidean map.

Euclidean model

Cluster 1

Cluster 2

Cluster 3

i

j

150ms

Hcluster 1&2,150ms
Type-1

Hcluster 1&2,150ms
Type-2

150ms

150ms

P1 = Pcluster 1&2, 150ms
Type-1

P2 = Pcluster 1&2, 150ms
Type-2

P 1
+P 3

(P 1
/(P

1
+P 2

) -
1)

1-P1-P2+P3
No global distortion, return 150ms

P3 = Pcluster 1&2, 150ms
Type-1&2

P
2 +P

3 (P
2 /(P

1 +P
2) -1)

Figure 8: Global distortion technique.

Figure 7 shows the delay distributions for (1) the measured data,
(2) all the delays in the 5D Euclidean map, including the modeled
values for the missing data, and (3) the delays in the 5D Euclidean
map corresponding to the available measured data. We can seethat
the 5D Euclidean map preserves the distribution of the measured
delay values well. In addition, the modeled values for the missing
data do not skew the overall distribution.

However, a Euclidean embedding cannot preserve triangle in-
equality violations. The Euclidean map also fails to preserve the
high in-degree of some nodes in the nearest neighbor directed graph.
This is because a node cannot have a high number of nearest neigh-
bors in a low-dimensional Euclidean space. Specifically, the maxi-
mal in-degree is 12 in the measured delay space, and only 5 in the
5D map. To address these limitations of the basic 5D Euclidean
model, we use two additional techniques in order to preservethe
properties lost as a result of the Euclidean embedding.
Technique 2: Global distortion - The basic technique to create tri-
angle inequality violations in the 5D Euclidean model is to distort
the delays computed from the 5D embedding. Since the frequency
of triangle inequality violations in the measured data is relatively
small, it suffices to distort only a small subset of node pairsor
edges.

The idea is to take into consideration that edges between differ-
ent pairs of global clusters have very different triangle inequality
violation behavior (as can be seen in Figure 5), identify theedges
in each pair of clusters that cause violations above a certain sever-
ity threshold, characterize the distortion distribution for these edges
when they are mapped into the 5D Euclidean model, then use this
same distortion distribution to introduce distortions when delays
are generated from the 5D embedding. To ensure that the model
always produces the same delay for a given pair of nodes, it uses
the node identifiers to generate deterministic pseudo-random dis-
tortions. By choosing different severity thresholds, we can vary the
number of edges that get distorted in the model and experimentally
determine the threshold that best matches the empirical data. An
overview of the technique is illustrated in Figure 8.

We define a violation severity thresholdR. A violation caused
by an edgeij is severe if for some nodek,

dik+dkj

dij
< R (called

Type 1 violation), or if
|dik−dkj |

dij
> 1

R
(called Type 2 violation).

For each global cluster pairg, all edges with the same 5D Eu-
clidean model delayl (rounded down to the nearest 1ms) form a
subgroup. For each subgroup(g, l), we compute the fraction of
edges in this subgroup that are involved in severe Type 1 viola-
tions in the measured data,P Type−1

g,l , and a histogramHType−1

g,l

to characterize the real delay distribution of those severeviolation
edges. Similarly, for Type 2 violations, we compute the fraction
P Type−2

g,l and the histogramHType−2

g,l . We also compute the frac-
tion of edges that incur severe Type 1 and Type 2 violations simul-
taneously,P Type−1&2

g,l . This extra statistical information incurs an
additional constant storage overhead for the model.

With these statistics, the delay between nodei andj is then com-
puted from the model as follows. Draw a pseudo-random number
ρ in [0,1] based on the IDs ofi and j. Let the Euclidean dis-
tance betweeni and j be lij and the cluster-cluster group beg.
Based onP Type−1

g,lij
, P Type−2

g,lij
, P Type−1&2

g,lij
, and usingρ as a ran-

dom variable, decide whether the edgeij should be treated as a
severe Type 1 violation (with probabilityP Type−1

g,lij
+ P Type−1&2

g,lij
·

(
P

Type−1

g,lij

P
T ype−1

g,lij
+P

Type−2

g,lij

−1)), or a severe Type 2 violation (with prob-

ability P Type−2

g,lij
+ P Type−1&2

g,lij
· (

P
T ype−2

g,lij

P
T ype−1

g,lij
+P

Type−2

g,lij

− 1)), or to

return the valuelij without distortion. If the edgeij is treated as a
severe Type 1 violation, then we use the histogramHType−1

g,lij
andρ

to draw a value from the histogram and return that value. Similarly,
if the edge is treated as a severe Type 2 violation, then we usethe
histogramHType−2

g,Dij
instead.

By experimenting with different threshold valuesR, we have de-
termined that a value of 0.85 produces Type 1 and Type 2 violation

ri

ti

Local cluster center i, size = 6

Member of 6-nearest neighbor

set, Xi

Delay to node i gets distorted

to ti

Figure 9: Local distortion technique.

distributions similar to those observed in the measured data. This
is also the threshold we use in the remainder of this paper.
Technique 3: Local distortion - To preserve the local clustering
properties, we introduce additional local distortion. Theidea is to
simply pull some nodes within a radius around a local clustercen-
ter closer to create the needed in-degree, as illustrated inFigure 9.
From the nearest neighbor directed graph analysis on the measured
data, we identify local cluster centers and note their sizes. Sup-
pose a local cluster center nodei has a cluster size ofsi in the
original data. We identify the set of itssi nearest neighbors,Xi,
in the model after global distortion. Then, we compute a radius
ri asmaxj∈Xi

(dij), and a thresholdti asminj,k∈Xi
(djk) − ε.

Currently,ε is set to0.01 ·minj,k∈Xi
(djk). Then we associate the

valuesri andti with nodei in the model.ri is essentially the radius
within which distortion may be necessary.ti is the delay needed to
beat the smallest delay among the nodes inXi. This additional
information adds a constant storage overhead.

The delay between nodei and j is then computed as follows.
Suppose the delay for the edgeij after global distortion islij . If
neitheri nor j is a local cluster center,lij is returned. Suppose
i is a local cluster center andj is not, then iflij ≤ ri, we re-
turnmin(ti, lij); otherwise, we returnlij . Theti threshold is used
to ensure that the nodes inXi cannot choose one another as their
nearest neighbors. After the distortion, they will choosei as their
nearest neighbor unless there is a closer node outside of theradius
ri. If both i andj are local cluster centers, we pick the one with the
smaller node identifier as the center and perform the above steps.

4.2 Modeling Framework
Based on the basic techniques described above, the overall frame-

work for modeling a measured Internet delay space is as follows:
Step 1. Perform global clustering on the measured data to assign
nodes to major clusters. Perform nearest neighbor directedgraph
analysis to identify local cluster centers and their sizes.Step 2.
Compute a 5D Euclidean embedding of the measured data using a
robust method. Then, adjust coordinates to preserve small values.
Step 3. For each cluster-cluster groupg and Euclidean model de-
lay l, compute the global distortion statisticsP Type−1

g,l , P Type−2

g,l ,

P Type−1&2

g,l , HType−1

g,l , HType−2

g,l using a severe violation thresh-
old R. For each local cluster centeri, compute the local distortion
statisticsri andti. Step 4.At this point, the original measured data
is no longer needed. To compute the model delay between nodei
andj, first compute the Euclidean model delay, then apply global
distortion if necessary, and finally apply local distortionif neces-
sary. Return final value. The total storage overhead of the model
is O(N) and calculating the delay of an edge at run time is simple
and has constant cost.

First half of data

Second half of data

First intensity component C1

Support S1 = {bin2}

Remaining support R1 = {bin2}
R1 covers 75% of second half

Weight p1 = 0.75

C2
bin2=2x0.25

Second intensity component C2

Support S2 = {bin1, bin2, bin3}

Remaining support R2 = {bin1, bin3}

R2 covers 25% of second half
Weight p2 = 0.25

C2
bin3=1x0.25

C2
bin1=1x0.25

bin1 bin2 bin3

Intensitybin1 = 0.25 Intensitybin2 = 3.5 Intensitybin3 = 0.25

Sum of component intensities

C1
bin2=4x0.

75

Figure 11: Computing intensities in Euclidean map synthesis
technique.

4.3 Evaluating the Model
We evaluate the effectiveness of our modeling framework by

comparing the properties found in the measured data againstprop-
erties in the resulting model. Figure 10 presents our results. Over-
all, we can see that the model preserves all the characteristics of
the delay space that we had identified. As expected, there aresome
small discrepancies. As we will show in the rest of this paper, these
small discrepancies do not negatively impact the ability tosynthe-
size realistic artificial delay spaces.

5. INTERNET DELAY SPACE SYNTHESIS
In this section, we build upon our empirical understanding of

the Internet delay space and our delay space modeling techniques
and investigate additional techniques to enable artificialsynthesis
of a realistic delay space. The goal is to allow synthesis of de-
lay spaces at scales that exceed our capability to measure Internet
delays. Such a tool is valuable for distributed system design and
evaluation.

5.1 Building Block Techniques
The new techniques introduced in this section exploit the scaling

properties found in the measured Internet delay space to enable the
synthesis of a larger delay space.
Technique 4: Euclidean map synthesis- Given a 5D Euclidean
map of an Internet delay space, we seek to capture its locality and
growth characteristics so that we can synthesize an artificial map
based on these characteristics and create realistic structure in the
synthesized delay space.

A simple idea is to divide the Euclidean space into equal sized
hyper-cubes, count the number of points in each hyper-cube,and
use these counts as relative intensities. With appropriatescaling of
the relative intensities, one can synthesize an artificial map of a cer-
tain size by generating random points in each hyper-cube accord-
ing to the intensities using an inhomogeneous Poisson pointpro-
cess [20, 31]1. Indeed, this simple method can mimic the point dis-
tribution of the original map and generate a realistic overall delay
distribution and global clustering structure. However, this method
ignores the growth characteristics in the data. As a result,synthetic
points can only appear in hyper-cubes where points were originally
found.

To incorporate growth characteristics, the idea is to introduce
uncertainties in the locations of each point and compute intensities
that predict growth. The idea is best explained with a simpleex-
ample illustrated in Figure 11. In the example, there are 8 points in

1The number of points lying in any two disjoint sets in space are
independent random numbers distributed according to a Poisson
law with mean given by the intensity.

0 200 400 600 800 1000
0

1

2

3

4

5
x 10

−3

Delay (ms)

P
ro

ba
bi

lit
y

Measured
Model

0 100 200 300
0

20

40

60

80

100

Cutoff (ms)

La
rg

es
t C

lu
st

er
 P

er
ce

nt
ag

e

Measured

Model

0 5 10 15
10

−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Measured

Model

(a) (b) (c)

0 100 200 300
0

1

2

3

4

5

r (ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

Measured

Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k/N

D
(k

)/D
(N

)

Measured

Model

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Type1 Violation Ratio (%)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Measured

Model

(d) (e) (f)

Figure 10: Model vs measured data. (a) Delay distribution. (b) Clustering cutoff. (c) In-degree distribution. (d) Median B(2r)/B(r).
(e) D(k)/D(N). (f) Triangle inequality violation ratio dis tribution.

a 1-dimensional Euclidean space divided into 3 equally sized bins.
We randomly divide the points into two halves, the first half hap-
pens to lie in bin2, while the other half is spread across bin1and
bin2. We will iteratively compute, using the first half of thepoints,
the ith intensity component Ci, which is a vector of intensities for
the bins, to predict the growth observed in the second half ofthe
points. Each component is weighted according to how well it pre-
dicts the second half. The location uncertainty of a point inthe
first half is represented by a Gaussian probability distribution with
a certain variance or width. To compute the first intensity compo-
nentC1, we place a Gaussian with a smallwidth w1 that represents
a low level of uncertainty in the center of each bin and scale it by
the number of first half points in the bin. As a result, the 99% bod-
ies of the Gaussians lie within bin2. We call the bins occupied by
the 99% bodies of the Gaussians thesupport of the first component,
S1. We also define theremaining support of a component to be the
support of the current component subtracted by the support of the
previous component, i.e.Ri = Si\Si−1. Since this is the first
component,R1 is simplyS1.

The intensity I1 generated by the Gaussians is spread over the
three bins as 0, 4, 0, respectively. Now we ask, how well doesR1

cover the second half of the points? If all points in the second half
are covered byR1 thenI1 can account for the growth in the second
half and we are done. However, in the example,R1 is only covering
75% of the points in the second half. As a result, we weight thein-
tensityI1 by a factorp1 = 0.75 to obtain the intensity component
C1. Since we have not completely accounted for the growth in the
second half, we need to increase the location uncertainty and com-
pute the second intensity componentC2. To do so, we use a wider
Gaussian (widthw2) for the second iteration. The aggregate inten-
sity is still 4, but this time, it is spread across all 3 bins. Suppose
the intensities generated in the 3 bins are 1, 2, 1, respectively. The
99% body of these wider Gaussians occupy all three bins, thusthe
support of the second componentS2 is the set{bin1, bin2, bin3}.
The remaining supportR2 is S2\S1, i.e. {bin1, bin3}. The frac-
tion of the second half covered byR2 is 25%. Thus, the intensity

0 10 20 30
0

50

100

150

Star Size

A
v
e

ra
g

e
 L

o
c
a

l
D

e
n

s
it
y

Measured 800
Best fit: Measured 800
Measured 1600
Best fit: Measured1600
Measured 2400
Best fit: Measured 2400
Measured 3200
Best fit: Measured 3200

Figure 12: Average local density vs local cluster (star) size for
different data sample sizes.

I2 is weighted byp2 = 0.25 to obtainC2. This iterative process
continues until either all points in the second half are covered by
Ri, or when a maximum Gaussian width has been reached. The
intensity of each bin is simply the sum of all the intensity compo-
nentsCi. Finally, we repeat the procedure to use the second half to
predict the growth in the first half and use the average intensity of
each bin as the final intensity. In practice, we divide the 5D space
into 100 bins in each dimension and vary the Gaussian variance or
width from one-tenth to ten times the bin width.
Technique 5: Local cluster size assignment- In order to preserve
realistic local clustering property, the synthesizer draws the cluster
sizes from the exponential distribution (as computed in Section 3.2)
that approximates the local cluster size distribution of the measured
data. What remains unclear is how to assign different cluster sizes
to the synthesized cluster centers. Should the cluster sizes be as-
signed randomly to the cluster centers? Would that be realistic?

It turns out cluster sizes are related to node densities in the mea-
sured data. Figure 12 plots the average local density at the cluster
centers, i.e. the number of nodes within 15ms of the cluster centers,
versus the local cluster size (or star size) for different sample sizes.
As can be seen, the size of a local cluster is roughly linearlyrelated
to the local node density around the cluster center.

Therefore, the synthesizer assigns cluster sizes as follows. First,
the synthesizer computes the local node densities for the synthe-
sized cluster centers and ranks them according to the densities. The
synthesizer also ranks the cluster sizes drawn from the exponential
distribution. Then, the synthesizer assigns a cluster center of lo-
cal density rankr the cluster size of rankr. This way, the linear
relationship between cluster size and local density is preserved.

5.2 Delay Space SynthesizerDS2

Based on the techniques described above and in Section 4.1, we
have implemented a delay space synthesizer calledDS2 (see [9] for
further information). At a high level,DS2 works as follows (Steps
1-3 are identical to those in Section 4.2):Step 1. Perform global
clustering on the measured data to assign nodes to major clusters.
Perform nearest neighbor directed graph analysis to identify local
cluster centers.Step 2. Compute a 5D Euclidean embedding of
the measured data using a robust method. Then, adjust coordi-
nates to preserve small values.Step 3. For each cluster-cluster
groupg and Euclidean delayl, compute the global distortion statis-
tics P Type−1

g,l , P Type−2

g,l , P Type−1&2

g,l , HType−1

g,l , HType−2

g,l using
a severe violation thresholdR. Step 4. At this point, the orig-
inal measured data is no longer needed. Split the 5D Euclidean
map into two, one containing only local cluster centers, andone
containing all other nodes. Then each of the two maps is further
divided according to which global cluster each node belongs. As-
suming there are three major global clusters and the remaining un-
clustered nodes form another group, then the splitting procedure
produces eight sub-maps. Based on these eight maps, separately
synthesize Euclidean maps of each part to the appropriate scale us-
ing the Euclidean map synthesis technique. Merge the eight result-
ing synthesized maps back into one synthesized map. In the final
synthesized map, for each node, we now know whether it is a local
cluster center and which major cluster it belongs to.Step 5.Assign
a local cluster size to each synthesized center using the local cluster
size assignment technique. For each local cluster centeri, compute
the local distortion statisticsri andti. Step 6.To compute the syn-
thesized delay between nodei andj, first compute the Euclidean
delay. Apply global distortion, if necessary, according tothe statis-
tics from the measured data, and finally apply local distortion if
necessary. Return final value.

Note that a lower bound can easily be enforced on the synthe-
sized delays to mimic some sort of minimum processing delay in-
curred by network devices.DS2 provides this as an option.

5.3 Evaluating the Synthesized Delay Model
To evaluate the effectiveness of the synthesized delay model, we

first extract a 2,000 node random sub-sample from the measured
data. Then, we feedDS2 with just this 2,000 node sub-sample
to synthesize delay spaces with 2x, 4x, and 50x scaling factors.
If DS2 correctly predicts and preserves the scaling trends, then
the synthetic 2x delay space should have properties very similar
to those found in the measured data from 3997 nodes. The larger
scaling factors (4x and 50x) are presented to illustrate howthe syn-
thesizer preserves various properties under scaling. Notethat at
the scaling factor of 50x, a 100,000 node delay space is synthe-
sized. Unfortunately, at this scale, we do not have efficientways
to compute global clustering (requiresO(N3) space) and triangle

inequality violation ratios (requiresO(N3) time) and thus results
for these two metrics are calculated based on a 16,000 node random
sample out of the 50x synthetic delay space.

The results in Figure 13 show that, even though the synthesisis
based on a 2,000 node subset of data, the 2x synthesized data is able
to match the characteristics of the 3997 node measured data very
well. As expected, there are a few differences. However, these
differences are small and we will show in Section 6 that they do
not negatively affect the application of the synthesized delay model
in distributed system simulations. It is also worth noting that the
scaling invariants observed in the measured data are maintained by
the synthesizer. In summary, the synthesis framework implemented
by DS2 is highly effective in creating realistic delay spaces with
compactO(N) storage requirement.

5.4 Assumptions
DS2 is designed based on a set of assumptions that are empiri-

cally derived from delays among edge networks in the Internet. It
is not designed to synthesize delays within a local area network.
Such a capability can be incorporated intoDS2 as future work.

We have experimented with PlanetLab delay data as well as
P2PSim delay data and found thatDS2 can correctly synthesize
the characteristics of these data sets. However,DS2 may not work
correctly on arbitrary delay data inputs that violate the following
empirical assumptions:
• A low-dimensional Euclidean embedding can model the input de-
lay data with reasonable accuracy, ignoring triangle inequality vio-
lations and local clustering properties. Some recent studies [21, 17]
have shown that Euclidean embedding has difficulties in predicting
pairwise Internet delays very accurately. Note, however, that we do
not aim at predicting pairwise delays, we only use the Euclidean
embedding as a compact model of the statistical properties of the
input data.
• The in-degree distribution of the nearest neighbor graph com-
puted from the input data is exponential. The current implemen-
tation of DS2 automatically fits the in-degree distribution of the
input data to an exponential distribution.
• The input data has a coarse-grained clustering structure. In ad-
dition, the delay edges across the same coarse-grained cluster pair
exhibit similar triangle inequality violation characteristics.

6. APPLICATIONS
In this section, we demonstrate the importance of using a realistic

delay model for simulation-based evaluation of distributed systems.

6.1 Server Selection
Increasingly, Internet services are distributed across multiple

servers all over the world. The performance and cost of such In-
ternet services depend on the server selection mechanisms they
employ. Server selection redirects clients to an appropriate server,
based on factors such as the location of the client, network condi-
tions, and server load. A number of server selection systems[47,
11, 7] have been proposed and studied. In this section, the perfor-
mance of Meridian [47], Vivaldi [7] and random server selection is
evaluated using four different delay spaces: measured data, DS2,
Inet and GT-ITM.

We evaluate the accuracy of the three server selection algorithms
using the delay penalty metric, which is defined as the difference
between the delay to the chosen server and the delay to the closest
server. We run each algorithm on all of the following data sets: for
measured data, in addition to the full 3997-node data, we also use a
2k sample; forDS2 data, we synthesize 2k data from a 1k sample
of the measured data, and synthesize 4k and 16k data from a 2k

0 200 400 600 800 1000 1200
0

1

2

3

4

5
x 10

−3

Delay (ms)

P
ro

ba
bi

lit
y

Measured
2X
4X
50X

0 100 200 300
0

20

40

60

80

100

Cutoff (ms)

La
rg

es
t C

lu
st

er
 P

er
ce

nt
ag

e

Measured

2X

4X

50X

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

In−degree

P
ro

ba
bi

lit
y

Measured

2X

4X

50X

(a) (b) (c)

0 100 200 300
0

1

2

3

4

5

r (ms)

M
ed

ia
n

B
(2

r)
/B

(r
)

Measured
2X
4X
50X

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

k/N

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured

2X

4X

50X

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Type 1 Violation Ratio (%)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Measured

2X

4X

50X

(d) (e) (f)

Figure 13: DS2 vs measured data. (a) Delay distribution. (b) Clustering cutoff. (c) In-degree distribution. (d) Median B(2r)/B(r). (e)
D(k)/D(N). (f) Triangle inequality violation ratio distri bution.

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Penalty (ms)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Measured

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS2

Penalty (ms)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Penalty (ms)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

Inet

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Penalty (ms)

C
u

m
u

la
ti
v
e

 D
is

tr
ib

u
ti
o

n

GT−ITM

Meridian−2k

Meridian−4k

Meridian−16k

Vivaldi−2k

Vivaldi−4k

Vivaldi−16k

Random−2k

Random−4k

Random−16k

Figure 14: Performance comparison of three server selection
algorithms.

sample of the measured data; for both Inet and GT-ITM, we gener-
ate 2k, 4k and 16k data sets, respectively, using the same methodol-
ogy described in Section 2. In all server selection experiments, we
assume that there is only one service available in the network, and
all the nodes act as clients and servers simultaneously. Clients are
not allowed to select themselves as their servers. For each data set,
we run five experiments and the cumulative distributions of server
selection penalties are presented in Figure 14.

First of all, the synthesized 2k and 4kDS2 data sets yield virtu-
ally identical results as the 2k and 3997-node measured data, even
though they are synthesized from only 1k and 2k measured data
samples, respectively. Second, using the Inet delay model signif-
icantly underestimates the performance of Vivaldi. In fact, the re-
sults suggest that Vivaldi performs no better than random server se-
lection, while Vivaldi performs much better than random selection
if it is evaluated using the measured data orDS2 data. Thus, using
Inet as a delay model could lead to false conclusions about the per-
formance of Vivaldi. Third, although the relative performance rank
of the three algorithms is the same across all four delay models,
the absolute performance estimated with Inet and GT-ITM differs
dramatically from results achieved with the measured data or DS2

data. For example, on the 3997-node measured data, 40.4% of the
servers chosen by Meridian are within 1ms of the closest servers,
while this number is 17.2% and 50.4% on 4k Inet and 4k GT-ITM
data, respectively. Finally, the experiment based on the 16k DS2

synthetic data indicates that the performance of Vivaldi should al-
most remain constant under scaling, but this is not the case with
Inet and GT-ITM delay models. Similarly, Meridian’s performance
degrades more rapidly on Inet and GT-ITM than onDS2 data with
increasing network size. This illustrates that it is important to have
good delay space models that are beyond our ability to measure
since important performance trends sometimes only show at scale.

6.2 Structured Overlay Networks
Structured overlay networks like Chord, Kademlia and Pastry

use proximity neighbor selection (PNS) to choose overlay neigh-

bors [41, 23, 5]. PNS has been shown to effectively reduce routing
stretch, query delay and network load, and to increase overlay ro-
bustness to failures and even to certain security attacks [37].

Here, we show the importance of using a good delay space to
evaluate the effectiveness of PNS. To eliminate the influence of a
particular PNS implementation, we assume in our simulations that
the overlay chooses neighbors using perfect PNS, i.e., the closest
node is chosen among all overlay nodes that satisfy the structural
constraints imposed by a routing table entry. Unless otherwise
stated, the results in this section have been evaluated on a 4000
node overlay network using FreePastry [12], where the delayspace
used was either based on measured data,DS2, Inet, or GT-ITM.

We firstly evaluate the following metrics:Overlay Indegree of
a node, which is the number of overlay nodes that have the node
in their routing tables.Hop Length Distribution of overlay route,
which determines the latency and network load of overlay lookups.
Route Convergence of overlay routes, which, given two nodes lo-
cated at distanced from each other, measures what fraction of their
overlay paths to a given destination is shared. This metric is impor-
tant for dynamic caching and for the efficiency of multicast distri-
bution trees.

Figure 15 shows that the results agree very well for the measured
delay data andDS2 data on all three metrics, while the results with
the Inet and GT-ITM models differ significantly. The Inet model
yields different results on indegree, because the power-law connec-
tivity makes the closest leaf node of the high degree hubs in the
topology the nearest neighbor for a large number of nodes. For
the hop length distributions, we observe that the first hop ofover-
lay routes with the Inet model is significantly larger than the first
hop obtained with measured delay data. Finally, the route conver-
gence with Inet/GT-ITM is higher than with the measured data. The
deviations of these properties are rooted in the differences of the
D(k)/D(N) growth metric and the local clustering in-degreemetric
among the delay models.

Next, we show how mis-predictions of the somewhat abstract
overlay metrics shown above can have an impact on application
performance metrics whose relevance is more immediately appar-
ent.
Effectiveness of PNS on Eclipse Attacks- In recent work on de-
fenses against Eclipse attacks [3] on structured overlay networks,
Singh et al. [37] argue that PNS alone is a weak defense. While
earlier work has shown that PNS is effective against Eclipseattacks
based on simulations with a GT-ITM delay model [15], Singh etal.
demonstrate that the defense breaks down when using measured
delay data as a basis for simulations. Moreover, they show that the
effectiveness of the defense diminishes with increasing size of the
overlay network. We have repeated their simulations usingDS2

data and confirmed that the results match the simulations with mea-
sured data. Moreover, we are able to show that the effectiveness of
PNS against Eclipse attacks continues to diminish as we increase
the network size beyond the scale of measured delay data. This is
another example of how the usage of inadequate delay models can
lead to wrong conclusions. It also shows thatDS2 yields correct
results, and that it is important to be able to synthesize delay models
larger than measured data sets, in order to expose importanttrends.
Performance of Proactive Replication- The benefits of proactive
replication in structured overlays to reduce overlay lookup hops
and latency has been explored by Beehive [28]. We experimented
with a simple prototype that does proactive replication based on the
number of desired replicas of an object. The placement of replicas
is biased towards nodes that share a longer prefix with the object
identifier, in order to be able to intercept a large fraction of the
overlay routes towards the home node of the object. We first eval-

uate the query lookup latency as a function of the total number of
replicas for an object. Our system consists of a 4000 node network
(3997 nodes for measured data) and a total of 10,000 objects.

Figure 16(a) shows that the average query latency for a given
number of replicas is significantly lower with measured delay, es-
pecially when compared to Inet. This is an artifact of the different
distributions of hop length as shown earlier in Figure 15(b). With
the last hops in realistic models dominating the total overlay path,
employing even a very few replicas results in reducing the average
latency significantly. In the absence of realistic models, one would
overestimate the number of replicas required to achieve a certain
target lookup latency.

We then evaluate the distribution of query traffic to the repli-
cas. In this scenario, we assume that the objects were replicated
on all nodes that matched at least one digit with the object identi-
fier. Given a network of 4000 nodes with Pastry node IDs as dig-
its in base 16, we observe that this corresponds approximately to
the expected value of(1/16) ∗ 4000 = 250 replicas per object.
Figure 16(b) shows the distribution of query load among the repli-
cas. A point(x, y) in the plot indicates that thex lowest ranked
nodes with respect to the amount of query traffic they served,to-
gether servey% of the overall query traffic. The figure shows a
huge imbalance in the load distribution for the Inet topology model,
wherein 5% of the nodes serve over 50% of the traffic. This imbal-
ance is caused due to the highly skewed overlay indegree distribu-
tion of nodes in the Inet topology.

Again, we see that the delay model used in simulations of dis-
tributed systems has a significant impact on the results obtained
for important application performance metrics. Inadequate delay
models can lead to false conclusions about the effectiveness and
performance of systems.

7. RELATED WORK
Our work on modeling the Internet delay space is complemen-

tary to existing work on modeling network connectivity topologies.
There is an opportunity for future work to incorporate delayspace
characteristics into topology models.

Early artificial network topologies had a straight-forwardcon-
nectivity structure such as tree, star, or ring. A more sophisticated
topology model that constructs node connectivity based on the ran-
dom graph model was proposed by Waxman [45]. However, as
the hierarchical nature of the Internet connectivity became appar-
ent, solutions that more accurately model this hierarchy, such as
Transit-Stub by Calvertet al [48] and Tier by Doar [8], emerged.
Faloutsoset al [10] studied real Internet topology traces and dis-
covered the power-law node degree distribution of the Internet. Li
et al [18] further showed that router capacity constraints can bein-
tegrated with the power-law node degree model to create evenmore
realistic router-level topologies.

There are many on-going projects actively collecting delaymea-
surements of the Internet, including Skitter [38], AMP [2],PingER
[27], and Surveyor [42] to name just a few examples. Some of
these projects also collect one-way delays and hop-by-hop rout-
ing information. These projects typically use a set of monitoring
nodes, ranging roughly from 20 to 100, to actively probe a setof
destinations. The Skitter work probes on the order of 1 million
destinations, which is the largest among these projects. The active
monitoring method can probe any destination in the network,but
the resulting measurements cover only a small subset of the delay
space as observed by the monitors. Many of these measurements
are also continuously collected, allowing the study of changes in
delay over time. Our work uses the King tool to collect delay mea-
surements, which restricts the probed nodes to be DNS servers, but

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 750 500 250

Cu
mu

lat
ive

 Fr
ac

tio
n

Overalay node’s Indegree

Measured
DS2

Inet
GT-ITM

(a) Overlay Indegree

 0

 10

 20

 30

 40

 50

 60

 70

 80

321

%
 o

f
to

ta
l
o
v
e
rl
a
y
 p

a
th

 l
a
te

n
c
y

Hop number

Measured
DS2

Inet
GT-ITM

(b) Hop Length Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Co
nv

erg
en

ce
 M

etr
ic

Distance(node1,node2) in ms

Measured
DS2

Inet
GT-ITM

(c) Route Convergence

Figure 15: Overlay properties.

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

Ac
ce

ss
 la

ten
cy

Number of Replicas

Measured
DS2

Inet
GT-ITM

(a) Query latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4000 3000 2000 1000 0

Cu
mu

lat
ive

 %
 of

 qu
ery

 lo
ad

 se
rve

d

Node rank wrt query load

Measured
DS2

Inet
GT-ITM

(b) Distribution of Query load

Figure 16: Proactive replication.

produces a symmetric delay space matrix, which lends itselfto a
study of the stationary delay space characteristics.

Some of the delay space properties reported in this paper have
been observed in previous work. For example, triangle inequal-
ity violations and routing inefficiencies have been observed in [34]
and [24]. Some of the characteristics of delay distributions and
their implications for global clustering have been observed in Skit-
ter. However, many of the observations made in this paper are
new. These include the local clustering properties, and in partic-
ular the approximately exponential in-degree distribution, spatial
growth properties, detailed properties of triangle inequality viola-
tions of different types and across different clusters, andthe exam-
ination of these properties under scaling. In addition to the ”static”
properties of delay, previous work have also studied the temporal
properties of Internet delay [1]. Incorporating temporal properties
into a delay space model is an area for future work.

One key technique used in our work is computing a low dimen-
sional Euclidean embedding of the delay space to enhance thecom-
pleteness and scalability of the delay space representation. Many
approaches for computing such an embedding have been studied [24,
7, 35, 6, 19, 43, 36, 26]. We have not considered the impact of us-
ing different computation methods or using different embedding
objective functions. This represents another area for future work.

8. CONCLUSIONS
To the best of our knowledge, this is the first study to systemat-

ically analyze, model, and synthesize the Internet delay space. We

quantify the properties of the Internet delay space with respect to
a set of metrics relevant to distributed systems design. This leads
to new understandings of the Internet delay space characteristics
which may inform future work. We also develop a set of building
block techniques to model and synthesize the Internet delayspace
compactly while accurately preserving all relevant metrics. The
result is an Internet delay space synthesizer calledDS2 that can
produce realistic delay spaces at large scale.DS2 requires only
O(N) memory, whereN is the number of nodes, and requires only
simple run-time calculations to generate the delay betweena pair
of nodes. This helps to address the memory requirement barrier
of conducting large-scale simulations.DS2 provides an impor-
tant mechanism for simulating and emulating distributed systems
at large-scale, which complements other evaluation methodologies.
See [9] for further information onDS2.

Acknowledgment
We would like to thank Atul Singh for providing the results for the
Eclipse attack experiments, and Evan Stade for providing a simula-
tor of Meridian. We also thank the anonymous reviewers for their
valuable feedback.

9. REFERENCES
[1] A. Acharya and J. Saltz. A Study of Internet Round-Trip

Delay. Technical Report CS-TR-3736, University of
Maryland, College Park, 1996.

[2] Active measurement project, NLANR. http://watt.nlanr.net.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D.S.
Wallach. Security for structured peer-to-peer overlay
networks. InProceedings of OSDI, Boston, MA, December
2002.

[4] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
Rowstron. Exploiting network proximity in peer-to-peer
overlay networks. Technical Report MSR-TR-2002-82,
Microsoft Research, May 2002.

[5] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony
Rowstron. Proximity neighbor selection in tree-based
structured peer-to-peer overlays. Technical Report
MSR-TR-2003-52, Microsoft Research, June 2003.

[6] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet coordinates for distance estimation. Technical
Report MSR-TR-2003-53, Microsoft Research, September
2003.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. InProceeding of
ACM SIGCOMM, August 2004.

[8] M. Doar. A better model for generating test networks. In
Proceeding of IEEE GLOBECOM, November 1996.

[9] DS2. http://www.cs.rice.edu/∼eugeneng/research/ds2/.
[10] C. Faloutsos, M. Faloutsos, and P. Faloutsos. On Power-law

Relationships of the Internet Topology. InProceedings of
ACM Sigcomm, August 1999.

[11] Michael J. Freedman, Karthik Lakshminarayanan, and David
Mazieres. Oasis: Anycast for any service. InProceedings of
ACM NSDI, May 2006.

[12] Freepastry. http://freepastry.rice.edu/.
[13] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:

Estimating latency between arbitrary internet end hosts. In
Proceedings of the SIGCOMM IMW, Marseille, France,
November 2002.

[14] Krishna P. Gummadi, Ramakrishna Gummadi, Steven D.
Gribble, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica.
The impact of DHT routing geometry on resilience and
proximity. In Proc. ACM SIGCOMM, Karlsruhe, Germany,
August 2003.

[15] K. Hildrum and J. Kubiatowicz. Assymtotically efficient
approaches to fault tolerance in peer-to-peer networks. In
Proc. 17th International Symposium on Distributed
Computing, Sorrento, Italy, Oct 2003.

[16] David R. Karger and Matthias Ruhl. Finding nearest
neighbors in growth restricted metrics. InProccedings of
ACM Symposium on Theory of Computing, 2002.

[17] Sanghwan Lee, Zhi-Li Zhang, Sambit Sahu, and Debanjan
Saha. On suitability of Euclidean embedding of Internet
hosts. InProc. SIGMETRICS 2006, June 2006.

[18] L. Li, D. Alderson, W. Willinger, and J. Doyle. A
first-principles approach to understanding the internet’s
router-level topology. InProceeding of ACM SIGCOMM,
August 2004.

[19] H. Lim, J. Hou, and C.-H. Choi. Constructing internet
coordinate system based on delay measurement. In
Proceedings of IMC, Miami, FL, October 2003.

[20] Jesper Møller and Rasmus Waagepetersen.Statistical
Inference and Simulation for Spatial Point Processes.
Chapman and Hall/CRC, 2004.

[21] Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng,
and Jon Crowcroft. On the accuracy of embeddings for
internet coordinate systems. InProceedings of IMC,
Berkeley, CA, October 2005.

[22] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin
Dixon, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. iPlane: an information plane for distributed
services. InProc. OSDI 2006, November 2006.

[23] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. InProc. IPTPS
2002, March 2002.

[24] T. S. E. Ng and H. Zhang. Predicting Internet networking
distance with coordinates-based approaches. InProceedings

of IEEE INFOCOM, June 2002.
[25] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.
[26] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.

Lighthouses for scalable distributed location. InProceedings
of IPTPS, 2003.

[27] PingER. http://www.slac.stanford.edu/comp/net/wan-
mon/tutorial.html.

[28] V. Ramasubramanian and E.G Sirer. Beehive: O(1) lookup
performance for pwer-law query distributions in peer-to-peer
overlays. InProc. NSDI ’04, San Francisco, California,
March 2004.

[29] S. Ranjan, R. Karrer, and E. Knightly. Wide area redirection
of dynamic content by internet data centers. InProceedings
of IEEE INFOCOM, Hong Kong, China, 2004.

[30] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms
for DHTs: Some open questions. InProceedings of IPTPS,
Cambridge, MA, March 2002.

[31] Rolf-Dieter Reiss.A Course on Point Processes. Springer
Series in Statistics. Springer, 1993.

[32] Route views. http://www.routeviews.org/.
[33] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable

Application Layer Multicast. InProceedings of ACM
SIGCOMM, August 2002.

[34] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson.
The End-to-end Effects of Internet Path Selection. In
Proceedings of ACM Sigcomm, August 1999.

[35] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in Euclidean space. InProceedings of
IEEE INFOCOM, San Francisco, CA, March 2003.

[36] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
Proceedings of IEEE INFOCOM, April 2004.

[37] A. Singh, T. W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse attacks on overlay networks: Threats and defenses.
In Proc. INFOCOM 2006, Barcelona, Spain, April 2006.

[38] Skitter. http://www.caida.org/tools/measurement/skitter/.
[39] A. Slivkins. Distributed Approaches to Triangulationand

Embedding. InProceedings 16th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2004.

[40] A. Slivkins, J. Kleinberg, and T. Wexler. Triangulation and
Embedding using Small Sets of Beacons. InProceedings of
FOCS, 2004.

[41] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. InProceedings of ACM
SIGCOMM, 2001.

[42] Surveyor. http://www.advanced.org/csg-ippm/.
[43] L. Tang and M. Crovella. Virtual landmarks for the internet.

In Proceedings of IMC, Miami, FL, October 2003.
[44] Marcel Waldvogel and Roberto Rinaldi. Efficient

Topology-Aware Overlay Network. InFirst Workshop on
Hot Topics in networks (HotNets-I), October 2002.

[45] B. Waxman. Routing of multipoint connections.IEEE J.
Select. Areas Commun., December 1988.

[46] J. Winick and S. Jamin. Inet-3.0: Internet topology generator.
Technical Report UM-CSE-TR-456-02, University of
Michigan, 2002.

[47] Bernard Wong, Aleksandrs Slivkins, and Emin Gun Sirer.
Meridian: A lightweight network location service without
virtual coordinates. InProceedings of ACM SIGCOMM,
August 2005.

[48] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. InProceedings of IEEE INFOCOM,
March 1996.

[49] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for wide-area fault-tolerant location and
routing.U.C. Berkeley Technical Report
UCB//CSD-01-1141, 2001.

