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Abstract— High capacity data transfers over the Internet
routinely fail to meet end-to-end performance expectations.
The default transport control protocol for best effort data
traffic is currently TCP, which does not scale well to
100Mbps and higher networks over long distances. In con-
gestion avoidance TCP is not swift enough to fully utilize
resources over paths with a high delay bandwidth product.
First attempts to alleviate this problem by equipping TCP
with increased aggressiveness have shown the disadvantage
of poor fairness with the ubiquitous standard TCP-Reno,
or in some cases, even among two connections running
over the same path. We propose a new delay sensitive-
congestion avoidance mode (TCP-Africa) that allows for
scalable, aggressive behavior in large underutilized links,
yet falls back to the more conservative TCP-Reno algo-
rithm once links become well utilized and congestion is
imminent. Through ns2 simulations we argue for the safety,
efficiency, and fairness of TCP-Africa.

Index Terms— Scalable TCP, high-bandwidth-delay
products, TCP fairness

I. INTRODUCTION

TCP-Reno has been used with great success in the
Internet in general, since its proposal in 1988 [1]. The
extent to which Reno has scaled is rather astonishing,
but it is reaching its limit in the modern Internet, with
its ever increasing bandwidth [2]. At the time when TCP
was proposed, large Internet core links were on the order
of 56Kbps, the speed of modern telephony modems [1].

The limitations of TCP-Reno are apparent in networks
with large bandwidth-delay-products, which are becom-
ing increasingly common in the modern Internet. For
example, supercomputer grids, high energy physics, and
large biological simulations require efficient use of very
high bandwidth Internet links, often with the need to
transfer data between different continents.
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The desired congestion window used by TCP-Reno
is roughly equal to the bandwidth delay product of the
connection. For high bandwidth-delay-product links, this
desired congestion window is quite high, as high as
80,000 packets for a 10 Gbps link with a 100 ms RTT,
or round trip time! TCP-Reno’s combination of a slow
linear increase and a fast multiplicative decrease requires
an unreasonable amount of time for this desired window
to be regained after a loss. Indeed, as pointed out by
Floyd et al. [3], in such situations it can take a TCP-
Reno stream over one hour to recover from a single
congestion event. Under the random packet loss model,
TCP-Reno can require an unreasonably low packet drop
probability for these high bandwidth-delay-product links.
Indeed, Reno’s throughput scales with the inverse square
root of the loss probability [4].

From recent approaches one is tempted to conclude
that correcting TCP’s deficiencies with a purely loss
based protocol leads to super-aggressive protocols, which
raises fairness and safety concerns. By contrast, delay
based protocols, which make use of the wealth of in-
formation about the network state that is provided by
packet delays, can indeed achieve excellent steady state
performance, as well as minimal self-induced packet
losses. In the presence of flows on shared links which
are non-responsive to delay, such as TCP-Reno, however,
delay sensitive protocols are often in the disadvantage
of reacting earlier than the non-responsive ones. As a
consequence, these delay-responsive protocols do not
cause enough packet drops to the non-delay-responsive
protocols to force them to maintain only their fair share
[5].

In this paper, we proposeTCP-Africa, a new de-
lay sensitive two-mode congestion avoidance rule for
TCP that promises excellent utilization, efficiency, and
acquisition of available bandwidth, with significantly
improved safety, fairness, and RTT bias properties. This
new protocol uses an aggressive, scalable window in-
crease rule to allow quick utilization of available band-



2

width, but uses packet round trip time measurements
to predict eminent congestion events. Once the link is
sensed to be highly utilized, the protocol reacts by resort-
ing to the conservative congestion avoidance technique
of standard TCP.

This paper is organized as follows. In Section II we
start by looking at the time between induced congestion
events for several purely loss based protocols, as well as
an approximation of our new delay-sensitive protocol.
We consider the effects of periodic congestion events
(rather than just packet loss probability) on TCP-Reno
to be an important clue to the backwards compatibility
of new high speed protocols. We make the distinction
that a rapid return to high utilization after a packet loss is
desirable, but that the rapid creation of a new congestion
event is not. Next, we review the factors involved in the
limitations of most delay based protocols, such as TCP-
Vegas [6], and what those factors suggest with regards
to a safe high speed protocol. In Section III, we provide
a detailed description of the protocol. In Section IV, we
present a series of ns2 experiments, looking to address
both the protocol’s potential to utilize networks, as well
as to assess its fairness and safety properties. Finally, in
Section V, we address some of the concerns regarding
the deployability of the protocol, including processing
overhead, sensitivity to reverse path congestion, and
assurances regarding congestion collapse. We close with
conclusions and an outlook for future work.

II. BACKGROUND: EXISTING PROTOCOLS

Researchers have proposed several new high speed
end-to-end protocols in the last few years. By and large,
these protocols fall into two groups: purely loss based
algorithms, such as STCP [7], HSTCP [3], and BIC-TCP
[8], and delay based algorithms, such as FAST TCP [9].
XTCP [10], though it shows excellent performance, is
not included in this analysis since we are considering
only end-to-end congestion control.

A. Considerations for a high speed protocol

When one goes about designing a high speed transfer
protocol, the most straightforward approach is to modify
TCP’s increase and decrease parameters to adjust its re-
sponse function to provide a more desirable performance.
However, there are several considerations that need to be
taken into account when designing such a protocol.

In this paper, we decide to concentrate on the follow-
ing four issues.

1) [Throughput] First, of course, one aims at improv-
ing the capability to utilize the network resources.

This is intimately related to a better adapted in-
crease and decrease behavior necessary and an
improved loss rate function.

2) [Peer fairness] One must also consider fairness
with other streams running the same protocol,
which may have different round trip times [2]. A
good protocol should be able to quickly converge
to equilibrium with other flows of the same type.

3) [TCP-fairness] A protocol should also be fair with
the older TCP-Reno standard. Indeed, any new
protocol to be deployed which dominates either
the myriad of existing Reno flows will not find
acceptance due to the Internet’s philosophy of
providing best effort for all.

4) [Congestion collapse] We need also assurances that
the protocol will not push networks into a state of
congestion collapse. This is of particular concern
for so called high speed protocols, since they are
by nature more aggressive than TCP-Reno.

B. Aggressive loss based protocols

Let us start by discussing some immediate approaches
to respond to the first requirement above. The main
drawback of TCP-Reno over large delay-bandwidth-
products lies in its linear increase mode in congestion
avoidance. TCP-Reno reacts to packet loss by decreasing
its congestion window by half, and then increasing its
congestion window by one packet per round trip time
while in congestion avoidance mode [11]. Operating
around an ideal congestion window of, say,1000 packets,
a drop leads to a reduction of the window by500 and
requires roughly500 round trip times to regain the size
before the drop.

In order to keep most of the desirable qualities of
TCP, the most immediate and simple change lies in a
modification of the window update rules.

Simply tuning the window update rules of TCP-Reno
can directly improve the protocols ability to utilize high
speed links, but may impair its fairness properties. As
pointed out in [8], protocols in the same class as HSTCP
and STCP (protocols that make modifications to the
increase and decrease parameters), can have undesirable
RTT fairness properties, if they simply increase more
aggressively when operating with larger windows.

A MIMD protocol, such as STCP [7] uses multi-
plicative increase and multiplicative decrease window
adjustment rules. For every received packet, STCP in-
creases its congestion window by0.01 packets, and on
a packet drop, the window is reduced to0.875 times
its current window. As a result, the recovery time from
a drop is scale invariant, always requiring a constant
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number of round trip times. MIMD is equivalent to an
additive increase scheme where the increase step size
grows proportionally to the congestion window size.

The TCP variant HSTCP [3] takes a similar approach
to STCP, though it scales its drop parameter from 50%
at low window sizes to 90% at higher windows. HSTCP
then set’s its increase parameter as necessary to achieve
its desired packet loss response. The end result is that
HSTCP’s increase rate grows slightly slower than that of
STCP, but still very rapidly as compared to TCP-Reno.

A more aggressive TCP version leads almost invari-
ably to reduced fairness, lest care is taken. The authors of
[8] point out that both HSTCP and STCP have undesir-
able fairness properties when flows with different round
trip times are competing over a shared link. HSTCP has
slightly improved RTT bias performance as compared
to STCP [8]. Both HSTCP and STCP share a similar
spirit with regards to their approach to adjusting for
TCP-Reno’s shortcomings, and can be considered to be
members of the same class of high speed loss based
protocols.

BIC-TCP [8], according to its authors, has desirable
RTT bias properties. BIC-TCP makes use of a binary
increase scheme to quickly approach an estimated safe
window, then slowly increase above that window. The
author’s claim that its Reno-fairness properties are com-
parable to that of STCP, however, is not particularly
strong; STCP is the most aggressive of the current
well known TCP proposals. Nonetheless, BIC-TCP is
still relatively new, and merits further investigation and
analysis.

To address finally the risk of congestion collapse, let
us mention that a common factor in each of these loss
based protocols is that they increase their congestion
windows by more than Reno’s amount of 1 packet per
RTT. While it is unlikely that any of the proposed
congestion control protocols will cause another Inter-
net congestion collapse, this more aggressive increase
rate and drop behavior can cause increased burden on
intermediate router buffers. With drop tail queues, the
number of packets dropped per congestion event tends to
be related to the number of additional packets introduced
into the network in the last round trip time, that is, to
the protocol’s increase parameter. While it is possible
that this is the price that one must pay for scalable
congestion control, it remains a desirable goal to avoid
such problems. With our window increase technique we
have found evidence that it is indeed feasible to mitigate
most of these problems.

Key to our discussion is a crucial assumption behind
much of the analysis used to design and justify these
protocols based on high speed loss, namely a simple

independent random packet drop model. According to
this assumption, losses occur at a certain rate inde-
pendently from each other and from the protocol. We
deem this assumption in many ways too simplistic and
restrictive as we now argue. Indeed, packet losses in
real networks tend to have periodic components and to
involve correlated losses, meaning that many packets
may be lost in the same event. Consequently, while
informative, the drop rate response function is not suffi-
cient to characterize the performance of a protocol. This
is particularly true for any protocol that makes use of
delay information, but must apply in general since it is
insufficient to characterize a network condition by its
packet loss rate solely.

In addition, the choice of protocols affects the loss rate
for a link. Because of their more aggressive behavior,
the above mentioned high-speed loss-based protocols
induce congestion events at a much higher frequency
than induced by TCP-Reno. In fact, due to STCP’s
choice of multiplicative increase, STCP must in steady
state induce congestion events roughly every13.4 round
trip times, regardless of the link speed. HSTCP induces
packet losses at a slower rate than STCP, but still much
faster than TCP-Reno.

C. Induced congestion event frequency

To gain insight into the significance of frequent con-
gestion events and exactly how often they occur for high
speed protocols, we make a simple analysis looking at
the cyclic period of induced congestion events for these
protocols, for a given capacity link.

First, we make the assumption that there is some
numberWmax that is the maximum congestion window
the flow can maintain over a path without a inducing
a congestion event. For a given link,Wmax can be
approximated asWmax = C ×RTT/L+B, whereC is
the link capacity in bits per second,RTT is the round
trip time of the flow,L is the packet size in bits, and
B is the maximum queue length of the bottleneck link.
Since buffers are usually chosen to be proportional to a
link’s delay-bandwidth-product, we would expectWmax

to scale linearly with both RTT and capacity. All that
is needed for our following analysis, is that upon the
congestion window reaching someWmax, a self induced
packet loss will occur. Finally, we make the assumption
that the recovery mechanisms of the transport protocol
will allow it to reduce its congestion window only once
per loss event, regardless of the number of consecutive
packets lost.

We begin by looking at the frequency of self induced
congestion events for AIMD (additive increase, multi-
plicative decrease) protocols, such as TCP-Reno. The
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relevant parameters for an AIMD protocol area, the in-
crease step size andb, the multiplicative decrease factor.
For a general AIMD protocol, the induced congestion
event period is

T =
(1 − b)Wmax

a
. (1)

For Reno,a = 1 andb = 0.5. Thus, we find, for TCP
Reno, the induced congestion event period is

T =
Wmax

2
. (2)

.
Multiplicative Increase Multiplicative Decrease

(MIMD) protocols, which use a multiplicative increase
parameterα and a multiplicative decrease parameterβ,
have a constant steady state induced congestion period
that obeys the formula:

(βWmax)(1 + α)T = Wmax. (3)

which gives us:

T =
− log(β)

log(1 + α)
. (4)

For STCP [7],β = .875 andα = 0.01, thus giving us
T = 13.4 round trip times between congestion events.

Unlike STCP, the time between congestion events
for HSTCP grows slowly asWmax increases. The ex-
act equations for HSTCP’s growth curves do not lend
themselves well to simple calculations such as this,
but the results are easy to determine numerically. For
Wmax less than HSTCP’slow window parameter of
38, HSTCP acts like normal TCP. However, above
low window , HSTCP’s congestion event frequency
grows slowly, reaching roughly120 round trip times be-
tween congestion events whenWmax is around83, 000.
This is still extremely often when compared to what
TCP-Reno would induce on these links.

We observe that it is this very rapid return to the
maximum window that gives HSTCP and STCP their
excellent scalability. We also note, however, that this
scalability comes at the cost of very frequent self induced
congestion events. In addition to the additional overhead
and work involved for a protocol that must retransmit
large numbers of packets, frequent congestion events can
also have a negative impact on Reno streams that might
be sharing the same bottleneck connection as the high
speed flow. Indeed, from the AIMD equation above, we
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Fig. 1. Congestion Event Frequency for HSTCP

can calculate that for a given congestion event frequency,
TCP-Reno will achieve a maximum window of

Wmax =
Ta

1 − b
. (5)

While losses in real networks are not completely
synchronized, the implications of such frequent conges-
tion events are worrisome, and raise possible fairness
concerns. We maintain that while it is good for protocols
to quickly reach nearly full capacity after a conges-
tion event, actually reaching that full capacity will also
quickly induce the next congestion event.

To illustrate this point, let us consider a hypothetical
MIMD protocol that has some unspecified mechanism to
detect when the network has reached a certain utilization,
denotedG. G would ideally have a value in the range
of 0.90 to 0.95. When the utilization surpassesG, the
MIMD protocol then switches to a linear increase mode,
increasing at one packet per round trip time. Thus,
this hypothetical protocol would be able to return to a
high level of utilization in constant time, but its period
between self induced congestion events will still grow
linearly with the window size, just as in TCP-Reno.

While actually detecting the utilization level of a link
in practice is difficult for an end-to-end protocol, we find
that we are able to achieve a similar result through the
use of a delay metric, as described in section III.

D. TCP-Vegas-like protocols

Another significant group of high speed protocols are
the Vegas-like delay based protocols, such as FAST
TCP. These delay based protocols have many desirable
properties: they are unlikely to cause significant queuing
delay, can quickly converge to equilibrium, and they can
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run in steady state without causing packet drops [12].
They also, however, can have the disadvantage of not
being able to compete with greedy protocols such as
Reno on congested links.

To understand our suggested solution for scalable TCP,
it is instructive to recall the scenario behind TCP Vegas’s
deficiency when competing with greedy protocols such
as TCP-Reno [5].

Imagine two streams starting up at the same time,
one TCP-Reno, the other TCP Vegas, with no other
traffic on the link. Every round trip time, each flow will
increase its window by one packet. Thus, they will share
the same rate, until the link approaches full utilization.
Then, the delay on the link will increase, and the delay
based protocol will cease to increase its window. The
greedy TCP-Reno stream on the other hand will continue
to increase its rate, injecting an additional packet into
the network every round trip time. This will cause the
delay on the link to increase further. The delay based
protocol, since it tries to maintain only a small number
of packets in the queue, will actually decrease its window
in response to the aggressiveness of the TCP-Reno flow.
This will continue until a packet is lost; the TCP-Reno
stream will eventually overfill the queue.

Another way to picture the vulnerability of most delay
based protocols is to imagine a protocol that tries to mea-
sure the available bandwidth of a link, and adjusts its rate
such that there was always some small fixedN percent
of the bandwidth free. When the link is underutilized,
this flow would achieve excellent performance, however,
in a link that is highly utilized (read: less thanN%
free bandwidth) by traditional packet loss congestion
controlled flows, this available bandwidth sender would
be completely starved of its fair share. It would decrease
its sending rate repeatedly, but since there would always
be less thanN% bandwidth free, the protocol would
end up sending at its minimum possible rate. Vegas-like
delay based protocols end up in pitfalls similar to the
above scenario, though they use estimated queue length
rather than available bandwidth as a metric.

The Vegas-like protocols tend to avoid inducing packet
drops, and as such, are unable to cause greedy flows
to back off. This deficiency is one of the primary
reasons preventing the widespread adoption of TCP-
Vegas, despite its other benefits. FAST TCP is still
theoretically vulnerable to this problem, as is virtually
any protocol that decreases its congestion window based
on delay information. Choosing a large value for the
α parameter of these delay based protocols can lead to
an improved ability to compete with Reno-like flows,
but the correct choice ofα will depend on the number
of competing flows and the buffer capacity of the link.

Since these parameters are inconsistent and unknown
in real networks, choosingα can be very difficult.
Furthermore, a choice of too large anα value can break
the equilibrium behavior of these delay based protocols.

III. TCP-AFRICA

A. Design considerations

In this section we outline the steps leading to our pro-
posal for a new, safe, high speed congestion avoidance
mechanism for TCP. Let us start with a few observations.

It is interesting to note that the increase rate for
HSTCP and STCP grows as the window grows. As a
result, these protocols are in fact most aggressive just
at the moment where they are sending at maximum
capacity. Intuitively, this is the time when a protocol
should be the least aggressive.

The excellent steady state behavior of the delay based
protocols, on the other hand, is due to the fact that once
the queue begins to fill, the delay will increase provid-
ing the protocol with early feedback. The delay based
protocols are thus the least aggressive when sending at
or near the capacity of the link. Let us now discuss
how to use this early information more effectively and
competitively than it is used by TCP Vegas, particularly
for high bandwidth delay product links.

As a first step, we recognize the value of the Vegas
congestion indicator but ignore its window adaptation
rules as not competitive with Reno. Moreover, since
no competitive protocol should be forced to back-off
and reduce its window before Reno does, we find that
the best way to use the Vegas-indicator is via a more
aggressive increasebefore congestion. Intuitively, before
congestion occurs, loss based schemes such as Reno
should not see a performance penalty against protocols
with more aggressive increase.

Second, to keep Reno competitive with such an en-
hanced protocol the latter should fall back to Reno
strategies at theonset of congestion and well before the
queue is filled.

These observations now lead us to our proposal for
a safe high speed congestion control protocol:TCP-
Africa, an Adaptive and Fair Rapid Increase Congestion
Avoidance mechanism for TCP. TCP-Africa is a hybrid
protocol that uses a delay metric to determine whether
the bottleneck link is congested or not; in the absence of
congestion, thefast mode, it uses an aggressive, scalable
congestion avoidance rule. In the presence of congestion,
theslow mode, it switches to the more conservative Reno
congestion avoidance rule.

Thus, the protocol can exhibit scalable behavior with-
out causing increased burdens on router buffers and other
competing flows.
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Under favorable delay conditions, which correspond
to the presence of free available bandwidth, the protocol
increases its window in an aggressive, scalable manner.
Since our guidelines above give significant leeway in the
exact increase curve used while the protocol is in “fast”
mode, we have decided to use HSTCP’s [3] increase
and decrease parameters as TCP-Africa’s scalable “fast”
mode in our analysis and experiments to date. This
choice was due in part to HSTCP’s Reno compatibility at
low congestion window sizes. We note, however, that one
could just as easily implement a multiplicative increase
technique as the “fast” mode for TCP-Africa.

TCP-Africa, in its scalable “fast” mode, quickly grabs
available bandwidth. Once the delay begins to increase,
and the protocol senses that the amount of available
bandwidth is becoming small, the protocol switches to
a conservative, linear increase mode of one additional
packet per round trip time. The motivation behind such a
slow growth mode for a high speed protocol is that once
a flow is within a reasonable percent of its maximum
bandwidth, it no longer has any reason to be growing
at an increased rate. Indeed, as our earlier analysis from
section II-C protocol shows, switching to a one packet
per RTT rate can greatly decrease the frequency of self
inflicted packet loss. Thus, TCP-Africa can be quick to
utilize available bandwidth, but slow when it comes to
inducing the next congestion event.

In our ns2 experiments to date, we find that the delay
metric enables the protocol to run indeed in the scalable,
aggressive “fast” mode in underutilized networks, but to
act in a much more conservative manner in networks
that are being sufficiently used by less aggressive proto-
cols such as TCP-Reno, and where aggressive window
increase behavior could cause performance degradation
for other users.

B. Detailed description of TCP-Africa

An exponentially smoothed high accuracy round trip
time estimate,aRTT is kept by the flow. This delay
information, along with the minimum delay observed on
the pathminRTT , is used to estimate the queuing delay
on the link.W denotes the current congestion window
of the flow.

This delay metric, then, is used to enable or disable
an aggressive window increase mode. We note that
the conditions in which a delay based protocol would
decrease its window are the same conditions where
aggressive window increase rules are not desirable.

There are several possible choices of a delay metric for
this protocol, we have settled for one based on the TCP
Vegas algorithm. TCP-Africa detects congestion using
the following metric:

W (aRTT − minRTT )

aRTT
≷ α. (6)

The quantity(aRTT−minRTT ) gives us an estimate
of the queuing delay of the network. Since the overall
round trip time isminRTT +(aRTT −minRTT ), the
quantity (aRTT − minRTT )/aRTT is the proportion
of the round trip time that is due to queuing delay rather
than propagation delay. Since TCP maintains an average
sending rate ofW/aRTT packets per second, by exten-
sion of Little’s Formula,W (aRTT −minRTT )/aRTT
is an estimate of the number of packets that the protocol
currently has in the queue. Theα parameter is a constant,
usually set as a real number larger than one. The choice
of α determines how sensitive the protocol is to delay.

By tracking this metric, our protocol can detect when
its packets are beginning to enqueue at the bottleneck
link, and thus, determine an opportune time to switch
into slow growth mode.

The congestion avoidance steps followed by the pro-
tocol are thus:

if (W (aRTT − minRTT ) < α × aRTT ){
W = W + fast increase(W )/W

} else{
W = W + 1/W

}

The functionfast increase(W)is specified by a set of
modified increase rules for TCP. Currently, we are using
the congestion avoidance rules specified by HSTCP to
specify the increase curve when the delay condition
is met. Alternatively, a multiplicative increase scheme
could be used, such asfast increase(W ) = 0.01×W .

Another way of looking at the delay metric is

(aRTT − minRTT ) ≷ α
aRTT

W
. (7)

Thus, we are comparing the queuing delay of the
bottleneck link to our expected time between packet
sends. This helps explain why the delay metric scales
well with link capacities, since both sides of this equation
scale as link speeds increase.

This metric can also be considered to be an estimate
of the total number of packets in the queue, given the
current queuing delay and a link speed estimated as
our current sending rate,W/aRTT . This suggests that
an alternate congestion metric might be to use other
techniques, such as packet pair probing, to estimate
the maximum link capacity, and then estimate of the
total number of packets in the queue. Alternatively,
an available bandwidth estimation technique such as
such as Pathchirp [13] could be used in parallel with



7

Fig. 2. Experiment Setup

the TCP data flow, to detect when it is appropriate to
aggressively increase the congestion window. We are
currently investigating these, and other possibilities.

One benefit of our current delay metric is that the
switch-over point is always at the same rate for a given
amount of queuing delay, independent of the round trip
time of the flow. Thus, flows with a small round trip
time do not gain a competitive advantage do to the delay
metric. In fact, the dominating flows over a link, which
have the smallest value for the expressionaRTT

W
in 7,

are the most sensitive to queuing delay, and thus, the first
to switch into slow mode. This gives rise to improved
RTT bias performance as compared to other high-speed
loss-based TCP protocols. Indeed, this sometimes even
leads to better than Reno performance, since the long
RTT flow is using a scalable increase rule that allows
faster than one packet per round trip time increase.

The choice of theα parameter can impact the per-
formance of the protocol, but can never make it behave
in a dangerous manner. In our experiments, we used an
α value of1.65, which provided good performance, but
may not be optimal in all network conditions. We are
currently investigating possible auto-tuning schemes for
choosing alpha.

IV. EXPERIMENTAL STUDY

In this section, we perform an experimental study to
compare the performances of TCP-Africa and HSTCP.
Since TCP-Africa uses HSTCP’s window adjustment
rules as its high speed mode, this comparison reflects
directly on the benefits of the presence of the two, delay
sensitive modes of TCP-Africa.

The following series of experiments were performed
using ns-2, version 2.27. The general setup for the
following simulations is as follows:

The link capacities and delays were varied from
experiment to experiment. A small amount of Poisson
UDP traffic, roughly at3% utilization, was added to
the links to simulate a very lightly utilized link. All

tests lasted8 minutes. Since the router buffers were
configured with drop tail queues, we found it necessary
to use the ns parameteroverhead = 8×10−6 to mitigate
the presence of phase effects, as was done in [8]. Phase
effects in ns simulations are described in [14]. Theα
parameter of TCP-Africa was set toα = 1.65 for these
experiments. While this value seems to provide excellent
behavior, more investigation into optimally choosing the
α parameter needs to be done.

A. Safety

The first scenario that was simulated for TCP-Africa
is one that may be a common experience for many
researchers. We use the termsafety to indicate that we
are investigating whether or not a protocol hampers
the performance of other flows in network conditions
where they would normally be able to achieve acceptable
performance. The purpose of this simulation was to look
at the scenario where there are two classes of end hosts,
those that are using1 Gbps access links, and using a
high speed protocol, and ones that are using traditional
TCP with 100 Mbps access links.

Following the aforementioned dumbbell configuration,
the speed of the shared link was set to622 Mbps, with
a delay of80 ms. The access links for node’s A and B
were set to1 Gbps, while the access links for links C
and D were set to100 Mbps. All access links had a path
delay of1 ms.

As one can see in Figure 3, HSTCP has a significant
effect on the throughput achieved by the TCP-Reno flow.
TCP-Africa, however, has a minimal effect on the TCP-
Reno flow, as seen in Figure 4. The ratio of HSTCP
traffic to Reno traffic in this experiment was roughly 25:1
and over2700 non slow-start related packets were lost
at the bottleneck link. For the TCP-Africa experiment,
the ratio of TCP-Africa traffic to TCP-Reno traffic was
roughly 6:1, and only47 non slow-start related packets
were lost at the bottleneck link over the course of
the 8 minute experiment. Indeed, the TCP-Reno stream
lost more packets at its access link than it did at the
bottleneck link. At the same time, the overall utilization
of the network was slightly higher in the TCP-Africa
experiment.

B. Fairness with TCP-Reno

The next experiment we look at is very similar to the
previous safety experiment. However, in this example
we alter the access links so that all flows have1 Gbps
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Fig. 3. Safety Experiment for HSTCP. The frequent congestion
events induced by the HSTCP flow hamper the throughput of the
TCP-Reno stream.
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Fig. 4. Safety Experiment for TCP-Africa. TCP-Reno is effectively
bottlenecked only at its access link. TCP-Africa’s switch to slow
growth mode is clearly visible.

connections to the shared link. We thus expect to see
exactly how much HSTCP and TCP-Africa impact the
performance of a TCP-Reno flow.

In Figure 6, we see very similar results to what we
found in the experiment in Figure 3, indeed since the
TCP-Reno flow in that experiment was effectively bottle-
necked at the shared link, we do not expect its perfor-
mance against HSTCP to improve significantly by having
its access link speed increased to one gigabit. Indeed
most of the improvement is seen while the network is
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Fig. 5. Reno Fairness Experiment for TCP-Africa. Both TCP-Africa
and TCP-Reno are bottlenecked at the common link. TCP-Africa’s
switch to slow growth mode is evident in each congestion event cycle.
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Fig. 6. Reno Fairness Experiment for HSTCP. As in figure 3, TCP-
Reno is unable to achieve its fair share of the link bandwidth.

still stabilizing after slow start, before the HSTCP flow
has pushed it back down. The ratio of HSTCP traffic
to Reno traffic in this flow is roughly 17:1, and slightly
over2000 non slow start related packets were lost at the
bottleneck link.

In the TCP-Africa safety experiment, Figure 4, we
observed that the Reno flow was predominately bottle-
necked at its access link. Thus, in this experiment, where
both flows have the same access link speeds, we expect
to see that the ratio of TCP-Africa traffic to TCP-Reno
traffic improves. Indeed, the ratio between the two was
nearly exactly4 : 1, and only32 non slow-start related
packets were lost on the link. In general, TCP-Africa
sees an improvement in the number of packet losses both
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TABLE I

AFRICA RTT BIAS EXPERIMENTAL RESULTS

RTT Ratio Throughput Ratio Packet Losses
1 1.0132 440
2 2.3552 581
3 3.6106 529
6 8.4616 336

TABLE II

HSTCP RTT BIAS EXPERIMENT RESULTS

RTT Ratio Throughput Ratio Packet Losses
1 0.9752 5050
2 31.7379 3881
3 93.7189 19603
6 284.4962 7614

from the decreased number of congestion incidents, and
in the number of packets lost in each event.

C. RTT bias

As mentioned in Section II, another area where high
speed protocols need to be evaluated is with regards to
the fairness between two flows of differing round trip
times. The authors of [8] demonstrated the undesirable
RTT bias properties of HSTCP and STCP, and since
TCP-Africa is based in part on HSTCP, we address this
concern with the following experiment, which is similar
to the simulations performed in [8].

The access link speeds are set to one gigabit, with the
links from A-S and S-B set to have a delay of5 ms. The
shared link has a capacity of622 Mbps, and a delay of
5 ms. Thus, the flow from A to B will have a round trip
time of 30 ms. The links from C to S and from S to
D are set so that the overall round trip time of the flow
from C to D will be a desired multiple of the round trip
time of the flow from A to B.

In Table II we see the results from the RTT bias
simulation for HSTCP. As predicted in [8], there is a
serious fairness problem with flows of different round
trip times for HSTCP. The short round trip time flow
quickly dominates the connection, starving out the other
flow.

In Table I we see the results of the same set of
experiments run for TCP-Africa. Here, the TCP-Africa
flows share the bandwidth roughly proportional to their
round trip times. This is actually an improvement over
the throughput ratio experienced by TCP-Reno under
such circumstances, where the throughput difference is
quadratic with the round trip time ratio [8]. The packet
losses in the experiments seem to follow and unusual
pattern. This could be due to several factors. As the
RTT ratio grows, one of the flows becomes less and

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

4 TCP−Africa bandwidth changes

seconds

pk
ts

/s

TCP−Africa
UDP

Fig. 7. Rapid Changes in Available Bandwidth Experiment

less aggressive, this would tend to decrease the number
of packet losses. At the same time, however, the other
flow is able to increase its window significantly, and
thus become more aggressive. These conflicting factors
account for the packet loss behavior as the RTT ratio
changes.

One reason why TCP-Africa can achieve such excel-
lent RTT bias properties is the effect the delay metric
has on limiting the aggressiveness of the dominant flows.
These flows have a higher rate, and by equation 7, are
more sensitive to the measured queuing delays.

Thus, they enter their slow growth mode sooner than
the longer round trip time flow. While the short RTT
flow is in slow mode, and the long RTT flow is in its fast
mode, we are basically seeing the effects of a fast linear
growth flow competing with the accelerated growth of
a long round trip time HSTCP flow. Indeed, the long
trip time flow is allowed to continue to use the higher
increase rate of HSTCP while the dominant flow has
fallen back to a one packet per round trip time increase
rule.

D. Adapting to network conditions

In this experiment, seen in Figure 7, we look at
how quickly TCP-Africa can adapt to changing network
conditions. The bottleneck link has a capacity of622
Mbps, and the flow is experiencing a minimum round
trip time of 84 ms. After160 s, a CBR UDP flow at300
Mbps is started, then, at320 s, the UDP flow is stopped.
This allows us to see how well TCP-Africa adapts to
changes in the available link capacity.
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As is clear from Figure 7, and as is expected from all
TCP variants, TCP-Africa quickly reduces its bandwidth
in response to the UDP flow. As is clear from the increase
slope of the TCP-Africa flow, the slow growth mode
of the protocol is being entered as the flow approaches
the maximum available bandwidth. Also, as is clear
from the graph, after the UDP flow terminates, TCP-
Africa quickly re-enters its high speed mode, and quickly
utilizes the newly freed bandwidth.

V. IMPLEMENTATION ISSUES

A. Overhead

While this scheme does involve more potential over-
head than TCP-Reno, this can be mitigated significantly.
The protocol requires keeping a high accuracy round trip
time estimate, which will probably involve a queuing
action every packet, along with the multiplication and
addition necessary for an exponentially smoothed esti-
mate. Since TCP already uses round trip time estimates,
this is not an unreasonable requirement. Although the
TCP timestamp option probably won’t provide sufficient
resolution, the cycle counter registers on modern pro-
cessors provide a very natural high resolution timer. If
the overhead proves to be too significant, the round trip
time estimate could be made using only a subset of
packets. If the delay metric condition check every packet
is objectionable, a state variable could be updated on
the order of every round trip time. We are currently
investigating what performance impact such changes
would have.

B. Robustness

Another advantage of this window increase technique
is that it is entirely robust to malfunction of the delay
metric. In a network with unusually variable delay, the
protocol would at worst perform as TCP-Reno with a
modified drop rule. In a network where the delay never
increases, that is, a bufferless network, the protocol will
simply stay in fast mode, acting like a normal STCP
or HSTCP sender. We do not expect a network with no
buffers to be a common environment.

Sensitivity to reverse path congestion is also a concern
for delay based protocols. As with Vegas, and possibly
FAST [9], protocols that use round trip time estimates
are sensitive to delay noise added to the returning stream
of ACKs. In the case of TCP-Africa, this will result
in falling back to more Reno-like behavior. Fortunately,
since TCP-Africa never decreases its window solely
due to delay information, return path congestion cannot
cause it to surrender bandwidth. However, by forcing the
protocol into slow growth mode, significant congestion

in the reverse path may reduce the ability of the protocol
to quickly acquire available bandwidth. We are still
looking into how significant this effect is, and into ways
of addressing it, perhaps by taking advantage of one way
delay information from the TCP-Timestamp option.

C. Safety

The increase rules for TCP-Africa call for its increase
rate to vary between that of TCP-Reno, and rates roughly
equivalent to other high speed protocols. TCP-Africa is
still ACK-clocked, as regular TCP is, and the window is
still reduced multiplicatively on packet drop. It appears
that such an adaptive increase algorithm is a conservative
choice for the increase rule, and one that allows the
protocol to run at high speeds while still being safe for
the Internet at large. Furthermore, the proposed window
increase scheme is entirely more conservative than the
existing schemes. Since the innovation in TCP-Africa
does not specify the exact form of the drop response
while in fast mode, this conditionally fast increase tech-
nique can be combined with both STCP, and HSTCP.
In our experiments, we used HSTCP [3] to specify the
increase characteristics in fast mode, taking advantage
of its RTT fairness benefits over STCP [8], as well as
its smoother transition from the TCP-Reno drop rule.
Since both HSTCP and STCP have been tested in the
real Internet, and neither led to catastrophic failures, we
do not expect TCP-Africa to pose a significant danger.

VI. CONCLUSIONS

To maintain a careful balance between the increased
aggressiveness and the fairness and safety is a major
concern when developing protocols for high bandwidth
delay product links. We find that key towards succeeding
at both challenges is to use delay information as an
indicator for the appropriate level of aggressiveness. Un-
like TCP-Vegas with its ideally loss-free steady state yet
inherent disadvantage against greedy loss-based Reno,
our protocol TCP-Africa exploits congestion indicators
towards adaptive fair rapid increase, not giving in to
Reno, yet not crushing it. In ns-2 simulations, the proto-
col has achieved excellent utilization, low induced packet
loss rate, and excellent fairness properties, while at the
same time exhibiting RTT bias performance equivalent
to, or even exceeding that of TCP-Reno. We will con-
tinue to evaluate the performance of TCP-Africa in real
network environments, first using UDP emulation, and
then through an actual kernel implementation.

Finally, we note that there may be more than one way
to use delay information to achieve safe, fast utilization
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of network resources, while having acceptable perfor-
mance against traditional greedy flows. Particularly, our
use of two separate window increase curves can be
considered to be a special case of the more general
form, where the increase ratea(w) is determined as
some continuous functiona(w, delay). It is likely that
certain choices for this function can provide even better
performance than what we have achieved with our two
mode rule, and we are currently investigating several
such choices of functions. The performance results ob-
tained with our two mode algorithm indicate exciting
possibilities in this direction.
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