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ABSTRACT

Understanding the characteristics of the Internet delagei.e.,
the all-pairs set of static round-trip propagation delay®ag edge
networks in the Internet) is important for the design of gliescale
distributed systems. For instance, algorithms used inlayeret-
works are often sensitive to violations of the triangle m&lity and
to the growth properties within the Internet delay spacac&de-
signers of distributed systems often rely on simulation amaila-
tion to study design alternatives, they need a realisticehofithe
Internet delay space.

Our analysis shows that existing models do not adequat@ly ca
ture important properties of the Internet delay space. imghper,
we analyze measured delays among thousands of Internehetige
works and identify key properties that are important fotritisited
system design. Furthermore, we derive a simple model ofrthe |
ternet delay space based on our analytical findings. Thisemod
preserves the relevant metrics far better than existingefsp@l-
lows for a compact representation, and can be used to syzghes
delay data for simulations and emulations at a scale wheegtdi
measurement and storage are impractical.
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1. INTRODUCTION

Designers of large-scale distributed systems rely on sitioul
and network emulation to study design alternatives anduatel
prototype systems at scale and prior to deployment. To mbtai
accurate results, such simulations or emulations mustidiechn
adequate model of thiternet delay space: The all-pairs set of
static round-trip propagation delays among edge netwogsch
a model must accurately reflect those characteristics ofimes-
net delays that influence system performance. For examgl@dn
realistic clustering properties is important because tw@y influ-
ence the load balance of delay-optimized overlay netwarhd the
effectiveness of server placement policies and cachirajegfies.
Having realistic growth characteristics [16] in the delpase is
equally important, because the effectiveness of certaitibiited
algorithms depends on them. Many distributed systems ae al
sensitive to the inefficiency of IP routing with respect tdage
Such inefficiency manifests itself as triangle inequaliiglations
in the delay space, and must be reflected in a model as well.

Currently, two approaches are used to obtain a delay model.
The first approach, adopted for instance by the P2PSim simula
tor [25], is to collect actual delay measurements using hgoch
as King [13]. However, due to limitations of the measurement
methodology and the quadratic time requirement for meaguai
delay matrix, measured data tends to be incomplete and dnere
limits to the size of a delay matrix that can be measured ictjoe
To its credit, P2PSim provides a 17540740 delay space matrix,
which is not a trivial amount of data to obtain.

The second approach is to start with a statistical netwqpklto
ogy model (e.g. [45, 48, 8, 10, 18]) and assign artificial litgkays
to the topology. The delay space is then modeled by the all-pa
shortest-path delays within the topology. The propertiesuzh
delay models, however, tend to differ dramatically from &ctual
Internet delay space. This is because these models do neot ade
quately capture rich features in the Internet delay spaseh as

those caused by geographic constraints, variation in nodeen-

trations, and routing inefficiency.

A delay space model suitable for large-scale simulationstmu
adequately capture the relevant characteristics of tleeriat delay
space. At the same time, the model must have a compact repre-
sentation, since large-scale simulations tend to be meimaupnd.
The naive approach of storing 16-bit delay values for altgpaf
a 100K node network, for instance, would require almost 2@&B
main memory! Finally, to enable efficient simulation, gextgrg a
delay value for a given pair of nodes must require very litthen-
putation and no disk accesses.

One approach is to build siructural model of the Internet, us-
ing BGP tables, traceroute, ping and other measuremenaptore
the coarse-grained (e.g., AS-level) topology of the Ireeand the



associated static link delays [22]. Given such a model, tiayd
for a given pair of IP addresses can be estimated by addingthe
delays on the predicted route through the topology. If thmto
ogy model captures the coarse-grained structure of thenkttevell
enough, the resulting delays should preserve the chaistiztsrof
the Internet delay space. However, it remains unclear haaildd
such a model has to be to preserve the relevant charaateristi

Another approach is to buildsatistical model, designed to pre-
serve the statistical characteristics of a measured letealay data
set. Unlike a structural model, a statistical model cannedict the
delay between a particular pair of real Internet IP addeedser the
purposes of distributed systems simulations, howevenffices
that the statistical properties of the model adequatelgcethose
of the measured delay data. Statistical models lend theast a
compact representation and can enable efficient genedtaeiay
data at large scale. Since we are primarily interested ihlempac-
curate, efficient, large-scale simulations, we decidecutsye this
approach in this paper.

DNS serverdD;p,. We keep only the DNS server sets in which at
least one server supports recursive queries, since Kingresit.

If two DNS server setd;p, and D;p; overlap, then only one of
the two sets is kept since they do not represent distinct d@mna

If there is more than one server in a set, the set is kept ordi} if
the servers in the set are topologically close. We checkathjser-
forming traceroutes to all the servers in the set. By makumg s
the servers in the set are physically co-located, we ensffieeesht
measurement samples are measuring the same network. Among
the remaining DNS server sets, we choose one server peraget th
supports recursive query. We then use 5,000 such DNS sdovers
conduct our measurements.

Care must be taken during the measurement process. The mea-
sured delays include the DNS server processing delays assvel
network queuing delays. We collect multiple measurement-sa
ples and keep only the minimum value to approximate thecstati
delay. However, high packet loss rates can cause insufficien-
surement samples. Also, because King measures the delagdret

We have measured a sample of the Internet delay space amongwo servers, say): and D2, by subtracting the delay t®; from
3,997 edge networks. We then characterize the measured samthe delay toD; via D, it is possible to end up with a very small

ple with respect to a set of metrics that are relevant toilisted
system design. Based on these analytical findings, we develo
a method to model measured Internet delay spaces. The-result
ing model has a compa@(N) representation (as opposed to the
O(N?) matrix representation) that adequately preserves the rele
vant delay space characteristics, and can model missingureea

ments. We then extend our model and develop a method to syn-

thesize an artificial delay space. The method exploits taérgg
characteristics found in the measurements and makes iibfwss
to synthesize a delay space much larger than the measurayg del
space, while preserving the characteristics of the medsiaéa.
We make two primary contributions in this work:
e We systematically quantify the properties of the Interneiay
space with respect to a set of statistical, structural, antirrg met-
rics relevant to distributed systems design. This leadsto fun-
damental insights into Internet delay space charactesitat may
inform future work.
e We develop a set of building block techniques to model and syn
thesize the Internet delay space compactly, while acdyrate-
serving the relevant metrics. The compact representatiables
accurate and memory efficient network simulations at lacgées

We emphasize that our goal is to provide a model of the Interne
delay space that enables accurate large-scale simulatibasdo
not attempt to provide either axplanatory model of Internet de-
lay, which explains the underlying technical, economic aadial
forces that shape Internet delays, nor do we attempt to ¢gheomi
predictive model that can estimate the delay between a given pair
of real IP hosts. Building such models is also an interestég
search direction, but is beyond the scope of this paper.

2. METHODOLOGY AND MODELS

We begin by describing our measurement methodology and the
existing delay space models we use in this study.

2.1 Measured Internet Delay Space

We use the King tool [13] to measure the all-pair round-ttatis
propagation delays among a large number of globally disteith
DNS servers, where each server represents a unique dondin an
typically one edge network. To choose DNS servers, we st#nt w
a list of 100,000 random IP addresses drawn from the prefixes a
nounced in BGP as published by the Route Views project [3@]. F

or even negative delay value if the measurements were tabyte
processing or queuing delays.

To ensure the subsequent analysis is based on accuratevdata,
adopt a fairly stringent methodology. We measure the rdtipd-
delay between two DNS servers from both directions by using e
ther server as the recursive server. For each direction, ae mp
to 50 attempts to measure the recursive delaytovia D,, and
up to 50 attempts to measure the delayxpvia D>. At least 20
measurement samples must be obtained in each case. The min-
imum value across the samples is used as the propagation dela
After the subtraction step, if the delay is negative, or & ttelay
is greater than 2 seconds or smaller than 100 microsecanids, i
discarded. These unrealistic delay values are likely chbgero-
cessing and queuing delays that affected the measurermiésisif
the obtained delay betwedm and D, measured in each direction
disagrees by more than 10%, we discard the measuremenltlyFina
we remove data from DNS servers that are consistently fattin
provide valid measurements: After we assemble the delagespa
matrix, if any row/column has more than 25% of the values miss
ing, the entire row/column is removed.

We collected the measurements in October 2005. Among the
collected 500& 5000 delay data, 16.7% have insufficient measure-
ments samples, 8.1% have inconsistent samples, 0.16% alieism
than 100 microseconds, and 0.51% are larger than 2 secoftds. A
removing suspicious measurement values, the remainiay ded-
trix has 3997 rows/columns with 13% of the values in the matri
unavailable. To characterize the distribution of the nmigsialues,
we partition the delay matrix into its three largest clusteéFhese
clusters correspond to IP hosts in North America, Europefesial
We find that the percentage of missing values are distrilbagedI-
lows:

From/To North America| Europe| Asia
North America 14% 11% | 12%
Europe 11% 15% | 11%
Asia 12% 11% | 18%

To understand the properties in the data set under scaliag, w
consider four different random sub-samples of the meastatal
with the sizes 800, 1600, 2400, and 3200. To reduce the sensi-
tivity to a particular random sample, for each sub-sample,sie
consider five random sample. Results presented in this @aper

each IP address, we perform a reverse DNS lookup to determineaverages over the five samples.

the associated DNS servers. Each reverse lookup returrtsod se



2.2 Topology Model Delay Spaces

We also generate delay matrices based on existing topology m
els and compare them against the measured Internet deleg.spa
The two generators we use are Inet [46] and GT-ITM [48]. The
Inet generator creates a topology that has power-law nogee€ee
distribution properties. The GT-ITM generator is used toegate
a topology based on the Transit-Stub model. We include tbe In
and GT-ITM topology models in this study because they arenoft
used in distributed system simulations.

For Inet, we create a 16000-node topology. To generate the de
lays, we use the standard method of placing nodes randonay in
plane and then use the Euclidean distance between a painef co
nected nodes as the link delay. All-pairs shortest delatimgus
then used to compute end-to-end delays. Finally, we exthact
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Figure 1: Nearest neighbor directed graph analysis technige.

generated delays among the 5081 degree-1 nodes in the graph iglobal clustering structure is, for instance, relevantte place-

order to model the delays among edge networks. No triangle in
equality violations are introduced. For GT-ITM, we crea#l&0-
node transit-stub topology. Note that GT-ITM annotatekdiwith
routing policy weights and artificial delays. Shortest pathting

is performed over the topology using routing policy weigissthe
link costs. End-to-end delays are then computed by sumnhiag t
artificial link delays along the selected paths. Some tit@uig-
equality violations are then introduced artificially in thesulting
delay space. Finally, we extract the delays among 4096 etitbns

to model the delays among edge networks.

We scale the delays in the two artificial delay matrices shah t
their average delay matches the average delay in the meadere
lay data. This constant scaling does not affect the strecatfithe
generated delay spaces. We do this only to simplify the ptase
tion of results.

2.3 Limitations of Measured Delay Data

Our analysis is based on a carefully collected set of medsure
Internet delay data. The data set, however, does have tioma
First, the measurements are among DNS servers. The dalaset t
represents the delay space among edge networks in thedntern
No explicit measurements were collected among hetsn a lo-
cal area network. For example, even though a university camp
may have thousands of hosts, we most likely pick only onesof it
DNS servers to include in the measurement. Therefore, thiys
addresses only the delay space properties among edge ketwor
the wide area, but not the delay space properties withina &vea
network. Secondly, to increase our confidence in the datdave
discarded questionable measurements. We therefore progde
the assumption that the missing delay values do not havéfisign
cantly different properties than the available data.

3. INTERNET DELAY SPACE ANALYSIS

In this section, we first identify a set of metrics that arewno
to significantly influence the performance of distributedtemns.
Then, we analyze measured Internet delay data with respwtte
and other statistical and structural properties. The tegive in-
sight into the characteristics of the Internet delay spaoe, they
inform the design of an appropriate model.

3.1 Systems-motivated Metrics

The metrics presented below are known to strongly influerse d
tributed system performance and capture a wide range ofrianqto
issues in distributed system design and evaluation.

Global clustering - This metric characterizes clustering in the de-
lay space at a macroscopic level. For instance, the consinveth
the largest concentration of IP subnetworks (North Amerita:
rope and Asia) form recognizable clusters in the delay sp&loes

ment of large data centers and web request redirectionitdgs
(e.g. [29]).

Our algorithm to determine the global clustering works ds fo
lows. Given N nodes in the measured input data, it first treath
node as a singleton cluster. The algorithm then iteratifietls two
closest clusters to merge. The distance between two ciustde-
fined as the average distance between the nodes in the twerslus
A cutoff delay value determines when to stop the merging gssc
If the distance between the two closest clusters is larger the
cutoff, the merging process stops. By varying the cutoftigand
monitoring the resulting cluster sizes, the global clusteproper-
ties can be determined.

Local clustering - This metric characterizes clustering in the delay
space at the local level. It is based on analyzing the inetedis-
tribution of the directed graph formed by having each nodetpo
to its nearest neighbor in the delay space. Moreover, wehese t
graph to identify a set of local cluster heads (or centersg Sé+
lect the node with the highest in-degree as a local clustzad had
remove it and its immediate children from the graph. Thip e
applied repeatedly to identify the next local cluster heatil mo
more nodes remain. Since a local cluster resembles a stain,gra
we sometimes simply call it a star. The process is illustratd-ig-
ure 1. The importance of the local cluster heads will becolearc
in subsequent sections.

Local clustering is relevant, for instance, to the in-degaad
thus the load balance among nodes in delay-optimized gveeta
works (e.g. [5]). For example, dense local clustering ca l®
an overlay node having an unexpectedly high number of neighb
and can potentially create a load imbalance in the overlay.
Growth metrics - Distributed nearest neighbor selection is a hard
problem, but efficient algorithms have been identified tovesdhe
problem for growth-restricted metric spaces [16]. Thege@thms
are used, for instance, in Tapestry [49] and Chord [41] teciel
overlay neighbors. In a growth-restricted metric spacthafnum-
ber of nodes with a delay of at mosfrom some node is B;(r),
thenB;(2r) < ¢ - B;i(r), wherec is a constant. We characterize
the growth properties of a delay space by evaluating thetifomc
B(2r)/B(r).

A related metric is theD (k) metric. Letd(i, k) be the average
delay from a node to its k closest nodes in the delay space and
N be the set of nodes, thén(k) = ﬁ > ien d(i, k). Structured
overlay networks like Chord, Tapestry and Pastry emploxipte
ity neighbor selection (PNS) to reduce the expected detaycét
S, i.e., the ratio of the delay of an overlay route over the dire
routing delay averaged over all pairs of nodes [14, 4, 30,V8¢
choose to include th® (k) metric because analysis has shown that
in Tapestry and Pastry, the expected delay strétaithe overlay
can be predicted based on the functiok) [5].



Triangle inequality violations - The triangle inequality states that

given pointsz, y and z in a Euclidean space, the distantg be-

tween pointg andj satisfiesl,. < d,, + dy.. The Internet delay
space, however, does not obey the triangle inequalityesimternet
routing may not be optimal with respect to delay. Unfortehat
many distributed nearest neighbor selection algorithrlysae the

assumption that the triangle inequality holds [33, 16, 44jus, it

is important to characterize the frequency and severith@f/fola-

tions in the Internet delay space.

3.2 Analysis Results

Sample size | # Cluster heads Percentagé
800 185 23.1%
1600 363 22.7%
2400 547 22.8%
3200 712 22.3%
3997 (all data)| 884 22.1%

Table 1: Average fraction of nodes classified as cluster headn
measured data.

We now present an analysis of the measured delay data with re-sizes. Observe that the in-degree distribution for the nrealsdata

spect to the metrics described above, and some basic pesdée
the delay distribution. For comparison, we also show theveeit
properties of the delays produced by the Inet and GT-ITM rsode

We begin with a comparison of the delay distribution. In Fig-

ure 2(a), we can observe that the delay distributions of tea-m
sured data set have characteristic peaks at roughly 45rBss]3

and 295ms. This suggests that the nodes form clusters irathe d

Analysis of random data sub-samples indicates that they di$a
tribution is also independent of sample size. In contrast delay
distributions for the topology models do not indicate suehavior.
Clearly, there are rich features in the Internet delay splaaeare
not captured in the delays derived from these topology nsodel

has an exponential decay (note the log-linear scale). dstiagly,
we discover that the distribution is consistent acros&rbffit sam-
ple sizes. If a straight line is fitted over 99.9% of the dimition
(i.e., ignoring the 0.1% of nodes with the largest in-degyethe
line has a y-intercept of -0.8565 and a slope of -0.6393. &peas
rameters can be used to model the nearest-neighbor ineddigre
tribution among edge networks in the Internet. In the futuieen
delay data for hosts within local area networks become alvia)
the model can be hierarchically extended by assigning estsho
appropriately to each edge network in the model.

We classify the nodes into local cluster heads (or star headb
non-heads using the procedure described in 3.1. Table Issimauy

To visualize the locations of nodes, we first embed the ddta se the proportion of nodes in the data that are classified asdbcster

into a 5D Euclidean space using a dimensionality reductiocg
dure that is robust to missing data. Then, we do a principai-co
ponent analysis on the 5D Euclidean coordinates to get thie2fir
principal components. Several techniques exist to comibet&D
embedding [24, 7, 35, 6, 19, 43]. Here, we use a slightly mediifi
version of the Vivaldi [7] method that avoids the missing s\wea-
ments. We use 32 neighbors per node in Vivaldi.

Figure 2(b) displays the scatter plots of the first two ppati
components of the 5D embedding for different data sets. Ehal/
differences between the measured data and the topologylsrade
striking. It is easy to see that there exists clusteringcsting in the
measured data. In contrast, the nodes in the topology madels
distributed more uniformly in the space, and their resgltielay
distributions are approximately normal.

To quantify the global clustering properties in the meadulata
set, we apply the described global clustering algorithmatithe
percentage of nodes in the largest cluster against diffetester-
ing cut-off thresholds in Figure 2(c). Regardless of thedarsize,
the largest cluster’s size increases sharply at cutoffesmll65ms

and 250ms. These sharp increases are caused by the mertyireg of

clusters at these thresholds. The steps suggest that tieetteree
dominant clusters. By setting the threshold to 120ms, nodes
be effectively classified into the three major clusters.yléecount

for 45% (the North America cluster), 35% (the Europe clyster

and 9% (the Asia cluster) of the nodes, respectively. Theanem
ing 11% are nodes that are scattered outside of the majdecdus
These global clustering properties can be used to guideltialg
placement of servers and the design of load-balancing itigus.
In contrast, there is no clear clustering structure in thet model.
The clustering structure of the GT-ITM model also does nséne-
ble that of the measured data.

The global clustering analysis reveals the coarse-grastrent-
ture of the delay space. To understand the fine-grainedtstajc

we conduct the nearest neighbor directed graph analysihi@n t

data sets. We emphasize that these results characteripeaine
erties among edge networks in the Internet; theynot charac-
terize the properties among end hosts within local areaor&sy
Figure 3(a) shows the in-degree distributions for différgample

heads is quite stable across different sample sizes. Theadtion
is also true when each major global cluster is considerearaegly.
This property will be useful when we turn to the synthesiselfg
spaces later in this paper.

In contrast, as shown in Figure 3(b), the in-degree distidbu
for the Inet topology follows closely the power-law (note tlog-
log scale). If a straight line is fitted over 99.9% of the dizsition,
the line has a y-intercept of -3.7852 and a slope of -1.39°HusT
the Inet model does not reflect the local clustering propggimong
edge networks in the measured delay data. For the GT-ITM-+topo
ogy, as shown in Figure 3(c), the distribution is close toosqn-
tial, the best fit line in the log-linear plot has y-intercept0.0080
and slope of -1.1611. Thus, this distribution is also déferfrom
that found in the measured data.

Next we analyze spatial growth. Figure 4(a) shows the median
B(2r)/B(r) growth of the data sets. We plot the median because,
unlike the mean, itis insensitive to the extreme outliexs@an bet-
ter characterize the dominant trends. As can be seen, thiotyp
models have far higher peak spatial growth than the measiatad
(note the log-linear scale) and have very different treniisthe
measured data, the initial growth is higher when the bakjmad-
ing within a major cluster. As soon as the ball radius coveosstm
of the nodes within the same major cluster, growth slows das/n
expected. When the ball radius reaches a size that begimwéo ¢
another major cluster, the growth increases again. Eviynmast
of the nodes are covered by the ball and the growth ratio gyead
drops to one. This growth trend in the measured data is &wari
across different sample sizes. These new findings can helpfire
distributed system algorithms that are sensitive to thedraivth
rate. On the other hand, the growth trends in the Inet andT®A-I
topology models do not reflect the structure of the measuaéal d

In terms of theD(k) metric, we also observe dramatic differ-
ences between topology models and the measured data. B{gjre
indicates that in the Inet and GT-ITM topology models, frdm t
perspective of an observer node, there are very few nodesavho
delays are substantially smaller than the overall averaggyd In
contrast, in the measured data, from an observer node, winchn
many more nodes whose delays are substantially smallerthiean



Probability
N w S ol =) ~ ©

-

=)

— -lnet
- — GT-ITM

Measured

200

400 600
Delay (ms)

(@)

800

1000

400

-200

2nd Component
o

400

-200
-400

2nd Component
o

Inet 1< GT-ITM 100 —
2 400 (SR Measured 800 e
200f Cgatgi, v | Q200 2 Measured 1600 P
E o ’m; g 8O | — — Measured 2400 ~F==E
i v O -200 i O 70 Measured 3200
T 400 o Inet
200 0 200 § -200 0 200 o osopl F
1st Component 1st Component T s |
]
1%
Measured S 40 =
N o 30
200f .., " 7]
3 - 4 E
" o 2 J_
3 7
10 [F
. 8 P
jxo, 0 200 0T w0 1m0z Z a0
1st Component
P Cutoff (ms)
(b) (©)

Figure 2: Global clustering properties. (a) Delay distribution. (b) 2D coordinates scatter plot. (c) Clustering resuk.

10°

0

10

® +  Measured 800
+ Measured 1600
= > Measured 2400
O Measured 3200
Best fit

._.
o
L

10

Probability
E\
Probability
5\

|
&

o2 4 107

# o
ODB [ele] B> [e)

.
o,

Inet
Best fit

-
)
A
o
[
o
o

10 20
In-degree

(@)

30

10°
In-degree

(b)

10

Probability

10°

.
o
L |

-
o

-
o
&

10"

GT-IT™
Best fit

1 2 3 4 5 6 7
In-degree

(©

Figure 3: Local clustering analysis. (a) Exponential-likein-degree distribution for measured data (log-linear scat). (b) Power-law-
like in-degree distribution for Inet (log-log scale). (c) Exponential-like in-degree distribution for GT-ITM (log-l inear scale).

Figure 5. Type 1 triangle inequality violations for Measured
Data (white color is most severe).

overall average. Thus, a random probing strategy for finding
close-by neighbor would be much more successful in the real |
ternet than in the Inet and GT-ITM topology models. This is an

For each edgej, we count the number of Type 1 violations it
causes. To illustrate how the number of triangle inequalitya-
tions are distributed over the major clusters, we presenagixn
in Figure 5 for the measured data. To produce this figure, 8¢ fir
reorganize the original data matrix by grouping nodes instme
clusters together. The top left corner has indices (0,0g Mhatrix
indices of the nodes in the largest cluster (North America)the
smallest, the indices for nodes in the second largest cl(Ete
rope) are next, then the indices for nodes in the third larigjaster
(Asia), followed by indices for nodes that did not get cléiediinto
any of the 3 major clusters.

Each point(s, j) in the plot represents the number of Type 1
violations that the edgéj is involved in as a shade of gray. A
black point indicates no violation and a white point indesathe
maximum number of violations encountered for any edge in the
analysis. Missing values in the matrix are drawn as white{soi

Itis immediately apparent that clustering is very usefudassi-
fying triangle inequality violations. It can be seen thageslwithin
the same cluster (i.e. the 3 blocks along the diagonal) ®have

example of how using an inadequate delay space model for sim- significantly fewer Type 1 violations (darker) than edgest ttross

ulation can potentially lead to misleading results. Fipall can
be observed that thB (k) metric is also invariant across different
sample sizes. This empirica)(k) function can be applied to com-
pute the expected delay stretch in the Pastry and Tapestriags
when deployed over the global Internet [5].

We next analyze the measured data set with respect to piespert
related to triangle inequality violations. We say that ageet)
in the data set causes a Type 1 triangle inequality violdfidor

some nodek, L‘i’” < 1, and it causes a Type 2 violation if

|dig— dk]\

> L

Intumvely, better overlay paths can be found for

clusters (lighter). Also, the number of violations for edgmn-
necting a given pair of clusters is quite homogeneous. Nudé t
the white wavy lines roughly parallel to the diagonal areim
showing the missing data. Our measurement methodology mea-
sures the data in sequences parallel to the diagonal toyeserdad

the traffic among the probed DNS servers. Thus, when a measure
ment station fails, an entire diagonal can be missing. Teslare

not straight because whole rows and columns are removedtfrem
data set if they have more than 25% of the values missing. ®ue t
space limitations, we do not include the matrix picture fgpd 2
violations, but as expected, the relative shades are tlerse\of

edges that cause Type 1 violations, and edges that cause2Type those in Figure 5. These results imply that, if two nodes dtlim

violations can potentially provide short-cut overlay fgath
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the same major cluster, then the chance of finding a shortar ov
lay path is far lower then when the nodes are in differenttehss
Moreover, edges that are used to form better overlay pathsast
likely found inside a cluster. Interestingly, observe titas least
likely to find better overlay routes for paths within the Aslaster,
but itis easiest to find better overlay routes for paths adtus Asia
and Europe clusters.

We show in Figure 6(a) and Figure 6(b) the cumulative distri-
butions of Type 1 and Type 2 violation ratios for differentrgde
sizes. Observe that the distribution is very stable acrasgpke
sizes. Intuitively, since triangle inequality violatiom @&n inherent
property of the inefficiency of Internet routing, the amoahtrian-
gle inequality violations observed is not expected to ddpmnthe
number of data samples. This invariant is useful in syntiegithe
Internet delay space.

3.3 Summary

Our analysis confirms some existing knowledge about the-Inte
net delay space, such as the characteristic delay distband
continental clustering. In addition, the analysis progidenumber
of new insights:

e The in-degree distribution of the directed nearest neiggbaph
of the measured data resembles an exponential distribatidris
stable across sample sizes. The relative number of locatecku
also appears stable across sample sizes. These findings naad
to model local clustering properties in the Internet delagce.

e The ball growth metrics reflect the continental clusteritrgc
ture of the delay space and the observed growth rate is loas&'h
properties can inform the design of distributed algorithfos in-
stance to find the nearest neighbor. The&k) function empirically
derived from the data shows that it is not difficult to enceura
close-by neighbor by random probing. The function can akso b
used to compute the expected delay stretch in structuredagve
networks.

e The potential benefit of overlay routing for a pair of nodgs
and the utility of the pair for overlay routing can be preditty
the clusters that and j belong to. In particular, it is hardest to
find better overlay routes for paths within the Asia clusbet, it is
easiest to find better overlay routes for paths across the @il
Europe clusters.

e Delay spaces derived from existing Internet topology medet
dramatically different from the Internet delay space. Ustind-
ing these differences can help practitioners to desigebetialua-
tion methodologies, more correctly interpret their resund avoid
drawing incorrect conclusions.

4. INTERNET DELAY SPACE MODELING

Using measured Internet delay data to drive distributetesys
simulations allows system designers to evaluate theitisolsi un-
der realistic conditions. However, there are two poteriisicerns.
First of all, our ability to measure a large portion of theeimtet de-
lay space is limited by the time required and the difficultgeéling
with network outages, measurement errors and accideritailty
gered intrusion alerts. The second concern is thaOth&?) stor-
age requirement of a measured delay matrix representai&srbt
scale.

To address these concerns, we develop techniques to model a
measured Internet delay space. This model adequatelyrpesse
the relevant properties of the measured data, and it has((i\)
storage overhead. Later in this paper, we will also presssit-t
nigues to synthesize realistic delay data for a much largéayd
space than can be measured in practice so as to enableicealist
large-scale simulations.

4.1 Building Block Techniques

Technique 1: Low-dimensional Euclidean embedding The first
technigue we use is to model an Internet delay space using-a lo
dimensional Euclidean embedding. That is, we compute &eafi
coordinates for each node and use Euclidean distances tel mod
the delays in the delay space. Such a Euclidean map has blscala
O(N) representation.

Although several techniques exist to compute a Euclidean em
bedding robustly [24, 7, 35, 6, 19, 43, 40, 39], and previdudiss
have shown that an Internet delay space can be overall waibap
imated by a Euclidean embedding with as little as 5 dimerssion
such an embedding tends to inflate the small valued@ms) in
the delay space too much [17].

In order to create a model that also preserves small values, w
first use the Vivaldi algorithm to create a 5D Euclidean embed
ding of the measured delay space, then we explicitly adjust t
Euclidean coordinates of nodes as follows. First, extraetdet
S of all node pairg(7, j) with measured delay;; less than 10ms.
Next, among these node pairs, select the node(paim) whose
Euclidean distancé,.., in the embedding is smallest. d., >
30ms, the procedure terminates. Otherwise, the coordinates of
nodem andn are adjusted so that,.,, becomes identical td,...
Then, (m,n) is removed fromS and the procedure repeats. The
effect of this procedure is that small values in the measdegay
space that are mildly distorted in the initial Vivaldi 5D Hidean
embedding are well preserved by the final set of adjusteddaan
coordinates. These adjusted Euclidean coordinates ssrteea
starting point for our model.
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Figure 7 shows the delay distributions for (1) the measuedd,d
(2) all the delays in the 5D Euclidean map, including the nhedle
values for the missing data, and (3) the delays in the 5D Heath
map corresponding to the available measured data. We cdahatee
the 5D Euclidean map preserves the distribution of the nredsu
delay values well. In addition, the modeled values for thesinig
data do not skew the overall distribution.

However, a Euclidean embedding cannot preserve triangle in
equality violations. The Euclidean map also fails to presehe
high in-degree of some nodes in the nearest neighbor ditgcaph.
This is because a node cannot have a high number of nearght nei
bors in a low-dimensional Euclidean space. Specifically nfaxi-
mal in-degree is 12 in the measured delay space, and onlytin t
5D map. To address these limitations of the basic 5D Eudlidea
model, we use two additional techniques in order to prestree
properties lost as a result of the Euclidean embedding.
Technique 2: Global distortion - The basic technique to create tri-
angle inequality violations in the 5D Euclidean model is istatt
the delays computed from the 5D embedding. Since the freguen
of triangle inequality violations in the measured data Iatrecly
small, it suffices to distort only a small subset of node pairs
edges.

The idea is to take into consideration that edges betweéesr-dif
ent pairs of global clusters have very different triangleguality
violation behavior (as can be seen in Figure 5), identifyatiges
in each pair of clusters that cause violations above a cestaier-
ity threshold, characterize the distortion distributionthese edges
when they are mapped into the 5D Euclidean model, then use thi
same distortion distribution to introduce distortions wiaelays
are generated from the 5D embedding. To ensure that the model
always produces the same delay for a given pair of nodesest us
the node identifiers to generate deterministic pseudoerandis-
tortions. By choosing different severity thresholds, we eary the
number of edges that get distorted in the model and expetaitgn
determine the threshold that best matches the empirical d&t
overview of the technique is illustrated in Figure 8.

We define a violation severity threshaRl A violation caused

L . dir+dy.
by an edge;j is severe if for some node, % < R (called
ij

Type 1 violation), or if% > + (called Type 2 violation).

For each global cluster pe{y, all edges with the same 5D Eu-
clidean model delay (rounded down to the nearest 1ms) form a
subgroup. For each subgroyp, ), we compute the fraction of
edges in this subgroup that are involved in severe Type Jviol
tions in the measured dat&, /**~*, and a histogrant/ /**~*

to characterize the real delay dlstrlbutlon of those sevimation
edges. Similarly, for Type 2 violations, we compute the tiat
P /P*"% and the histograntf, /*°~*. We also compute the frac-
tlon of edges that incur severe Type 1 and Type 2 violatiomsiki
taneoustPgTy”e &2 This extra statistical information incurs an
additional constant storage overhead for the model.

With these statistics, the delay between nbded; is then com-
puted from the model as follows. Draw a pseudo-random number
p in [0,1] based on the IDs of and j. Let the Euclidean dis-
tance between andj be l“ and the cluster-cluster group lge
Based onP, }><t, plyre? PTy”e 12 "and usingp as a ran-

dom vanablej demde V\fhether the edzgeshould be treated as a
severe Type 1 violation (with probabllltl?T?“"'i 1y pType—i&z,

9,lij
PType 1
95lij

(PTypc 1+PT§;pc p)
9slij

9.5
HR Type—2
ability L

1)), or a severe Type 2 violation (with prob-

PType 2
95lij

PType 1&2
PTilpe 1+PTypef2
9stig

ooy 1)), or to

( .

return the valué;; without distortion. Jlfthe edgej is treated as a
severe Type 1 violation, then we use the hlstogﬁgﬁie L andp
to draw a value from the histogram and return that value. |8ityj
if the edge is treated as a severe Type 2 violation, then we¢hase
histogramH , %7~ % instead.

By expenmentlng with different threshold valug&swe have de-
termined that a value of 0.85 produces Type 1 and Type 2 ioolat
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distributions similar to those observed in the measured. dahis
is also the threshold we use in the remainder of this paper.
Technique 3: Local distortion - To preserve the local clustering
properties, we introduce additional local distortion. Tihea is to
simply pull some nodes within a radius around a local cluster
ter closer to create the needed in-degree, as illustratEgyime 9.
From the nearest neighbor directed graph analysis on theurezh
data, we identify local cluster centers and note their siZggp-
pose a local cluster center noddias a cluster size of; in the
original data. We identify the set of its nearest neighbors¥;,

in the model after global distortion. Then, we compute ausdi
r; aSmax;ex,(dij), and a threshold; asmin; rex, (d;x) — €.
Currently,e is set t00.01 - min; xc x, (d;x). Then we associate the
valuesr; andt; with nodei in the model.r; is essentially the radius
within which distortion may be necessaty.is the delay needed to
beat the smallest delay among the nodesXin This additional
information adds a constant storage overhead.

The delay between nodeand j is then computed as follows.
Suppose the delay for the edgeafter global distortion ig;;. If
neitheri nor j is a local cluster centel;; is returned. Suppose
i is a local cluster center andis not, then ifl;; < r;, we re-
turnmin(¢;, 1;;); otherwise, we returfy;. Thet; threshold is used
to ensure that the nodes Xj; cannot choose one another as their
nearest neighbors. After the distortion, they will chooses their
nearest neighbor unless there is a closer node outside cddhes
r;. If both andyj are local cluster centers, we pick the one with the
smaller node identifier as the center and perform the abeys st

4.2 Modeling Framework

Based on the basic techniques described above, the ovara#éf
work for modeling a measured Internet delay space is aswello
Step 1. Perform global clustering on the measured data to assign
nodes to major clusters. Perform nearest neighbor diregriagh
analysis to identify local cluster centers and their siz8sep 2.
Compute a 5D Euclidean embedding of the measured data using
robust method. Then, adjust coordinates to preserve salaks.
Step 3. For each cluster-cluster groypand Euclidean model de-
lay {, compute the global distortion statistiE%Tf”e’l, PgTj“’e’Q,
plypemt2 g ryre=l HTUP°~2 using a severe violation thresh-
old R. For each local cluster centgrcompute the local distortion
statisticsr; andt;. Step 4.At this point, the original measured data
is no longer needed. To compute the model delay betweenhode
andj, first compute the Euclidean model delay, then apply global
distortion if necessary, and finally apply local distortibmeces-
sary. Return final value. The total storage overhead of thdeino
is O(N) and calculating the delay of an edge at run time is simple
and has constant cost.

a

bint bin2 bin3

First half of data

T —O0-0—0-O
Second half of data

T OO0—O
First intensity component C,
Support S, = {bin2}
Remaining support R, = {bin2} C,bin2=4x0.
R, covers 75% of second half 75
Weight p, = 0.75

Second intensity component C,
Support S, = {bin1, bin2, bin3}
Remaining support R, = {bin1, bin3]
R, covers 25% of second half
Weight p, = 0.25

C,Pin=1x0.25
C,bin=1x0.25

Sum of component intensities
Intensity,, = 0.25  Intensit

Figure 11: Computing intensities in Euclidean map synthes
technique.

4.3 Evaluating the Model

We evaluate the effectiveness of our modeling framework by
comparing the properties found in the measured data against
erties in the resulting model. Figure 10 presents our res@ver-
all, we can see that the model preserves all the charaatert
the delay space that we had identified. As expected, thesoare
small discrepancies. As we will show in the rest of this pajhese
small discrepancies do not negatively impact the abilitgyiothe-
size realistic artificial delay spaces.

5. INTERNET DELAY SPACE SYNTHESIS

In this section, we build upon our empirical understandifig o
the Internet delay space and our delay space modeling tpesi
and investigate additional techniques to enable artifsyiathesis
of a realistic delay space. The goal is to allow synthesisesf d
lay spaces at scales that exceed our capability to measieraén
delays. Such a tool is valuable for distributed system cheaitd
evaluation.

5.1 Building Block Techniques

The new techniques introduced in this section exploit tladirsg
properties found in the measured Internet delay space tuestiee
synthesis of a larger delay space.

Technique 4: Euclidean map synthesis Given a 5D Euclidean
map of an Internet delay space, we seek to capture its lpeald

growth characteristics so that we can synthesize an aatificap

based on these characteristics and create realistic wteuict the

synthesized delay space.

A simple idea is to divide the Euclidean space into equaldsize
hyper-cubes, count the number of points in each hyper-ca,
use these counts as relative intensities. With appropsttng of
the relative intensities, one can synthesize an artificid of a cer-
tain size by generating random points in each hyper-cuberdec
ing to the intensities using an inhomogeneous Poisson pomat
cess [20, 31 Indeed, this simple method can mimic the point dis-
tribution of the original map and generate a realistic ovetaay
distribution and global clustering structure. Howevers tinethod
ignores the growth characteristics in the data. As a resyrithetic
points can only appear in hyper-cubes where points wer@aily
found.

To incorporate growth characteristics, the idea is to ohioe
uncertainties in the locations of each point and computmngities
that predict growth. The idea is best explained with a sinegle
ample illustrated in Figure 11. In the example, there areitpin

The number of points lying in any two disjoint sets in space ar
independent random numbers distributed according to as&wis
law with mean given by the intensity.
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a 1-dimensional Euclidean space divided into 3 equallydsbies.
We randomly divide the points into two halves, the first haph
pens to lie in bin2, while the other half is spread across lind
bin2. We will iteratively compute, using the first half of theints,
thei*" intensity component C;, which is a vector of intensities for
the bins, to predict the growth observed in the second halfief
points. Each component is weighted according to how wellgt p
dicts the second half. The location uncertainty of a pointhia
first half is represented by a Gaussian probability distiduwith

a certain variance or width. To compute the first intensitypo-
nentC, we place a Gaussian with a smalbith w; that represents
a low level of uncertainty in the center of each bin and sdatby i
the number of first half points in the bin. As a result, the 998d-b
ies of the Gaussians lie within bin2. We call the bins occdtig
the 99% bodies of the Gaussians shpport of the first component,
S1. We also define theemaining support of a component to be the
support of the current component subtracted by the suppadineo
previous component, i.eR; = S;\Si—1. Since this is the first
componentR; is simply S;.

Theintensity I; generated by the Gaussians is spread over the

three bins as 0, 4, 0, respectively. Now we ask, how well d®es
cover the second half of the points? If all points in the seldaaif
are covered byr; thenI; can account for the growth in the second
half and we are done. However, in the exampiejs only covering
75% of the points in the second half. As a result, we weightrihe
tensity I; by a factorp; = 0.75 to obtain the intensity component

C1. Since we have not completely accounted for the growth in the

second half, we need to increase the location uncertairttyam-
pute the second intensity componéiit. To do so, we use a wider

Gaussian (widthw,) for the second iteration. The aggregate inten-

sity is still 4, but this time, it is spread across all 3 binsipSose
the intensities generated in the 3 bins are 1, 2, 1, respéctiVhe
99% body of these wider Gaussians occupy all three bins,theus
support of the second componesi is the set{binl, bin2, bin3.
The remaining suppotR; is S2\S1, i.e. {binl, bin3.. The frac-
tion of the second half covered W is 25%. Thus, the intensity
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Figure 12: Average local density vs local cluster (star) sifor
different data sample sizes.

I is weighted byp, = 0.25 to obtainC>. This iterative process
continues until either all points in the second half are cedeiy

R;, or when a maximum Gaussian width has been reached. The
intensity of each bin is simply the sum of all the intensityrgm-
nentsC;. Finally, we repeat the procedure to use the second half to
predict the growth in the first half and use the average iitien$
each bin as the final intensity. In practice, we divide the pBce

into 100 bins in each dimension and vary the Gaussian vaianc
width from one-tenth to ten times the bin width.

Technique 5: Local cluster size assignmentin order to preserve
realistic local clustering property, the synthesizer drake cluster
sizes from the exponential distribution (as computed irtiSed.2)

that approximates the local cluster size distribution efrtteasured
data. What remains unclear is how to assign different dlsstes

to the synthesized cluster centers. Should the clustes bizeas-
signed randomly to the cluster centers? Would that be te&lis



It turns out cluster sizes are related to node densitiessimtba-
sured data. Figure 12 plots the average local density atitiséec
centers, i.e. the number of nodes within 15ms of the clusteiers,
versus the local cluster size (or star size) for differentgle sizes.
As can be seen, the size of a local cluster is roughly lineathted
to the local node density around the cluster center.

Therefore, the synthesizer assigns cluster sizes as &llBirst,
the synthesizer computes the local node densities for théhay
sized cluster centers and ranks them according to the aensithe
synthesizer also ranks the cluster sizes drawn from therexpial
distribution. Then, the synthesizer assigns a clusterecesft|o-
cal density rank- the cluster size of rank. This way, the linear
relationship between cluster size and local density isgoves!.

5.2 Delay Space Synthesizeb 52

Based on the techniques described above and in Sectiond.1, w

have implemented a delay space synthesizer call§d (see [9] for
further information). At a high levelDS? works as follows (Steps
1-3 are identical to those in Section 4.3tep 1. Perform global
clustering on the measured data to assign nodes to majdercdus
Perform nearest neighbor directed graph analysis to igelotal
cluster centers.Step 2. Compute a 5D Euclidean embedding of

the measured data using a robust method. Then, adjust eoordi

nates to preserve small valueStep 3. For each cluster-cluster
groupg and Euclidean delalyy compute the global distortion statis-
tics P;’"lypefly Pg]:lyp572’ Pgi:lypefl 2’ HT:(lgpefl’ HTT;JP672 Using

a severe violation threshol&. Step 4. At this point, the orig-
inal measured data is no longer needed. Split the 5D Eudidea
map into two, one containing only local cluster centers, and
containing all other nodes. Then each of the two maps isduarth
divided according to which global cluster each node belorgs
suming there are three major global clusters and the rentaim-
clustered nodes form another group, then the splitting quoe
produces eight sub-maps. Based on these eight maps, s#parat
synthesize Euclidean maps of each part to the appropriate ss-
ing the Euclidean map synthesis technique. Merge the eighitr
ing synthesized maps back into one synthesized map. In tak fin
synthesized map, for each node, we now know whether it isa loc
cluster center and which major cluster it belongsStep 5.Assign
alocal cluster size to each synthesized center using thédhcster
size assignment technique. For each local cluster céntempute
the local distortion statistics, andt;. Step 6.To compute the syn-
thesized delay between nodendj, first compute the Euclidean
delay. Apply global distortion, if necessary, accordinghe statis-
tics from the measured data, and finally apply local distorif
necessary. Return final value.

Note that a lower bound can easily be enforced on the synthe-

sized delays to mimic some sort of minimum processing delay i
curred by network devicedD.S? provides this as an option.

5.3 Evaluating the Synthesized Delay Model

To evaluate the effectiveness of the synthesized delay inode

inequality violation ratios (require®(N?) time) and thus results
for these two metrics are calculated based on a 16,000 nodemra
sample out of the 50x synthetic delay space.

The results in Figure 13 show that, even though the syntl&sis
based on a 2,000 node subset of data, the 2x synthesized dhta i
to match the characteristics of the 3997 node measured data v
well. As expected, there are a few differences. Howeversehe
differences are small and we will show in Section 6 that they d
not negatively affect the application of the synthesizddylmodel
in distributed system simulations. It is also worth notihgttthe
scaling invariants observed in the measured data are nradthy
the synthesizer. In summary, the synthesis framework imeteed
by DS? is highly effective in creating realistic delay spaces with
compactO(N) storage requirement.

5.4 Assumptions

DS? is designed based on a set of assumptions that are empiri-
cally derived from delays among edge networks in the Interhie
is not designed to synthesize delays within a local areaar&tw
Such a capability can be incorporated ifi#s? as future work.

We have experimented with PlanetLab delay data as well as
P2PSim delay data and found th&atS? can correctly synthesize
the characteristics of these data sets. Howeeér may not work
correctly on arbitrary delay data inputs that violate thikofeing
empirical assumptions:

e A low-dimensional Euclidean embedding can model the input d
lay data with reasonable accuracy, ignoring triangle iaditjuvio-
lations and local clustering properties. Some recentsjdil, 17]
have shown that Euclidean embedding has difficulties iniptied
pairwise Internet delays very accurately. Note, howeveat, we do
not aim at predicting pairwise delays, we only use the Eedlid
embedding as a compact model of the statistical properfié¢seo
input data.

e The in-degree distribution of the nearest neighbor graph-co
puted from the input data is exponential. The current imglem
tation of DS? automatically fits the in-degree distribution of the
input data to an exponential distribution.

e The input data has a coarse-grained clustering structarad
dition, the delay edges across the same coarse-grainedrghasr
exhibit similar triangle inequality violation charactstics.

6. APPLICATIONS

In this section, we demonstrate the importance of usinglestiea
delay model for simulation-based evaluation of distribiggstems.

6.1 Server Selection

Increasingly, Internet services are distributed acrosttipha
servers all over the world. The performance and cost of sneh |
ternet services depend on the server selection mechanfmys t
employ. Server selection redirects clients to an apprtgsgarver,
based on factors such as the location of the client, netwonklie
tions, and server load. A number of server selection sysféims

first extract a 2,000 node random sub-sample from the mehsure 11, 7] have been proposed and studied. In this section, ttierpe

data. Then, we feedS? with just this 2,000 node sub-sample
to synthesize delay spaces with 2x, 4x, and 50x scaling facto

mance of Meridian [47], Vivaldi [7] and random server seil@cts
evaluated using four different delay spaces: measured fef3,

If DS? correctly predicts and preserves the scaling trends, then Inet and GT-ITM.

the synthetic 2x delay space should have properties verijasim

We evaluate the accuracy of the three server selectionitdgs

to those found in the measured data from 3997 nodes. The large using the delay penalty metric, which is defined as the diffee

scaling factors (4x and 50x) are presented to illustrate thevsyn-
thesizer preserves various properties under scaling. tateat
the scaling factor of 50x, a 100,000 node delay space is synth
sized. Unfortunately, at this scale, we do not have efficiesys

to compute global clustering (requiré¥ N*) space) and triangle

between the delay to the chosen server and the delay to thestlo
server. We run each algorithm on all of the following data s&ir
measured data, in addition to the full 3997-node data, weuss a

2k sample; forDS? data, we synthesize 2k data from a 1k sample
of the measured data, and synthesize 4k and 16k data from a 2k
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Figure 14: Performance comparison of three server selectio
algorithms.

sample of the measured data; for both Inet and GT-ITM, wergene
ate 2k, 4k and 16k data sets, respectively, using the sanieduat
ogy described in Section 2. In all server selection expanis)ave
assume that there is only one service available in the nkhaod

all the nodes act as clients and servers simultaneouslgn@lare
not allowed to select themselves as their servers. For eztelsdt,
we run five experiments and the cumulative distributionseofer
selection penalties are presented in Figure 14.

First of all, the synthesized 2k and 4kS? data sets yield virtu-
ally identical results as the 2k and 3997-node measured elata
though they are synthesized from only 1k and 2k measured data
samples, respectively. Second, using the Inet delay magief-s
icantly underestimates the performance of Vivaldi. In fdoé re-
sults suggest that Vivaldi performs no better than randanesse-
lection, while Vivaldi performs much better than randonmesébn
if it is evaluated using the measured datd$? data. Thus, using
Inet as a delay model could lead to false conclusions abeuieh
formance of Vivaldi. Third, although the relative perfonmea rank
of the three algorithms is the same across all four delay mpde
the absolute performance estimated with Inet and GT-ITNedsf
dramatically from results achieved with the measured dafa$?
data. For example, on the 3997-node measured data, 40.4% of t
servers chosen by Meridian are within 1ms of the closesesgrv
while this number is 17.2% and 50.4% on 4k Inet and 4k GT-ITM
data, respectively. Finally, the experiment based on ttke26>
synthetic data indicates that the performance of Vivaldiusth al-
most remain constant under scaling, but this is not the catte w
Inet and GT-ITM delay models. Similarly, Meridian’s penfieance
degrades more rapidly on Inet and GT-ITM than/os? data with
increasing network size. This illustrates that it is impattto have
good delay space models that are beyond our ability to measur
since important performance trends sometimes only shoecadd.s

6.2 Structured Overlay Networks

Structured overlay networks like Chord, Kademlia and Rastr
use proximity neighbor selection (PNS) to choose overlagme



bors [41, 23, 5]. PNS has been shown to effectively reducéngu
stretch, query delay and network load, and to increase ayveo-
bustness to failures and even to certain security attad{s [3

Here, we show the importance of using a good delay space to
evaluate the effectiveness of PNS. To eliminate the infleexfca
particular PNS implementation, we assume in our simulattbat
the overlay chooses neighbors using perfect PNS, i.e.,|tsest
node is chosen among all overlay nodes that satisfy thetstaic
constraints imposed by a routing table entry. Unless otiserw
stated, the results in this section have been evaluated @& 4
node overlay network using FreePastry [12], where the dglage
used was either based on measured dagg, Inet, or GT-ITM.

We firstly evaluate the following metricfOverlay Indegree of
a node, which is the number of overlay nodes that have the node
in their routing tables.Hop Length Distribution of overlay route,
which determines the latency and network load of overlakips.
Route Convergence of overlay routes, which, given two nodes lo-
cated at distancé from each other, measures what fraction of their
overlay paths to a given destination is shared. This metiimpor-
tant for dynamic caching and for the efficiency of multicaistri
bution trees.

Figure 15 shows that the results agree very well for the nredsu
delay data and.S? data on all three metrics, while the results with
the Inet and GT-ITM models differ significantly. The Inet nebd
yields different results on indegree, because the powectsnec-
tivity makes the closest leaf node of the high degree hubfen t
topology the nearest neighbor for a large number of nodes. Fo
the hop length distributions, we observe that the first hopvef-
lay routes with the Inet model is significantly larger thage first
hop obtained with measured delay data. Finally, the routeeams
gence with Inet/GT-ITM is higher than with the measured date
deviations of these properties are rooted in the differerufethe
D(k)/D(N) growth metric and the local clustering in-degraetric
among the delay models.

Next, we show how mis-predictions of the somewhat abstract
overlay metrics shown above can have an impact on applicatio
performance metrics whose relevance is more immediatglgrap
ent.

Effectiveness of PNS on Eclipse AttacksIn recent work on de-
fenses against Eclipse attacks [3] on structured overlayarks,
Singh et al. [37] argue that PNS alone is a weak defense. While
earlier work has shown that PNS is effective against Eclijeeks
based on simulations with a GT-ITM delay model [15], Singhlet
demonstrate that the defense breaks down when using mdasure
delay data as a basis for simulations. Moreover, they shattltie
effectiveness of the defense diminishes with increasing sf the
overlay network. We have repeated their simulations ugy
data and confirmed that the results match the simulatiofsméia-
sured data. Moreover, we are able to show that the effeesseaf
PNS against Eclipse attacks continues to diminish as weaser
the network size beyond the scale of measured delay data.isThi
another example of how the usage of inadequate delay maalels c
lead to wrong conclusions. It also shows tiia$? yields correct
results, and that it is important to be able to synthesizaydslodels
larger than measured data sets, in order to expose imptntads.
Performance of Proactive Replication The benefits of proactive
replication in structured overlays to reduce overlay Iqolops
and latency has been explored by Beehive [28]. We expergdent
with a simple prototype that does proactive replicatioredasn the
number of desired replicas of an object. The placement diteep

is biased towards nodes that share a longer prefix with thecbbj
identifier, in order to be able to intercept a large fractidrthe
overlay routes towards the home node of the object. We fiedt ev

uate the query lookup latency as a function of the total nurobe
replicas for an object. Our system consists of a 4000 nodeaniket
(3997 nodes for measured data) and a total of 10,000 objects.

Figure 16(a) shows that the average query latency for a given
number of replicas is significantly lower with measured getes-
pecially when compared to Inet. This is an artifact of théedént
distributions of hop length as shown earlier in Figure 15{jth
the last hops in realistic models dominating the total @sedath,
employing even a very few replicas results in reducing therage
latency significantly. In the absence of realistic modete would
overestimate the number of replicas required to achievataice
target lookup latency.

We then evaluate the distribution of query traffic to the irepl
cas. In this scenario, we assume that the objects were atgadic
on all nodes that matched at least one digit with the objeartiel
fier. Given a network of 4000 nodes with Pastry node IDs as dig-
its in base 16, we observe that this corresponds approxynate
the expected value dfl/16) = 4000 = 250 replicas per object.
Figure 16(b) shows the distribution of query load among &pi+
cas. A point(z,y) in the plot indicates that the lowest ranked
nodes with respect to the amount of query traffic they serted,
gether serve;% of the overall query traffic. The figure shows a
huge imbalance in the load distribution for the Inet topglogpdel,
wherein 5% of the nodes serve over 50% of the traffic. This Imba
ance is caused due to the highly skewed overlay indegregbdist
tion of nodes in the Inet topology.

Again, we see that the delay model used in simulations of dis-
tributed systems has a significant impact on the resultsiraata
for important application performance metrics. Inadegudelay
models can lead to false conclusions about the effectigeand
performance of systems.

7. RELATED WORK

Our work on modeling the Internet delay space is complemen-
tary to existing work on modeling network connectivity topgies.
There is an opportunity for future work to incorporate dedppace
characteristics into topology models.

Early artificial network topologies had a straight-forwaroh-
nectivity structure such as tree, star, or ring. A more ssiffaited
topology model that constructs node connectivity basedheman-
dom graph model was proposed by Waxman [45]. However, as
the hierarchical nature of the Internet connectivity beeappar-
ent, solutions that more accurately model this hierarchghsas
Transit-Stub by Calvertt al [48] and Tier by Doar [8], emerged.
Faloutsost al [10] studied real Internet topology traces and dis-
covered the power-law node degree distribution of the haterLi
et al [18] further showed that router capacity constraints caimbe
tegrated with the power-law node degree model to createracea
realistic router-level topologies.

There are many on-going projects actively collecting defea-
surements of the Internet, including Skitter [38], AMP [RIngER
[27], and Surveyor [42] to name just a few examples. Some of
these projects also collect one-way delays and hop-by-bap r
ing information. These projects typically use a set of nmiig
nodes, ranging roughly from 20 to 100, to actively probe aoéet
destinations. The Skitter work probes on the order of 1 aonilli
destinations, which is the largest among these projects.attive
monitoring method can probe any destination in the netwoui,
the resulting measurements cover only a small subset ofettas d
space as observed by the monitors. Many of these measuement
are also continuously collected, allowing the study of gemin
delay over time. Our work uses the King tool to collect delagam
surements, which restricts the probed nodes to be DNS seiugr
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produces a symmetric delay space matrix, which lends iteedf
study of the stationary delay space characteristics.

quantify the properties of the Internet delay space witlpeesto
a set of metrics relevant to distributed systems designs Eaids
to new understandings of the Internet delay space chaistatsr

Some of the delay space properties reported in this paper hav \yhich may inform future work. We also develop a set of buitgin

been observed in previous work. For example, triangle iakqu
ity violations and routing inefficiencies have been obseiing34]
and [24]. Some of the characteristics of delay distribugiamnd
their implications for global clustering have been obsenveSkit-

block techniques to model and synthesize the Internet dglage
compactly while accurately preserving all relevant mstridChe
result is an Internet delay space synthesizer calktf that can
produce realistic delay spaces at large scdlss? requires only

ter. However, many of the observations made in this paper are O(N) memory, whereV is the number of nodes, and requires only

new. These include the local clustering properties, andaniq
ular the approximately exponential in-degree distributispatial
growth properties, detailed properties of triangle indity@iola-

tions of different types and across different clusters, thedexam-
ination of these properties under scaling. In addition &o"gtatic”
properties of delay, previous work have also studied theteai
properties of Internet delay [1]. Incorporating temporaperties
into a delay space model is an area for future work.

One key technique used in our work is computing a low dimen-
sional Euclidean embedding of the delay space to enhancethe
pleteness and scalability of the delay space represemtaitany
approaches for computing such an embedding have beendfadie
7, 35, 6, 19, 43, 36, 26]. We have not considered the impacs-of u
ing different computation methods or using different endied
objective functions. This represents another area foréuttork.

8. CONCLUSIONS

To the best of our knowledge, this is the first study to systema
ically analyze, model, and synthesize the Internet delagespWe

simple run-time calculations to generate the delay betveepair

of nodes. This helps to address the memory requirementebarri
of conducting large-scale simulationsD.S* provides an impor-
tant mechanism for simulating and emulating distributesteys

at large-scale, which complements other evaluation metbgies.
See [9] for further information ol S2.
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