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ABSTRACT

Network traffic exhibits drastically different statistics,
ranging from nearly Gaussian marginals and Long range
dependence at very large time scales to highly non-
Gaussian marginals and multifractal scaling on small scales.
This behavior can be explained by forming two compo-
nents of the traffic according to the speed of connec-
tions, one component absorbing most traffic and being
mostly Gaussian, the other constituting virtually all the
small scale bursts. Towards a better understanding of
this phenomenon, we propose a novel tree-based model
which is flexible enough to accommodate Gaussian as well
as bursty behavior on different scales in a parsimonious
way.

Keywords: Network traffic modeling, Haar wavelet, Long
range dependence, multifractals, fractional Brownian mo-
tion, Lévy stable motion.

1. MOTIVATION AND SUMMARY

Network traffic analysis and modeling play a major rôle in
characterizing network performance. Models that accurately
capture the salient characteristics of traffic are useful for anal-
ysis and simulation, and they further our understanding of
network dynamics and so aid design and control.

Numerous studies have found that aggregate traffic ex-
hibits long-range-dependence (LRD) [1], and that traffic can
be extremely bursty, resulting in a non-Gaussian marginal
distribution and multifractal properties [2]. These findings
are in sharp contrast to classical Markovian type traffic mod-
els and their predictions [1, 3, 4] and, therefore, merit close
attention.

1.1. Models for Network Traffic

Fractional Gaussian noise (fGn) is a stationary Gaussian
process with LRD (see Section 3) which has become very
popular as a model of traffic arrivals at a node a communica-
tion network such as the internet. It owes its credibility to the
fact that it can be obtained as the limit of the superposition of
a large number of independent individual ON/OFF sources
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which transmit data at a given rate during the heavy-tailed
ON-phase and no data during the OFF phase [1].

The fGn process can be synthesized using an additive
tree-based model such as the Wavelet-domain-independent-
Gaussian model (WIG) [5, 2]. Although the fGn and the
additive WIG model match the LRD of network traffic and
fit well at large time-scales, previous work has shown that
traffic data is highly non-Gaussian, especially at small time-
scales, and exhibits multifractal scaling behavior. Multiplica-
tive tree-based cascades such as the Multifractal Wavelet Model
(MWM), proposed in [2], can reproduce these properties
with accuracy. Indeed, the additive WIG and the multiplica-
tive MWM are both flexible enough to match the variance
of network traffic at all scales; however, the multiplicative
MWM provides a superior match of marginal distributions,
especially at smaller scales [2]. This can be attributed to the
high non-Gaussianity of traffic traces which is particularly
prominent on time scales of seconds and below.

1.2. Components of Network Traffic

In search of the causes of the apparent non-Gaussianity and
the well-documented burstiness of network traffic we revis-
ited the classical ON/OFF model. Within this framework,
traffic bursts arise only from a “constructive interference”,
i.e., large number of connections transmitting data simulta-
neously. A close look at measured traffic, though, does not
confirm this scenario. Rather, in most cases only one con-
nection1 dominates the traffic arrivals during a burst [6].

Thus motivated, we call any connection which sends more
than a threshold of bytes during any time interval of a given
size � an alpha connection. The (large) threshold is cho-
sen based on the mean of the aggregate traffic at time-scale
� plus a few standard deviations. We call all bytes sent by
alpha connections the alpha traffic component. The resid-
ual traffic is called the beta component.2 Our procedure thus
decomposes an aggregate traffic trace into

total traffic � alpha traffic � beta traffic� (1)

1In this analysis, a connection is identified through source and destina-
tion IP address and port number.

2By analogy to the dominating alpha males and submissive beta males
observed in the animal kingdom.
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Figure 1: Decomposition of the traffic trace into the sum of a bursty alpha component and an fGn beta component.

We have applied the alpha/beta traffic decomposition to
many real-world traffic traces at time scales � varying from
�� to ��� ms and found tremendous consistency in our re-
sults [6]. The statistical properties of the components can be
summarized as follows.

Beta traffic: At time-scales coarser than the round-trip
time, the beta component is very close to Gaussian and strongly
dependent, provided a sufficiently large number of connec-
tions are present. Moreover, the beta component carries the
same fractal scaling (LRD) exponent as the aggregate traffic
and can be well approximated by fGn.

Alpha traffic: The alpha component constitutes a small
fraction of the total workload but is entirely responsible for
the bursty behavior. Alpha traffic is highly non-Gaussian.

It is notable that this decomposition in networking terms
(based on connection-level information) achieves a separa-
tion in statistical terms. It leads, thus, to a better understand-
ing and modeling of the overall network traffic.

1.3. Multiscale estimation and modeling

Additive models accurately capture Gaussian marginals found
in network traffic when aggregated to large time-scales, as
well as in the beta component. Multiplicative models, on
the other hand, prove ideal to match non-Gaussian, bursty
signals such as network traffic at small time-scales, as well
as the alpha component. Wavelet based models combine the
advantage of the tree structure for fast and simple synthe-
sis with the ability to simulate scaling behavior such as long
range dependence, another prominent property of network
traffic.

Motivated by the presence of these drastically different
statistics of measured network traffic, we develop a new tree-
based model based on mixing additive and multiplicative in-
novations which is able to accommodate Gaussian as well as
non-Gaussian bursty statistics parsimoniously. We use kur-
tosis, a fourth-order statistic, to test the closeness of fit of
the model to real traffic data. With an interest in fast traf-
fic decomposition for on-line monitoring we also propose a
wavelet based separation scheme. After doing so we present

a short overview of tree-based multiscale models and pro-
ceed to the novel mixture model.

2. WAVELET-BASED TRAFFIC SEPARATION

The computationally intense connection level separation of
alpha and beta traffic does not lend itself to massive data pro-
cessing or on-line monitoring. Approximate separation of al-
pha and beta traffic can be done using a novel wavelet-based
thresholding scheme that does not require explicit connec-
tion information. This scheme is based on the fact that we
can treat the beta component as “noise” and the alpha com-
ponent as the “signal”, and use well-known denoising tech-
niques to separate the two. We use Wavelet based denoising
techniques, with coefficient thresholding. For colored de-
noising (since beta traffic is colored noise, fGn), we use dif-
ferent thresholds for wavelet coefficients at different scales.
Kaplan and Kuo [7] have shown that for Haar wavelet, the
variance progression of the wavelet transform of fGn sat-
isfies a power-law decay (c.f. (3)). In colored denoising
scheme, the threshold at each scale is made proportional to
the expected standard deviation of the wavelet coefficients at
that scale. Thus, knowing the Hurst parameter, we can fix
the threshold at each scale using equation (3). Johnstone et
al [8] have shown that this thresholding scheme is optimal
for colored denoising.
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Figure 2: (a) Isolated bursts in the real trace. (b) Bursts isolated
using the wavelet separation scheme.



3. ADDITIVE AND MULTIPLICATIVE MODELS

The models of interest here are based on a multi-resolution
description of the traffic signal. At the heart of these schemes
lies the fact that the wavelet transform is an approximate
Karhunen-Loève transform for LRD signals. We design the
wavelet coefficients to be uncorrelated in two ways, employ-
ing additive, resp. multiplicative innovations.

3.1. WIG Additive Model

The discrete wavelet transform is a multiscale signal repre-
sentation of the form [9]
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with 
� the coarsest scale and �� and ���� the scaling and
wavelet coefficients. The scaling coefficients may be viewed
as providing a coarse approximation of the signal, with the
wavelet coefficients providing higher-frequency “detail” in-
formation.

It has been shown [10] that highly-correlated LRD sig-
nals become nearly uncorrelated in the wavelet domain. In
addition, the Haar wavelet transform of fGn exhibits power-
law scaling of the form3 [7]

var������ � �� ������������ ��� ������� (3)

Thus by generating independent wavelet coefficients � ���

with appropriate decay of energy with scale and inverting the
wavelet transform, one can synthesize Gaussian LRD pro-
cesses. Using efficient multiscale tree structures, this model
provides fast ���� synthesis algorithms to synthesize � -
point data sets [5, 10].

3.2. MWM Multiplicative Model

As a consequence of the Gaussian nature, the additive WIG
model can produce unrealistic synthetic traffic traces, in par-
ticular since it can take negative values and cannot capture
the burstiness of traffic at small time-scales. The basic idea
behind the non-Gaussian MWM model is simple. To model
non-negativity, we use the Haar wavelet transform with spe-
cial wavelet-domain constraints. To capture LRD, we char-
acterize the wavelet energy decay as a function of scale.

To guarantee non-negativity of signals, notice that in Haar
wavelet transform the scaling and wavelet coefficients can be
recursively computed using

����� � ������������ � �������

������� � ������������ � ��������
(4)

3We use capital letters when we consider the underlying signal � (and,
hence, its wavelet and scaling coefficients) to be random.
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Figure 3: (a) Binary tree of Haar scaling coefficients. (b) Tree-
based modeling: At scale �, we produce innovations in form the
wavelet coefficients ����. For the additive WIG model these coef-
ficients are chosen as independent Gaussian random variables. For
the multiplicative MWM they are formed as the product ���� �

�������� with independent positive multipliers ����.

For non-negative signals, ���� � �
 � �
 �, which with
(4) implies that

������ � ����
 � �
 �� (5)

The positivity constraints (5) on the Haar wavelet coeffi-
cients lead us to a very simple multiscale, multiplicative sig-
nal model for positive processes. Let ���� be a random vari-
able supported on the interval ��	
 	
 and define the wavelet
coefficients recursively by

���� � ���� ����� (6)

Together with (4) we obtain (see Figure 3(b))

����� � ������	 ��������������

������� � ������	���������������
(7)

We use beta distributions for ���� .

4. ADDITIVE AND MULTIPLICATIVE MIXTURE
MODEL

With strikingly different statistical properties present in net-
work traffic it is desirable to develop models which combine
flexibility with parsimony. Using one single model capable
to adapt to Gaussian as well as spiky, non-Gaussian signals is
not only satisfactory from a signal processing point of view,
but may also provide deeper inside into the causes of the
complex traffic dynamics.

From the statistical description given in Section 1 it is
apparent that WIG should provide an ideal model for the
beta component, while the alpha component will find a bet-
ter match with the MWM. This suggests to model the over-
all traffic as a superposition of WIG and MWM. However,
such an approach implies an inflation of parameters which
are hard to estimate as they rely on the traffic decomposition.



(a) 2 4 6 8 10 12 14 16 18
10

0

10
1

10
2

10
3

10
4

Scale (large=coarse)

K
ur

to
si

s

Alpha
Beta 
Total

(b) 2 4 6 8 10 12 14 16 18
10

0

10
1

10
2

10
3

10
4

Scale (large=coarse)

K
ur

to
si

s

Alpha
Beta 
Total

(c) 2 4 6 8 10 12 14 16 18
10

0

10
1

10
2

10
3

10
4

Scale (large=coarse)

K
ur

to
si

s

Alpha
Beta 
Total

(d) 0 5 10 15 20
10

0

10
1

10
2

Kurtosis variation with scale

Scale (large=coarse)

K
ur

to
si

s

Alpha
Beta 
Total

Figure 4: Kurtosis versus time-scale for (a) real traces; (b) MWM model; (c) WIG model; (d) WIG-MWM mixture model.

Rather, we propose to use both, additive as well as multi-
plicative innovations in one single tree. A first simple scheme
works as follows: At each parent node on the tree we first
try additive innovations with parameter such as to match
the variance at the corresponding scale. The resulting chil-
dren nodes at which the signal turns negative are replaced by
recomputing the value using multiplicative innovations in-
stead. Note that this scheme inherently preserves positivity.
More importantly, the proportion of multiplicative innova-
tions increases as the variances of the wavelet coefficients in-
crease compared to its mean. This is desirable because non-
Gaussian, spiky signals exhibit a large wavelet variance to
mean ratio, leading to a largely multiplicative mixture tree.
On the other hand, a nearly Gaussian, positive signal will
produce a mixture tree with an overwhelming part of addi-
tive innovations.

To measure the level of Gaussianity of signal and models
at different time-scales we use the well-known Gaussianity
measure, kurtosis, which is defined as the ratio of its fourth
central moment to the square of its variance. The kurtosis
for Gaussian random variable is �. Random variables with
fatter tails have a kurtosis greater than �, and vice versa.

Figure 4 displays the kurtosis values of signals and mod-
els against scale (coarse to the right) in log-log. It should be
recalled foremost that all models use as parameters only the
variance on binary scales which they match perfectly (not
shown, see [2]). Notably, the WIG model is a poor approx-
imation due to a deviation from Gaussianity even for the
beta component on fine scales. The multiplicative MWM
model, though more accurate, exhibits too large kurtosis on
fine scales. The mixture model, while still not ideal, con-
vinces through its uniformly superior match for both, Gaus-
sian as well as bursty traces, and a flexibility which allows
to match large and small kurtosis values.

Discussion
The main advantage of the novel mixture tree model lies

in its parsimony and flexibility in matching Gaussian as well
as non-Gaussian multiscale marginals. More elaborate mod-
els come to mind immediately, such as using distributions for
the multiscale multipliers ���� with more than one parame-
ters in order to match the fourth moment in addition to the
variance. A superposition of WIG and MWM might be su-
perior, but significantly increases the difficulty of parameter

estimation.
The good match of mixture tree models is satisfactory

since they agree with the networking intuition that large scale
behavior is governed by aggregation (an additive operation)
while small scale behavior is strongly affected by multiplex-
ing and queueing with their inherent non-Gaussianity.
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