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Abstract—We develop a new approach to queuing analysis
for an infinite-length queue with constant service rate fed by
any traffic process. Our approach provides important theo-
retical results, is easy to implement in practice, and is par-
ticularly relevant to queues fed with long-range-dependent
(LRD) traffic. We use traffic statistics at only a small fixed
set of time scales and develop three approximations for the
tail queue probability. These are non-asymptotic, that is
they apply to any finite queue threshold. Simulations with
LRD traffic models and Internet traces demonstrate their
accuracy. Besides non-asymptotic error bounds, asymptotic
decay rates, and error bounds for the approximations, we
prove an optimality property of exponential time scales.
Simulations reveal that the second-order correlation struc-
ture of traffic by itself does not determine queuing behavior
and that the tails of traffic marginals at different time scales
have a strong impact on queuing.

I. Introduction

Maintaining low packet queuing delays and jitter at
router queues is critical for the viability of real-time stream-
ing media applications for telephony, telemedicine, video-
conferencing, economic transactions etc. As a result ad-
mission control [2], network provisioning [3] and other tech-
niques for reducing queuing delay have gained importance.
These applications typically require accurate predictions
of queuing delays in order to succeed. We model a router
queue as an infinite length queue with constant service rate
[4] and study the probability that the queue size Q exceeds
a threshold b,

� {Q > b}, also called the tail queue proba-
bility.

We can predict
� {Q > b} in several ways. First, we can

model network traffic using different processes (also called
traffic models) and use any exact formula for

� {Q > b} that
is available. Second, in case exact results are unavailable
for a particular process we can employ analytical results
that only approximate

� {Q > b}, which we call queuing
approximations. Third, if modeling traffic with a standard
random process is cumbersome or inadequate then we can
predict

� {Q > b} directly from measured traffic statistics.
In such a scenario it is desirable to use few traffic statis-
tics in order to reduce data acquisition and computational
requirements.

In this paper we develop a novel approach to queuing
analysis called the multiscale queuing analysis that ad-
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dresses the second and third scenarios mentioned above.
It uses few traffic statistics and is practical.

While our analysis is relevant to any traffic process we
focus on processes with non-summable correlations (called
long-range-dependence (LRD)) since LRD is a ubiquitous
property of real-traffic [5]. Classical Poisson and Markov
queuing techniques do not apply to the queuing analysis
of LRD traffic which creates the need for new analytical
tools. Up to now exact formulas for the queuing delay of
LRD processes, other than for asymptotically large delays
[6–8], have not been found and we are thus forced to use
approximations.

To date, most approximations for the tail queue proba-
bility of queues fed with LRD processes have been based
on the notion of the critical time scale [6, 7, 9–12]. Given
a queue size threshold b, the critical time scale is the most
likely amount of time it takes for the queue to fill up beyond
b. While the critical time scale is a powerful theoretical
tool, computing it directly from empirical measurements
is impractical because this requires traffic statistics at all
time scales.

By using traffic statistics at only a finite set of time
scales, θ, our approach provides three practical approxima-
tions for

� {Q > b}: the max approximation, the product
approximation, and the sum approximation. These have
several important features:

• they apply to any finite queue threshold b, that is, they
are non-asymptotic;
• they apply to any traffic model including non-stationary
ones; and
• they are simple to employ because they require traffic
statistics only at few time scales θ.

We prove numerous non-asymptotic error bounds, large-
queue asymptotic results, and other bounds for the three
approximations for different LRD traffic models including
fractional Brownian motion (fBm), the wavelet-domain in-
dependent Gaussian model (WIG), and the multifractal
wavelet model (MWM). We also compare the different ap-
proximations through numerical experiments.

It is of significant practical importance to determine an
appropriate candidate for the time-scale set θ at which to
collect statistics. The choice of θ involves a trade-off be-
tween the accuracy of the max approximation and the re-
quirements for computation and data acquisition. A sparse
θ decreases the accuracy of the max approximation but si-
multaneously requires the computation of traffic statistics
and data acquisition at fewer time scales.

We prove that the choice of exponential time scales for
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θ is optimal with respect to this trade-off for a queue with
fBm input traffic. A significant advantage of exponential
time scales is their sparsity; just a few exponential time
scales span a wide range. This result thus strongly recom-
mends the use of traffic statistics at exponential time scales
in queuing applications.

Traffic models such as fBm and the WIG suffice to cap-
ture the queuing behavior of traffic in Gaussian scenarios
which can occur with traffic aggregation as on backbone
links [11,13]. However they do not perform as well in non-
Gaussian traffic scenarios. We term the distributions of
traffic at different time scales as marginals. Through simu-
lations with the WIG and the MWM which have different
marginals we demonstrate the strong impact of marginals
on queuing. This result supports similar findings in [12,14].

Our main contributions are thus (i) a novel multiscale
approach to queuing analysis that provides practical queu-
ing approximations, (ii) optimality, error bounds, and con-
vergence results related to the approximations for various
traffic models, and (iii) the demonstration that marginals
can strongly influence queuing behavior. Additional results
can be found in [15].

Paper Organization: Section II reviews previous work
on the critical time scale. In Section III we present the mul-
tiscale queuing analysis of the paper and derive the various
queuing approximations. Section IV describes the fBm, the
WIG, and the MWM traffic models. In Section V we prove
the optimality of exponential time scales for fBm. Section
VI proves that large buffer asymptotic results and Section
VII proves bounding results for the different queuing ap-
proximations. Section VIII demonstrates the accuracy of
the approximations through simulations with Internet and
synthetic model data and also demonstrates the impact of
marginals on queuing. We conclude in Section IX.

Table I provides a list of symbolic notation to help the
reviewers verify the mathematical proofs. It is not a part
of the paper. More detailed versions of the proofs presented
here can be found in [15].

II. Review of Critical Time Scale Analysis

In this section we review previous work on the critical
time scale queuing analysis to set the stage for our multi-
scale queuing analysis in subsequent sections.

A. Queue size as a multiscale function

Consider a continuous-time fluid queue with constant
service rate c with traffic process Xτ , τ ∈ � as input. We
refer to

Kτ [t] :=

∫ τ

τ−t

Xωdω (1)

as the traffic process at time scale t. To avoid nota-
tional ambiguity we occasionally add superscripts such as

in K
{X}
τ [t] to identify the traffic process. For the ease of no-

tation we drop the subscript τ for all time-invariant quan-
tities.

Assuming that the queue was empty at some time instant
prior to τ , the queue size Qτ equals the difference between

the total traffic that arrived at the queue and the total
traffic serviced since the time instant the queue was last
empty. This is succinctly captured by Reich’s formula [16]

Qτ := sup
t>0

(Kτ [t] − ct) . (2)

It is easily shown that the supremum in (2) always occurs
at a value of t such that τ − t is the instant the queue was
last empty. We address the requirement of an empty queue
prior to τ with mathematical rigor in Section IV-D.

A key interpretation of (2) is that Qτ equals a function of
Kτ [t], the traffic process at all time scales t. The question
arises as to whether or not we can accurately approximate
� {Q > b} using the distribution of Kτ [t] at a single time
scale t.

B. Critical time scale queuing approximation

The most widely proposed approximations of
� {Q > b}

for queues fed by LRD traffic are indeed based on a single
time scale called the critical time scale [6, 7, 9–12], defined
as

λτ (b) := arg sup
t>0

� {Kτ [t] − ct > b} . (3)

We term the associated queue tail approximation the crit-
ical time scale approximation, which is defined as

Cτ (b) := supt>0

� {Kτ [t] − ct > b}
=

� {Kτ [λτ (b)] − cλτ (b) > b} .
(4)

Clearly Cτ (b) is a lower bound of
� {Qτ > b} since by (2)

Kτ [λτ (b)] − cλτ (b) ≤ Qτ ; thus

Cτ (b) ≤ � {Qτ > b} . (5)

Earlier work based on large deviation theory has shown
that Cτ (b) has the same log-asymptotic decay as
� {Qτ > b} when b → ∞ for a large class of input traf-
fic processes including fBm [6, 7]. As the simulations in
Section VIII demonstrate, Cτ (b) is also a good approxi-
mation for

� {Qτ > b} for any finite b for fBm-fed queues.
The intuition for the accuracy of Cτ (b) is that “rare events
occur in the most likely way.” In other words given that
{Qτ > b} is a rare event, if the queue size is conditioned to
fill up greater than b then it does so in time λτ (b) in which
this is most likely, that is conditioned on {Qτ > b} we have
that Qτ is approximately equal to K[λτ (b)] − cλτ (b).

While the critical time scale is a powerful tool that has
advanced the state-of-the-art in queuing theory, using it in
practice is not straightforward. First, consider the prob-
lem of computing Cτ (b) for a queue fed with an arbitrary
process, solely from empirical traffic measurements. From
(4) we see that we require the distribution of Kτ [t] for all
possible t. This is infeasible to obtain empirically. Similar
problems of computation may arise when Cτ (b) is given
by an analytical representation of the distribution of Kτ [t]
for all t. Second, say that we wish to compute the critical
time scale approximation when two independent processes
X and Y are multiplexed and input to a queue. Such a
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scenario often arises in admission control [2] and network

provisioning [3]. Obtaining C
{X+Y }
τ (b) directly from the

statistics of X and Y is again fraught with problems simi-
lar to those mentioned above.

III. Multiscale Queuing Approximations

In this section we develop three new queuing approxi-
mations that use traffic statistics only at a fixed finite set
of time scales θ ⊂ � + . By restricting analysis to the time
scales θ, we overcome the practical problems associated
with using the critical time scale approximation described
above. Note that while some of our theoretical results are
for countably infinite sets θ, in practice we always employ a
truncated, finite set θ when computing the queuing approx-
imations. We typically choose the set θ to span the range
of time scales in which we expect the critical time scale λ(b)
to lie, for values of b relevant to a particular application.
We now present the three queuing approximations.

A. Max approximation

In analogy to the queue size formula and the critical time
scale (see (2) and (3)) we define

Q[θ]
τ := sup

t∈θ
(Kτ [t] − ct) (6)

and
λ[θ]

τ (b) := arg sup
t∈θ

� {Kτ [t] − ct > b} . (7)

This leads to the max approximation

M
[θ]
τ (b) := supt∈θ

� {Kτ [t] − ct > b}

=
�
{

Kτ

[
λ

[θ]
τ

]
− cλ

[θ]
τ > b

}
.

(8)

Comparing (4) and (8) we see that the max approximation
is similar to the critical time scale approximation with the
difference that the supremum is taken over a finite set in
(8) instead of over all time scales as in (4). From (4), (5),
and (8) we have the bounds

M [θ]
τ (b) ≤ Cτ (b) ≤ � {Qτ > b} . (9)

We note from (2) and (6) that

Qτ = Q[� +]
τ ≥ Q[θ]

τ (10)

and from (6), (8) and (10) that

M [θ]
τ (b) ≤ �

{
Q[θ]

τ > b
}
≤ � {Qτ > b} . (11)

The max approximation provides a practical replacement
for Cτ (b). Since the max approximation requires esitimates
of

� {Kτ [t] − ct > b} only for t ∈ θ, the difficulties associ-
ated with computing Cτ (b) as we described earlier do not
arise. First, consider the problem of obtaining the max
approximation from empirical measurements. We simply
compute histograms of the traffic at time scales t ∈ θ
and then estimate

� {Kτ [t] − ct > b}. Second, consider the

problem of computing the max approximation when two
independent processes X and Y are multiplexed and in-
put to a queue. By simply convolving the distributions of

K
{X}
τ [t] and K

{Y }
τ [t] for t ∈ θ we obtain the correspond-

ing distributions of K
{X+Y }
τ [t] which immediately give the

max approximation.

B. Product and sum approximations

Two additional approximations of
� {Qτ > b} based on

the set of time scales θ are the product approximation

P
[θ]
τ (b) := 1 −∏t∈θ

� {Kτ [t] − ct < b} (12)

and the sum approximation

S
[θ]
τ (b) :=

∑
t∈θ

� {Kτ [t] − ct > b} . (13)

Note that the product approximation equals
�
{

Q
[θ]
τ > b

}

if the events {Kτ [t] − ct > b}, t ∈ θ, are independent,1

and that the sum approximation equals
�
{
Q

[θ]
τ > b

}
if the

same events are mutually exclusive.

C. Intuition for the accuracy of the approximations

The max, product, and sum approximations inherit the
accuracy of the critical-time scale approximation while be-
ing practical. If there exists an element of θ close enough to

the critical time-scale then M
[θ]
τ (b) will be close to Cτ (b)

(see (4) and (8)). Moreover, if a single probability term
dominates the summation in (13), then the product and

sum approximations will closely approximate M
[θ]
τ (b) and

hence Cτ (b). Simulations demonstrate that the product
and sum approximations are often closer to

� {Qτ > b}
than the max approximation.

In subsequent sections we study several issues related
to the three approximations. Of particular interest is the
optimal choice of θ in terms of size that gives a max approx-
imation of certain accuracy. This is the topic of Section V.
In Sections VI and VII we compare the max, product, and
sum approximations against

� {Qτ > b} as well as against
�
{

Q
[θ]
τ > b

}
for queues with input from different traffic

models.

IV. Traffic Models

This section describes three traffic models that we focus
on in this paper. These have been shown to model different
aspects of real Internet traffic well.

A. Fractional Brownian motion

Fractional Brownian motion (fBm) is the unique Gaus-
sian process with stationary increments and the following
scaling property for all a > 0, τ ∈ � [17]

Baτ
d
= aHBτ . (14)

1If events Ei, i ∈ � , are independent then so are their complements.
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Fig. 1. Multiscale tree representation of a traffic trace. Nodes at
each horizontal level in the tree correspond to the sum (aggregates)
of the process in non-overlapping blocks of sizes of powers of two,
with lower levels corresponding to smaller block sizes. Each node is
the sum of its two child nodes.

The symbol “
d
=” denotes equality in distribution. While its

increment process fractional Gaussian noise (fGn) is sta-
tionary, fBm is itself non-stationary by definition. Denote
the stochastic differential of Bτ as ∆τB. We denote fGn
by

Gτ [t] := K{∆τB}
τ [t] = Bτ − Bτ−t. (15)

While it is difficult to define ∆τB rigorously, its aggregate

K
{∆τB}
τ [t] is well defined. Often one is interested only in

the time series {Git′ [t
′]}i∈ � with t′ a constant time lag.

From (14) and (15) we have that

K{∆τB}
τ [t]

d
= Bt

d
= tHB1, (16)

thus

var(Git′ [t
′]) = var

(
K{∆τB}[t′]

)
= σ2(t′)2H (17)

where σ2 = var (B1). When 1/2 < H < 1, fGn possesses
LRD. We use “var”,

�
and “cov” to denote variance, ex-

pectation, and covariance respectively.

B. Wavelet-domain independent Gaussian (WIG) model

The WIG is a Gaussian model that is able to approxi-
mate fBm and fGn as well as processes with a more gen-
eral scaling than (14) and (17). It uses a multiscale tree to
model traffic over the time interval [0, T ] [18,19]. The nodes
Vj,k on the multiscale tree correspond to the total traffic
in the time interval [k2−jT, (k + 1)2−jT ], k = 0, . . . , 2j − 1
(see Fig. 1).

Starting at node Vj,k , the WIG models its two child
nodes Vj+1,2k and Vj+1,2k+1 using independent additive
random innovations Zj,k through

Vj+1,2k = (Vj,k + Zj,k)/2,
Vj+1,2k+1 = (Vj,k − Zj,k)/2.

(18)

In practice one uses a WIG tree of finite depth n to obtain a
discrete-time process Vn,k. The Zj,k have the same variance
within each scale j, thus guaranteeing that Vn,k is a first-
order stationary process. The tree-root V0,0 and Zj,k are
Gaussian which ensures the Gaussianity of all tree nodes.

To fit a traffic model means to choose its parameters ei-
ther to match key statistics of observed traffic or to ensure

that the model has certain prespecified statistical proper-
ties. Fitting the WIG involves choosing its parameters to
obtain a required variance progression of var(Vj,k). The
WIG can provide a Gaussian approximation for any sta-
tionary discrete-time process X , that is the WIG can be fit
to obtain

var(Vn−j,k) = var
(
K{X}[2j ]

)
. (19)

We will refer to a WIG model for which (19) holds as a
“WIG model of X” in the rest of the paper. The WIG has
been shown to capture the queuing behavior of Gaussian-
like traffic well [18].

C. Multifractal wavelet model (MWM)

The MWM is a non-Gaussian model based on a mul-
tiscale tree that allows a general scaling behavior of the
variance of tree nodes [20]. Unlike the WIG, it ensures pos-
itivity at all time scales, an intrinsic property of real data
traffic which is often ill approximated by Gaussian models.
Setting V0,0 ≥ 0 the MWM uses independent multiplicative
innovations Uj,k ∈ [0, 1] to model the two children of node
Vj,k through

Vj+1,2k := Vj,kUj,k,
Vj+1,2k+1 := Vj,k(1 − Uj,k).

(20)

Because the product of independent random variables con-
verges to a log-normal distribution by the central limit
theorem, the nodes Vj,k become approximately log-normal
with increasing j.

Following [20], we model the Uj,k’s as symmetric beta
random variables

Uj,k ∼ β(pj , pj), pj ≥ 0 (21)

and V0,0 as

V0,0 ∼ %U−1 (22)

with % ≥ 0 a constant and U−1 ∼ β(p−1, p−1). The tree
node Vj,k is thus the product of several independent beta
random variables. Using Fan’s result [21], we approximate
the distribution of Vj,k as another beta distribution with
known parameters in order to compute different queuing
approximations for the MWM.

Fitting the MWM involves choosing its parameters to
obtain a required variance progression of var(Vj,k). The
MWM can model any stationary discrete-time process X
with positive autocovariance in the sense of (19). It has
been shown to capture the queuing behavior of certain
heavy-tailed, non-Gaussian traffic well [22].

While the WIG and MWM models are first-order sta-
tionary they are not second-order stationary. This is ap-
parent from Fig. 1. Observe that Vj+2,4k and Vj+2,4k+1

have the same parent node while Vj+2,4k+1 and Vj+2,4k+2

do not. Thus the correlation of Vj+2,4k+1 with its two
neighbors, Vj+2,4k and Vj+2,4k+2, are different. Both mod-
els however have a time-averaged correlation structure that
is close to the stationary process X that they model (see
[19, 20] for details).
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D. Queuing analysis setup for fBm, WIG, and MWM

We now state precisely the queuing setup for the fBm,
WIG, and MWM models that we analyze in subsequent
sections. We set the initial queue size to be empty to satisfy
the sufficient condition for (2) to hold (see Section II-A).

In this paper all queuing results for queues with fBm
input correspond to a continuous-time queue with service

rate c, initial value Q0 := 0, and Kτ [t] = K
{∆τB+m}
τ [t] =

Bτ − Bτ−t + mt. We have

� {Qτ > b} =
�
{

sup
0<t<τ

(Kτ [t] − ct) > b

}

τ→∞
−−−→ �

{
sup
t>0

(K0[t] − ct) > b

}

=:
� {Q∞ > b} (23)

where the limit holds because of stationarity of fBm in-
crements and the Lemma 9 (in Appendix A). We assume
that ĉ := c−m > 0 and study the quantity

� {Q∞ > b} as
defined in (23).

All queuing results for the WIG and MWM correspond
to a discrete-time queue initialized to Q0 := 0 which evolves
according to

Qτ+1 = max(Qτ + Vn,τ − c̃(n), 0) (24)

for τ = 0, 1, . . . , 2n − 1 with c̃(n) = cT2−n.
Defining Kτ [t] :=

∑τ−1
k=τ−t Vn,k, for t = 1, 2, . . . , τ and

τ = 1, 2, . . . , 2n, and Kτ [0] := 0 we have

Qτ := max
t=0,1,...,τ

(
Kτ [t] − c̃(n)t

)
. (25)

We assume that
�
(Vn,k ) < c̃(n) (26)

and study
� {Qτ > b} which is a time-varying quantity. For

the WIG and MWM models, Kτ [t] is only defined for t =

0, 1, . . . , τ . Thus we define M
[θ]
τ (b), P

[θ]
τ (b), and S

[θ]
τ (b)

as in (8), (12), and (13) except that we replace θ by θ ∩
{0, 1, . . . , τ}.

V. Optimality of Exponential Time Scales for

the Max Approximation of an fBm queue

Comparing (4) and (8) we see that the more dense θ
is in � + , the closer the max approximation is to Cτ (b).
However, we simultaneously have to acquire data at more
time scales and the max computational cost increases (see
(8)). Ideally we prefer a set θ that optimally balances this
trade-off in accuracy versus computational cost. In this
section we prove certain optimality properties of sets of
exponential time scales,

θα := {αk : k ∈ � }, α > 1. (27)

More precisely, for a queue with fBm input we first ob-
tain a non-asymptotic bound on the error of M [θα](b) in
approximating C(b). This bound proves that M [θα](b) ac-
curately approximates C(b) for a wide range of α. Second,
we prove that θα is the most sparse of all sets θ that satisfy
a particular accuracy criterion for M [θ](b).

A. Accuracy of M [θα](b)

Consider a queue fed by fBm traffic as described in Sec-
tion IV-D. Then for t > 0, using (14) it is easily shown
that [9]

� {K[t] − ct > b} = Φ (g(b, t)) (28)

where

g(b, t) :=
b + ĉt

σtH
=

b + (c − m)t

σtH
(29)

and Φ is the complementary cumulative distribution func-
tion of a zero mean unit variance Gaussian random vari-
able. From (4) and (8) we have

C(b) = sup
t>0

Φ (g(b, t)) = Φ

(
inf
t>0

g(b, t)

)
(30)

and

M [θ](b) = sup
t∈θ

Φ (g(b, t)) = Φ

(
inf
t∈θ

g(b, t)

)
. (31)

We characterize the accuracy of M [θ](b) in terms of the
following metric:

hθ := sup
b>0

inft∈θ g(b, t)

inft>0 g(b, t)
. (32)

Intuitively, the closer hθ is to 1 the tighter we can bound
the error of M [θ](b) in approximating C(b).

The following theorem states the remarkable fact that hθ

is solely a function of the largest ratio of consecutive time
scales in θ and does not depend on any other property of
θ. In addition hθ is not a function of the traffic model and
queue parameters m, σ, and c.

Theorem 1: Let θ = {tk}k∈ � be a countable set of time
scales such that

sup
k

tk = ∞, and inf
k

tk = 0. (33)

Assuming tk−1 < tk, denote the largest ratio of consecutive
time scales by

dθ := sup
k

tk
tk−1

. (34)

Assume dθ < ∞, 0 < H < 1 and ĉ > 0. Then the accuracy
metric of θ is given by

hθ = ζ(dθ , H) :=
(dθ − 1)HH(1 − H)1−H

(dθ − dH
θ )1−H(dH

θ − 1)H
. (35)

The proof is in Appendix A.
According to Theorem 1, to set the accuracy metric hθ

we have only to choose the largest ratio of consecutive time
scales dθ appropriately. From (32) and (34) note that hθ ≥
1 and dθ > 1, ∀θ. In Appendix A we prove that hθ is closer
to 1 for values of dθ closer to 1.

We can use Theorem 1 to obtain the maximum error of
M [θα](b) in approximating C(b) for all possible fBm traffic
processes satisfying ĉ > 0.
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Fig. 2. (a) ζ∗(α) vs. α. For a large range of α, ζ∗(α) is close to 1. (b)

Comparison of M [θα](b) to its upper bound C(b), for different values

of α. Observe that the lower bound of M [θ2](b) is almost identical to
the upper bound C(b).

Corollary 2: For a queue with fBm input traffic with
ĉ > 0

Φ
(
ζ∗(α)Φ−1(C(b))

)
≤ M [θα](b) ≤ C(b), (36)

where ζ∗(α) := maxH∈(0,1) ζ(α, H). Equivalently

M [θα](b) ≤ C(b) ≤ Φ

(
1

ζ∗(α)
Φ−1(M [θα](b))

)
. (37)

Proof: Note that by the construction of θα (see (27)),
dθα = α. Thus from (9), (30) – (32), and (35) we have

C(b) ≥ M [θα](b) = Φ

(
inf

t∈θα

g(b, t)

)

≥ Φ

(
hθα inf

t>0
g(b, t)

)

= Φ
(
ζ(α, H)Φ−1(C(b))

)

≥ Φ
(
ζ∗(α) · Φ−1(C(b))

)
. (38)

2

In Fig. 2(a) we see that the plot of ζ∗(α) versus α, which
we obtained numerically, is close to 1 for a large range of
values of α. As a result the lower bound of M [θα](b) from
(36) for different values of α is close to C(b) as depicted
in Fig. 2(b). In fact M [θ2](b) is almost identical to C(b)
when C(b) > 10−8. Thus M [θ2](b) is for all practical pur-
poses as accurate as C(b) in approximating

� {Q∞ > b}.
We confirm the accuracy of M [θ2](b) through simulations
in Section VIII.

B. Optimality of exponential time scales θα

Given a range of time scales T we wish to find that
time-scale set which is the most sparse (i.e. has the fewest
elements) in T while guaranteeing a certain accuracy of
M [θ](b). The next theorem proves that for arbitrary T , θα

is the most sparse of all sets θ that have accuracy metric
hθ less than a given threshold.

Theorem 3: Let θ = {tk}k∈ � satisfy (33). Let AT (θ)
denote the number of elements of θ that lie in a range of
time scales T := (t, t), 0 < t < t. Denote by Γ(α) the set of
all time-scale sets θ for which accuracy metric hθ ≤ ζ(α, H)
and define the generalized exponential time scales as

θα,ν := {ναk : k ∈ � } (39)

where ν > 0. Then for arbitrary T and ∀ν, we have θα,ν ∈
Γ(α) and

AT (θα,ν) ≤ 1 + min
θ∈Γ(α)

AT (θ). (40)

Moreover there exists ξ > 0 such that

AT (θα,ξ) = min
θ∈Γ(α)

AT (θ). (41)

The proof is in Appendix A.
Theorem 3 is a direct consequence of the fact that the

accuracy metric hθ increases with the largest ratio of con-
secutive time scales dθ. Thus hθ = ζ(dθ, H) ≤ ζ(α, H) if
and only if dθ ≤ α. Since the ratio of all consecutive time
scale elements in θα equals the maximum allowed value of
α, θα is the most sparse among all sets θ with accuracy
metric less than ζ(α, H).

VI. Asymptotics for fBm Queues

In this section, for a queue with fBm input, we study the
accuracy of the max, the product, and the sum approxima-
tions of

� {Q∞ > b} for asymptotically large queue thresh-
olds, that is as b → ∞. While asymptotic queuing results
are not always directly applicable to scenarios with finite
queues, they often provide powerful intuition for network
design [6–8,23, 24].

We begin with some terminology. If limb→∞ Ω(b)/Θ(b) =
1 we say that Ω and Θ have the same asymptotic decay
and denote it by Ω(b) ' Θ(b). If log Ω(b) ' log Θ(b) we
say that Ω has the same log-asymptotic decay as Θ. Under
the assumption that Ω(b) → 0 it is easily shown that an
asymptotic decay implies a log-asymptotic decay, that is,

Ω(b) ' Θ(b)

(
⇔ Ω(b)

Θ(b)
→ 1

)
⇒ log Ω(b) ' log Θ(b)

(42)
but not vice versa.

A. Related work

Research on the asymptotic queuing behavior of fBm
traffic has produced many enlightening results over the
years. Large deviation principles reveal that

� {Q∞ > b}
and C(b) have the same log-asymptotic decay (see [6, 7])

log
� {Q∞ > b} ' log C(b) ' −ηb−(2−2H)

2
(43)

where η > 0 is a constant depending on the traffic pa-
rameters and independent of b. More recent results show
that for fBm

� {Q∞ > b} has a Weibull asymptotic decay
[8, 23, 24]

� {Q∞ > b} ' ϑb(1−H)(1−2H)/He−ηb2−2H/2, (44)

where ϑ > 0 is a constant independent of b. When fBm
possesses LRD (1/2 < H < 1), this Weibull decay is slower
than the exponential decay for a queue fed with short-range
dependent traffic, for example fBm with H = 1/2 [5].

We call Θ an asymptotic upper bound of Ω if
limb→∞ Ω(b)/Θ(b) = 0. From (44) we obtain that
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e−ηb2−2H/2 is an asymptotic upper bound of
� {Q∞ > b}

when 1/2 < H < 1 , since

lim
b→∞

b(1−H)(1−2H)/He−ηb2−2H/2

e−ηb2−2H/2
= 0. (45)

This asymptotic upper bound was derived as the maximum
variance approximation in [11]. For a detailed discussion
on large queue asymptotics of LRD traffic see Chs. 4 to 11
of [25] and the references therein.

B. Asymptotic decay of multiscale queuing approximations

We now compare the log-asymptotic and asymptotic de-
cay rates of the max, the product, and the sum approxima-
tions with that of

� {Q∞ > b}. We only consider the case
θ = θα. The next theorem summarizes our results.

Theorem 4: For a queue with fBm input traffic with
parameters ĉ, σ, and H, define

bk := αk ĉ(1 − H)/H, k ∈ � , (46)

where α > 1 is arbitrary. Then the max, the product, and
the sum approximations have the same log-asymptotic de-
cay as

� {
Q[θα] > bk

}
and

� {Q∞ > bk}; that is as bk → ∞
we have

log M [θα](bk) ' log P [θα](bk) ' log S[θα](bk)

' log
� {

Q[θα] > bk

}
' log

� {Q∞ > bk} .
(47)

Moreover the max, the product, and the sum approxima-
tions all have the same asymptotic decay as

� {
Q[θα] > bk

}
:

as bk → ∞ we have

M [θα](bk) ' P [θα](bk) ' S[θα](bk) ' �
{

Q[θα] > bk

}
.

(48)
However

lim
k→∞

� {
Q[θα] > bk

}
� {Q∞ > bk}

= 0. (49)

The proof is in Appendix A.

Theorem 4 reveals the strengths and limitations of using
traffic statistics only at exponential time scales θα to cap-
ture queuing behavior. Recall from (2) and (6) that Q[θα]

approximates the queue size Q using traffic only at time
scales t ∈ θα. From (47) we see that θα is dense enough
in � + to ensure that

� {
Q[θα] > bk

}
and

� {Q∞ > bk}
have the same log-asymptotic decays for a particular un-
bounded increasing sequence of queue sizes bk. However,
θα is not dense enough to ensure that

� {
Q[θα] > bk

}
and

� {Q∞ > bk} have the same asymptotic decay.

We also observe from (48) that the max, the product,
and the sum approximations have the same asymptotic de-
cay as

� {
Q[θα] > bk

}
. As a result they have the same

log-asymptotic decay but different asymptotic decay as
� {Q∞ > bk}.

We next present non-asymptotic results comparing the
different queuing approximations to

� {
Q[θ] > b

}
.

VII. Bounds for the Queuing Approximations

The knowledge of whether or not a queuing approxima-
tion is an upper or lower bound of

� {Q > b} aids differ-
ent applications. For example if we provision the queue
service rate such that the critical time scale approxima-
tion C(b) equals 10−6, then we must expect the actual
tail queue probability

� {Q > b} to exceed 10−6 since C(b)
lower bounds

� {Q > b} (see (5)). If C(b) is an accurate ap-
proximation of

� {Q > b} to an order of magnitude, as our
simulations with fBm traffic in Section VIII affirm, then
we would effectively be provisioning for

� {Q > b} < 10−5.
If we replace the lower bound C(b) by an approximation
that is an upper bound of

� {Q > b}, then
� {Q > b} is

guaranteed to be less than 10−6.
In this section we prove bounding results for the max,

the product, and the sum approximations, which we com-
pare to

� {
Q[θ] > b

}
rather than

� {Q > b}. Note from (10)

that lower bounds of
� {

Q[θ] > b
}

are also lower bounds
of

� {Q > b}. While the queuing approximations that are
upper bounds of

� {
Q[θ] > b

}
are not necessarily upper

bounds of
� {Q > b}, they approximate

� {Q > b} well as
we show through simulations in Section VIII.

A. Bounds for general input traffic processes

We first state a general result that holds for a queue
fed by any traffic random process and then present model-
specific results.

Lemma 5: For a discrete or continuous-time queue of
infinite size, with an arbitrary input traffic process and con-
stant service rate

M [θ]
τ (b) ≤ �

{
Q[θ]

τ > b
}
≤ S[θ]

τ (b) (50)

and
M [θ]

τ (b) ≤ P [θ]
τ (b) ≤ S[θ]

τ (b), (51)

where θ is any countable subset of � + .
The proof is in Appendix A.

From Lemma 5 we see that max and sum approximations
are always lower and upper bounds respectively of both
� {

Q[θ] > b
}

and the product approximation. In the rest
of this section we compare the product approximation to
� {

Q[θ] > b
}
.

Our results establish that for queues fed with fBm, WIG,
or MWM input traffic, the product approximation is also
an upper bound of

� {
Q[θ] > b

}
, like the sum approxima-

tion. For these three models, from Lemma 5 we then have

M [θ]
τ (b) ≤ �

{
Q[θ] > b

}
≤ P [θ]

τ (b) ≤ S[θ]
τ (b), (52)

implying that the product approximation is a closer upper
bound of

� {
Q[θ] > b

}
than the sum approximation.2 We

note from (12) and (13) that the product approximation
has the added advantage that it is guaranteed to be less
than or equal to 1 unlike the sum approximation. In fact
it can be shown that the product approximation is strictly
less than 1 for queues with fBm, WIG, and MWM traffic
as input [15].

2We prove (52) for the WIG and MWM only for θ = θ2.
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B. Product approximation bounds for Gaussian traffic

For queues fed with traffic from a large class of Gaus-

sian processes, including fBm, P
[θ]
τ (b) is an upper bound of

�
{
Q

[θ]
τ > b

}
as claimed in (52).

Theorem 6: Consider a Gaussian traffic process Xτ as
input to an infinite buffer queue with constant service rate
(discrete or continuous-time). If cov(Kτ [t], Kτ [r]) ≥ 0 for
all t, r ∈ θ then

�
{
Q[θ]

τ > b
}
≤ P [θ]

τ (b), (53)

where θ is any countable subset of � + .
The proof is in Appendix A.

Note that fBm satisfies the requirements of Theorem 6
since for all t, r ≥ 0 and 0 < H < 1

cov
(
K{dB}[t], K{dB}[r]

)
=

1

2

(
t2H + r2H − |t − r|2H

)
≥ 0.

(54)

C. Product approximation bounds for WIG and MWM
traffic

Recall from Section IV-B that the WIG and MWM are
non-stationary traffic models. As a consequence P

[θ2]
τ (b)

changes with time location τ . We first compare P
[θ2]
τ (b) to

�
{
Q

[θ2]
τ > b

}
for τ = 2n, that is at the final time instant

of the tree process, and then at all other time instants τ .
We denote the final time instant 2n by “end”.

Theorem 7: For the WIG and MWM with arbitrary
model parameters

�
{

Q
[θ2]
end

> b
}
≤ P

[θ2]
end

(b) ∀b > 0. (55)

The proof is in Appendix B.

Theorem 7 states that P
[θ2]
τ (b) is an upper bound of

�
{
Q

[θ2]
τ > b

}
at the final time instant for the WIG and

the MWM for arbitrary model parameters. The only in-
gredient of the proof of Theorem 7 is the fact that the

quantities Kend[2
j ], j = 1, 2, . . . , n that determine P

[θ2]
end

(b)
are nodes along the right edge of the tree and hence are re-
lated through independent innovations (see Fig. 1). Since
this fact is true for arbitrary model parameters, so is (55).

Generalizing the proof of Theorem 7 so that (55) holds
for all time instants τ is not straightforward because the
quantities Kτ [2j ], j = 1, 2, . . . , n are not always tree nodes
for arbitrary τ and are hence not related through indepen-
dent innovations as the quantities Kend[2

j ], j = 1, 2, . . . , n
are. However, for a WIG model of fGn we can extend (55)
to all τ as stated next.

Theorem 8: For the WIG model of fGn

�
{
Q[θα]

τ > b
}
≤ P [θ2]

τ (b) ≤ P
[θ2]
end

(b), ∀τ. (56)

As a consequence

1

2n

2n∑

τ=1

�
{
Q[θ2]

τ > b
}
≤ P

[θ2]
end

(b). (57)
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Fig. 3. Comparison of the max the product and the sum approx-
imations to � {Q > b} for fGn traffic with parameters H = 0.8, link
capacity 10Mbps and σ = 8×105 bits. For different utilizations in (a)
and (b), the product and sum approximations are close to � {Q > b}
for a wide range of queue thresholds b. The max approximation is a
lower bound of � {Q > b} and is accurate to an order of magnitude.

The proof is in Appendix B.

Theorem 8 reveals that for a WIG model of fGn P
[θ2]
end

(b)

is an upper bound of the time average of
�
{
Q

[θ2]
τ > b

}
.

The same result holds for a large class of WIG models of
which the WIG model of fGn is a special case. The proof
can be found in [15].

Earlier work on the queuing behavior of the WIG model
of fGn proved that the time average of the tail queue prob-
ability

� {Qτ > b} has the same log-asymptotic behavior as
that of fGn [19]. In contrast Theorem 8 holds for any fixed
queue threshold b.

We demonstrate through simulations in Section VIII that

P
[θ2]
end

(b) approximates the time average of
� {Qτ > b} well

for a large range of queue sizes b for both the WIG and the
MWM.

VIII. Simulations

In this section we demonstrate the accuracy of the max,
the product, and sum approximations of

� {Q > b} through
simulations with fGn, WIG, and MWM synthetic traces as
well as with video and measured Internet traces. We also
demonstrate that the tails of multiscale marginals of traffic
have a significant impact on queuing in certain scenarios
by comparing the queuing behavior of the WIG and MWM
models with that of measured Internet traffic. We restrict
our attention to exponential time-scales with α = 2, that
is θ = θ2. All error bars in the plots correspond to 95%
confidence intervals.

A. Comparison of queuing approximations for fGn traffic

In earlier sections we theoretically compared the max,
product, and sum approximations to

� {Q > b} for an fBm-
fed queue. Recall from (9) that the max approximation
M [θ2](b) is a lower bound of

� {Q > b}. While we have not
proved an explicit relationship between

� {Q > b} and the
product and sum approximations, we proved that they are
upper bounds of

� {
Q[θ2] > b

}
which is itself a lower bound

of
� {Q > b} (see (52) and (10)). We now compare the

different approximations of
� {Q > b} through simulations

with fGn traffic.
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Simulation setup: The simulations use fGn traces with
Hurst parameter H = 0.8, t′ = 10−4s, and standard devi-
ation at the 1s time-scale σ = 8 × 105 bits. We generate
the traces using the method described in [26]. We vary the
mean rate of the traces to obtain different utilizations. The
traces are input to a discrete-time queue of infinite length
that operates at a time granularity of 10−4s and has ser-
vice rate 10Mbps. Because this time granularity is small
we expect the queuing behavior of this discrete-time fGn-
fed queue to closely resemble the continuous-time fBm-fed
queue we have analyzed in detail in previous sections.

We estimate
� {Q > b} for each simulation run as the

fraction of time for which the queue size exceeds b. To
eliminate transients we only make estimates using queue
sizes during the second half of the simulation. The plots
of

� {Q > b} correspond to the mean obtained from 300
simulation runs. Each run uses a trace of length 219 data
points corresponding to a 52s simulation time.
Simulation results: The simulation results for two dif-
ferent utilizations are depicted in Fig. 3. We obtain the
various queuing approximations using (8), (12), and (13)
by choosing θ = {t′, 2t′, . . . , 220t′} which is equivalent to θ2

truncated to lie within a fixed range of time-scales. Observe
that in all cases M [θ2](b) is a lower bound of

� {Q > b} as
predicted by (9). We also see that M [θ2](b) is within an
order of magnitude of

� {Q > b} for a wide range of val-
ues of

� {Q > b} (∈ [10−6, 1]). We conclude that C(b) ly-
ing between M [θ2](b) and

� {Q > b} (see (9)) is also within
an order of magnitude of

� {Q > b} for the same range of
� {Q > b}.

From Fig. 3 observe that the product and sum ap-
proximations (which are almost identical) accurately track
� {Q > b} for a wide range of queue sizes b and are better
approximations than the max approximation in general.
However unlike the max approximation, which is a guaran-
teed lower bound of

� {Q > b}, these two approximations
do not bound

� {Q > b} from above or from below and in
fact intersect it at some point. Call the queue threshold at
which the product approximation and

� {Q > b} intersect
b′. We observe that in all cases the product approximation
is greater than

� {Q > b} at b = 0 and for b > b′ is always
less than

� {Q > b}. Thus for b > b′ the product approxi-
mation lies between the max approximation and

� {Q > b},
thus guaranteeing that it is a better approximation than
the max approximation. The sum approximation has a
similar behavior.

B. Impact of multiscale marginals on queuing: WIG vs.
MWM

The impact of different traffic statistics on queuing has
been extensively studied. Several studies have debated the
importance of LRD for queuing [9,28–31]. LRD is however
only a function of the asymptotic second-order correlation
structure of traffic (or equivalently the variance of traffic
at multiple time scales).

In this section we move beyond second-order statistics
and demonstrate the importance of the tails of traffic
marginals at different time scales on queuing. We do so

by comparing the queuing behavior of the WIG and MWM
processes with video and Internet WAN traces through sim-
ulations. Recall from Section IV that both the WIG and
the MWM can capture a wide range of second-order corre-
lation structures. The WIG and MWM however differ in
their marginal characteristics: the WIG process is Gaus-
sian whereas the MWM process is non-Gaussian. We inter-
pret our results using the product approximation and the
results of [12] which studied the influence of link utilization
on queuing.

Traces: The two traces we use are AUCK, which con-
tains the number of bytes per 2ms of recorded WAN traffic
(mostly TCP packets) [27] and VIDEO, which consists of
15 video clips multiplexed with random starting points [32].
The finest time-scale in VIDEO corresponds to 2.77ms,
1/15 the duration of a single frame. The mean rates of
AUCK and VIDEO are 1.456Mbps and 53.8Mbps, respec-
tively. AUCK contains 1.8 × 106 data points and VIDEO
218. The Hurst parameter of AUCK obtained from the
variance-time plot using time-scales 512ms to 262.144s is
H = 0.86. For VIDEO, we find H = 0.84 using time-
scales 354ms to 90.76s. From Fig. 4 and Fig. 5 observe
that AUCK has a strongly non-Gaussian marginal while
VIDEO’s marginal resembles a Gaussian distribution.

Simulation results: We fit the WIG and MWM to the
real data and then generated synthetic traces from the
models. We then compared the queuing behavior of the
synthesized WIG and MWM traces with that of the real
data when they are input to a FIFO queue of infinite length.
The plots of

� {Q > b} correspond to the mean obtained
from 1000 simulation runs.

We first present results for high link utilizations (> 70%).
Observe from Figs. 6(a) and (b), where we used the WAN
traffic trace AUCK, that the real and synthetic traces ex-
hibit asymptotic Weibullian tail queue probabilities, in
agreement with the theoretical findings for LRD traffic
(compare (44)). However, apart from this asymptotic
match, the MWM is much closer to the queuing behav-
ior of the real trace. The link capacity we use is 2Mbps,
resulting in a utilization of 72%.

In the experiments with VIDEO (see Figs. 6(c) and (d)),
which is much closer to a Gaussian process than AUCK,
we observe that both the WIG and MWM closely match
the correct queuing behavior. This confirms the influence
of marginals and also reassures us that the MWM is flexi-
ble enough to model Gaussian traffic. Gaussian-like traffic,
which must be positive, necessarily has a mean at least
comparable to its standard deviation. Since for a large
mean to standard deviation ratio the lognormal and Gaus-
sian distributions resemble each other closely (see Fig. 5),
the approximately lognormal MWM is suitable for Gaus-
sian traffic [20]. The link capacity we use is 69Mbps, which
corresponds to a utilization of 77%.

In the case of lower link utilizations (< 50%) from Fig.
7 we see that the MWM outperforms the WIG for both
AUCK and VIDEO traces to a greater extent than in the
high utilization case.

For both the MWM and WIG we observe that the prod-
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Fig. 4. Histograms of the bytes-per-time processes at time-scale 2ms for (a) wide-area traffic at the University of Auckland (trace AUCK)
[27], (b) one realization of the WIG model, and (c) one realization of the MWM. Note the large probability mass over negative values for the
WIG model.
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Fig. 5. Histograms of the bytes-per-time processes at time-scale 2.77ms for (a) video traffic formed by multiplexing 15 video traces (trace
VIDEO), (b) one realization of the WIG model, and (c) one realization of the MWM. Note that the MWM matches the marginal of the video
traffic better than the WIG; however, the video traffic is more Gaussian than the AUCK traffic.
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Fig. 6. Queuing performance of real data traces and synthetic WIG
and MWM traces at high utilization. In (b), we observe that the
MWM synthesis matches the queuing behavior of the AUCK data
closely, while in (a) the WIG synthesis is not as close. In (c) and (d),
we observe that both the WIG and the MWM match the queuing
behavior of VIDEO. We also observe that the product approximation
(P [θ2](b)) is close to the empirical queuing behavior for both synthetic
traffic loads (both WIG and MWM) and that it performs better than

the max approximation, M [θ2](b).

uct approximation is close to
� {Q > b} (see Figs. 6 and 7).

The max approximation is within an order of magnitude of
� {Q > b}.
Interpreting results using the product approxima-

tion: Accepting the product approximation P [θ2](b) as a
close approximation to the actual tail queue probabilities, a
closer look at (12) unravels how the marginals affect queue
sizes. For traffic with heavier tailed marginals, the terms
� {

K[2i] < b + c2i
}

are smaller and the product approxi-

0 20 40 60

10
−3

10
−2

10
−1

10
0

queue threshold "b" (kB) →

AUCK Prob{Q>b}
WIG Prob{Q>b}

WIG P[θ
2
](b)

WIG M[θ
2
](b)

0 20 40 60

10
−3

10
−2

10
−1

10
0

queue threshold "b" (kB) →

AUCK Prob{Q>b}
MWM Prob{Q>b}

MWM P[θ
2
](b)

MWM M[θ
2
](b)

(a) AUCK vs. WIG (b) AUCK vs. MWM

0 5 10 15
10

−6

10
−4

10
−2

10
0

queue threshold "b" (kB) →

VIDEO Prob{Q>b}
WIG Prob{Q>b}

WIG P[θ
2
](b)

WIG M[θ
2
](b)

0 5 10 15

10
−4

10
−2

10
0

queue threshold "b" (kB) →

VIDEO Prob{Q>b}
MWM Prob{Q>b}

MWM P[θ
2
](b)

MWM M[θ
2
](b)

(c) VIDEO vs. WIG (d) VIDEO vs. MWM
Fig. 7. Queuing performance of real data traces and synthetic WIG
and MWM traces at low utilization. The MWM outperforms the
WIG even more than at higher utilizations.

mation is larger. Since the approximately lognormal MWM
marginals are more heavy tailed than the Gaussian WIG
marginals, the MWM has a larger product approximation
than the WIG.

In the case of VIDEO, which shows marginals much
closer to Gaussian (see Fig. 5), both the WIG and MWM
perform similarly in terms of capturing the tail queue prob-
ability at a high utilization, while at a low utilization the
MWM outperforms the WIG. This result is easily explained
using the finding in [12] that fine time-scale statistics in-
fluence queuing more than coarse time-scale statistics at
low utilizations. Since fine time-scale marginals of VIDEO
are more non-Gaussian than coarse time-scale marginals,
obviously the MWM performs better than the WIG at low
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utilizations.

IX. Conclusions

While this paper makes several new contributions to the
field of queuing theory, many important problems still re-
main unsolved. First, we have ignored the case of finite
length queues where packet drops occur. Our results thus
are more useful in predicting packet queuing delays rather
than packet losses.

Second, our analysis is for open-loop traffic models while
real Internet traffic is mainly composed of closed-loop TCP
traffic. Closed-loop traffic reacts to changes in network con-
ditions unlike open-loop traffic. For example, unlike open-
loop traffic, closed-loop traffic will reduce its offered load
if a bottleneck link speed is reduced [33]. Thus one must
use open-loop queuing results with caution in the Internet
while ensuring that one does not affect network properties
(delay and loss) which can influence the TCP traffic sig-
nificantly. Possible applications of open-loop models are
for Internet backbone provisioning (for very low delay/loss
ISPs) [3], network inference schemes [34], and obviously in
networks dominated by open-loop traffic like certain UDP
streaming applications.

Appendix A

Proof of Theorem 1

We prove the theorem in four steps.
Step I: Determine inf t>0 g(b, t) for a fixed value b > 0.
From (29) we obtain the partial derivative of g(b, t) with
respect to t:

∂g(b, t)

∂t
=

tH ĉ − (b + ĉt)HtH−1

σt2H
=

ĉt(1 − H) − bH

σt1+H
. (58)

Thus g(b, t) is minimized at t = λ(b) where

λ(b) =
bH

ĉ(1 − H)
. (59)

In addition g(b, t) is non-decreasing with t as we move away
from t = λ(b). Clearly

inf
t>0

g(b, t) = g(b, λ(b)) =
b + ĉ bH

�

c(1−H)

σ
(

bH
�

c(1−H)

)H
=

b1−H ĉH

σHH(1 − H)1−H
.

(60)
Note that λ(b) is indeed the critical time scale defined by
(3).
Step II: Determine ς(b) := inf t∈θ g(b, t)/g(b, λ(b)) for fixed
b.
Observe from (33) that the sequence {tk}k∈ � extends from
0 to ∞. Thus there must exist an l ∈ � such that λ(b) ∈
[tl−1, tl].

Consider the function

f(b, t) :=
g(b, t)

g(b, λ(b))
=

(b + ĉt)(σHH (1 − H)1−H)

σtH(b1−H ĉH)
. (61)

Since g(b, t) is non-decreasing as we move away from t =
λ(b), we must have that

ς(b) = min{f(b, tl−1), f(b, tl)}. (62)

Step III: Determine supb∈Al
ς(b) where

Al :=
[
λ−1(tl−1), λ

−1(tl)
]
, (63)

and λ−1(t) is the inverse of λ(b) given by

λ−1(t) := ĉt(1 − H)/H. (64)

By elementary calculus we obtain that f(b, tl−1) mono-
tonically increases with b when b > λ−1(tl−1). Also
f(b, tl) monotonically decreases with increasing b when
b < λ−1(tl). If there exists al ∈ Al such that f(al, tl−1) =
f(al, tl), then ς(b) must attain its supremum over Al at this
point (from (62)). Indeed such an al does exist. For the
ease of notation we use sl := tl/tl−1. Clearly sl > 1 for all
l. From (61) we obtain al as

al =
ĉtl−1tl(t

H−1
l−1 − tH−1

l )

tHl − tHl−1

=
ĉtl
sl

· sl − sH
l

sH
l − 1

. (65)

As a result, after simplification

sup
b∈Al

ς(b) = f(al, tl) =
(sl − 1)HH(1 − H)1−H

(sH
l − 1)H(sl − sH

l )1−H
= ζ(sl, H)

(66)
Step IV: Determine hθ = supb∈� +

ς(b).
Claim (*): ζ(sl, H) increases with sl.
Proof of Claim (*): Note from (66) that ζ(sl, H) equals
f(al, tl). It is thus sufficient to prove that f(al, tl) increases
with sl. Without loss of generality we study how f(al, tl)
changes by varying tl−1 keeping tl fixed. Note that this is
equivalent to varying sl. We have from (65)

1

ĉtl
· ∂al

∂tl−1
=

t2H−1
l−1 sH−1

l (Hsl − sH
l + (1 − H))

(tHl − tHl−1)
2

.(67)

It is easily shown that the function Hsl−sH
l +(1−H) equals

0 at sl = 1 and has a positive derivative for sl > 1. Thus
∂al

∂tl−1
> 0 for all sl > 1. Using this fact, the knowledge

that al < λ−1(tl), and the fact that f(b, tl) monotonically
decreases for b < λ−1(tl) we see that f(al, tl) decreases with
increasing tl−1, or equivalently it increases with increasing
sl. Claim (*) is thus proved.

From (33) and (64) we obtain that ∪lAl = � + . Exploit-
ing the continuity of ζ(sl, H) (see (66)) we then have

sup
b∈ � +

ς(b) = sup
l

ζ(sl, H) = ζ(sup
l

sl, H) = ζ(dθ, H). (68)

2

Proof of Theorem 3

From (35) and the fact that ζ(s, H) is an increasing func-
tion of s (see Claim (*) in the previous proof) we have that
θ ∈ Γα if and only if dθ ≤ α. Since dθα,ν = α for all ν > 0,
we have θα,ν ∈ Γ(α).

Consider θ = {wk : k ∈ � } ∈ Γα, where wk < wk+1 ∀k,
such that

AT (θ) = min
θ∈Γ(α)

AT (θ). (69)
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Let wi be the first element of θ in (t, t). Set ξ = wi/αi.
Consider the set

θα,ξ = {yk : yk = ξαk, k ∈ � }. (70)

Clearly yi = wi and yi must be the first element of θα,ξ

in (t, t). Because wk+1/wk ≤ α and yk+1/yk = α, ∀k,
we must have wk ≤ yk, ∀k ≥ i. Consequently AT (θα,ξ) ≤
AT (θ) which proves (41).

It only remains to prove (40). We can write (t, t) as
a union of the following AT (θα,ξ) + 1 intervals: (t, yi),
[yi, yi+1), [yi+1, yi+2),. . . , [yi+AT (θα,ξ)−2, yi+AT (θα,ξ)−1),

and [yi+AT (θα,ξ)−1, t). Note that the ratio of the supre-
mum to infimum of each of these intervals is less than or
equal to α. Consider θα,ν for arbitrary ν. Clearly by def-
inition θα,ν can have at most one element in each of the
these intervals. Thus (40) is proved. 2

Proof of Theorem 4: The proof relies on the following
two claims.
Claim (a): M [θα](bk) ' S[θα](bk).

Claim (b): limb→∞
C(b)

� {Q∞>b} = 0.

From (51), (50), and Claim (a) we have (48). From (46)
and (59) note that

λ(bk) = λ[θα](bk) = αk. (71)

Thus (4) and (8) give

M [θα](bk) = C(bk), ∀k. (72)

From (43), (48), (72) and (42) we have (47). Finally
Claim (b) combined with (48) gives (49).

We now prove the two claims. Recall the definition
of g(b, t) (see (29)). For the ease of notation we denote
g(bk, αl) by gk,l. From (60) and (71) we have

inf
t>0

g(bk, t) = g(bk, λ(bk)) = g(bk, αk) = gk,k. (73)

Proof of Claim (a): From (8), (13), (28), and (73) we have

S[θα](bk) =
∑

l∈ �
Φ(gk,l) (74)

and
M [θα](bk) = sup

l∈ �
Φ(gk,l) = Φ(gk,k). (75)

We now prove that the maximum term, Φ(gk,k), domi-
nates the summation of (74). We note two properties of
gk,l

gk,k
. First, we have from (46) and (29)

gk,l

gk,k
=

bk + ĉαl

σαlH
· σαkH

bk + ĉαk

= (1 − H)α(k−l)H + Hα(l−k)(1−H)

≥ εHα|l−k|εH , (76)

where εH = min(H, 1 − H).
Second, from (58) and (71) observe that

gk,l

gk,k
monotoni-

cally increases with increasing l when l ≥ k and also with
decreasing l when l ≤ k. We then have ∀l 6= k

gk,l

gk,k
≥ min

(
gk,k+1

gk,k
,
gk,k−1

gk,k

)
=: IH > 1 (77)

Now gk,k is an increasing unbounded function of k. From
(74), and using the following estimates of Φ (see page 42
in [35]),

(
1 − 1

δ2

)
e−δ2/2

δ
√

2π
≤ Φ(δ) ≤ e−δ2/2

δ
√

2π
. (78)

we have

Φ(gk,k) ≤ S[θk](bk) = Φ(gk,k) +
∑

l>k

Φ(gk,l) +
∑

l<k

Φ(gk,l)

≤ Φ(gk,k)

(
1 +

2

εH
·
g2

k,ke−(I2
H−1)g2

k,k/2α−εH

(g2
k,k − 1)(1 − α−εH )

)
.(79)

From (77) and the fact that gk,k
k→∞−→ ∞ we have

lim
k→∞

S[θk](bk)

Φ(gk,k)
= 1, (80)

which proves Claim (a).

Proof of Claim (b): From (78) observe that Φ(δ) ' e−δ2/2

δ
√

2π
.

Set η :=
(

�

cH

σHH (1−H)1−H

)2

. From (30) and (60) we then

have

C(b) = Φ(b1−Hη1/2) ' b−(1−H)

η1/2
√

2π
e−b2−2Hη/2. (81)

When 1/2 < H < 1 we have 0 < 2H−1
H < 1 which implies

that

lim
b→∞

b−(1−H)

b−(1−H)(2H−1)/H
= 0. (82)

Claim (b) follows from (44), (81) and (82), and the theorem
is proved. 2

Proof of Lemma 5: Consider a queue with constant ser-
vice rate c bits per unit time. Clearly

sup
t∈θ

� {E [t]} ≤ � {∪t∈θE [t]} ≤
∑

t∈θ

� {E [t]} , (83)

where E [t] := {Kτ [t] − ct > b}. From (6) we see that
� {

Q[θ] > b
}

is identical to
� {∪t∈θE [t]}. Then (8), (13)

and (83) give (50).
Note that (51) is equivalent to

max
k=1,...,l

(1 − ak) ≤ 1 −
l∏

k=1

ak ≤
l∑

k=1

(1 − ak), (84)

for 0 ≤ ak ≤ 1, k = 1, . . . , l, which is elementary. 2

Lemma 9: (see [36]):If E1 ⊂ E2 · · · and E = ∪iEi then
limi→∞

� {Ei} =
� {E}. If E1 ⊃ E2 · · · and E = ∩iEi then

limi→∞
� {Ei} =

� {E}.
The following lemma helps us prove Theorem 6.
Lemma 10: (page 6 in [37]) Let Υ[t] and Ψ[t], t ∈ θ, be

separable Gaussian random processes, where θ is a param-
eter set. If the following relations hold for their covariance
functions:

var(Υ[t]) = var(Ψ[t]), ∀t ∈ θ (85)

cov(Υ[t], Υ[r])) ≤ cov(Ψ[t], Ψ[r])), ∀t, r ∈ θ (86)
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plus their expected values are the same ∀t: then for any
x ∈ �

�
{

sup
t∈θ

Υ[t] < x

}
≤ �

{
sup
t∈θ

Ψ[t] < x

}
. (87)

Proof of Theorem 6

For t ∈ θ define independent Gaussian random variables
Υ[t] ∼ N (

�
(Kτ [t] − tc), var(Kτ [t])) and set Ψ[t] := Kτ [t]−

tc. Label the elements of θ as {tk}k∈ � , which we as-
sume satisfy (33). Using Lemma 9 with the events Ei :=
∩i

k=−i{Υ[tk] < b} and E := ∩iEi = {supt∈θ Υ[t] < b} we
have

P [θ](b) = 1−
∏

t∈θ

� {Υ[t] < b} = 1− �
{

sup
t∈θ

Υ[t] < b

}
. (88)

Then the fact that supt∈θ Ψ[t] = Q
[θ]
τ along with (87) and

(88) prove the theorem. 2

Appendix B

Lemma 11: Assume that the events Wi are of the form
Wi = {Ii < κi}, where Ii = R0+R1+. . .+Ri for 1 ≤ i ≤ n
and where R0, . . . , Rn are independent, otherwise arbitrary
random variables. Then, for 1 ≤ i ≤ n, we have

� {Wi|Wi−1, . . . , W0} ≥ � {Wi} . (89)
Proof: We first spell out some notation. By fL and FL we
denote the probability density function (p.d.f) and cumula-
tive distribution function (c.d.f.), respectively, of a random
variable L. Furthermore, we denote by FL|E(l) the c.d.f. of
L conditioned on knowing the event E. For convenience,
let us write Wi := {Ii < κi} for short, and let us introduce
the auxiliary random variables Y0 := L0 := I0 := R0,

Yi := Ii|Wi−1, . . . , W0 and Li := Ii|Wi, . . . , W0, i ≥ 1.
(90)

To prove the lemma, it is enough to show that

FYi(r) ≥ FIi(r) (91)

∀ r ∈ � and ∀ i and then set r = κi.
We prove (91) by induction. First note that FY0

(r) ≥
FI0 (r). Next, we assume that (91) holds for i and show
that it holds also for i + 1. Bayes’ rule yields

FLi(r) =

{
FYi

(r)

FYi
(κi)

, if r ≤ κi

1, otherwise

}
≥ FYi(r). (92)

The key to the proof is to note that Yi+1 = Li + Ri+1,
where Ri+1 is independent of Ij and hence of Wj for j ≤ i.
In short, Ri+1 is independent of Li. This fact, (91) and
(92) allow us to write

FYi+1
(r) =

� {Li + Ri+1 < r}

=

∫ ∞

−∞
FLi(r − ri+1)fRi+1

(ri+1) dri+1

≥
∫ ∞

−∞
FYi(r − ri+1)fRi+1

(ri+1) dri+1

≥
∫ ∞

−∞
FIi(r − ri+1)fRi+1

(ri+1) dri+1

= FIi+1
(r). (93)

This proves the claim by induction. 2

Proof of Theorem 7

Let us first show that Lemma 11 applies to the WIG
and the MWM for the events Wi = Kend[2

n−i] < b. To this
end we need only show that these Wi can be written in
the appropriate form. Recall that we have Kend[2

n−i] =
Vi,2i−1.

WIG: The WIG uses additive innovations Zj,k arranged
on a tree as in Fig. 1. It is immediate from (18) that
Kend[2

n−i] becomes

Kend[2
n−i] = Vi,2i−1 = 2−iV0,0 −

i−1∑

j=0

2j−iZj,2j−1. (94)

It suffices, thus, to set κi = 2ib + 2nc̃(n), R0 = V0,0 and
Ri = −2i−1Zi−1,2i−1−1.

MWM: The MWM employs the same tree structure as
the WIG, however, with multiplicative innovations Uj,k.
Recalling (20), Kend[2

n−i] becomes

Kend[2
n−i] = Vi,2i−1 = V0,0

i−1∏

j=0

(1 − Uj). (95)

Taking logarithms, it is a simple task to write the events
Wi in the required form, this time by setting κi = ln(b +
2n−ic̃(n)), R0 = ln(V0,0), and Ri = ln(1 − Ui−1).

Using (89) we find

�
{
Q

[θ2]
end

> b
}

= 1 − �
{
Q

[θ2]
end

< b
}

= 1 − � {∩n
i=0Wi}

= 1 − � {W0}
n∏

i=1

� {Wi|Wi−1, . . . , W0}

≤ 1 −
n∏

i=0

� {Wi} = P
[θ2]
end

(b). (96)

2

The following lemma helps prove Theorem 8.
Lemma 12: (Theorem 5 in [19]) For a WIG model of

fGn with 1/2 < H < 1

var(Kend[t]) ≥ var(Kτ [t]) (97)

for t = 1, 2, . . . , τ and for τ = 1, . . . , 2n.
Proof of Theorem 8: Note that

�
{
Kτ [t] − c̃(n)t < b

}
= 1 − Φ

(
b + c̃(n)t − �

(Kτ [t])
√

var(Kτ [t])

)
.

(98)
From (26) we have that

b + c̃(n)t − �
(Kτ [t]) > 0. (99)

Since the process Vn,k is first-order stationary,
�
(Kend [t]) =

�
(Kτ [t]) for all τ and t. This fact along with Lemma 12,

(98), and (99) then give

�
{
Kτ [2i] − c̃(n)2i < b

}
≤ �

{
Kend[2

i] − c̃(n)2i < b
}

,

(100)



14

i = 0, . . . , blog2 τc, τ = 1, . . . , 2n. We thus have

P
[θ2]
end

(b) ≥ P [θ2]
τ (b), ∀τ = 1, . . . , 2n. (101)

To complete the proof we show the following claim.
Claim 1: cov(Kτ [t], Kτ [r]) ≥ 0 for 0 ≤ t, r ≤ τ .

It is easy to show that the covariance of any two arbi-
trary leaf nodes is positive for a WIG model of fGn with
1/2 < H < 1, that is cov(Vn,k, Vn,l) > 0 ∀k, l. Because

Kτ [t] =
∑τ−1

k=τ−t Vn,k it follows that cov(Kτ [t], Kτ [r]) is a
linear combination of covariances of leaf nodes with positive
weights. This proves Claim 1.

Claim 1 and Theorem 6 give

P [θ2]
τ (b) ≥ �

{
Q[θ2]

τ > b
}

, ∀τ = 1, . . . , 2n. (102)

Combining (101) and (102) proves the theorem. 2
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TABLE I

Symbolic Notation

Symbol Definition Relevant Equation

∼ is distributed as –
' equal asymptotic decay Ω(b) ' Θ(b) ⇔ limb→∞ Ω(b)/Θ(b) = 1
d
= equality in distribution –�

, var, cov expectation, variance, covariance –
� probability of an event –�

, � +, � integers, positive real numbers, natural numbers –
τ time variable –
t time-scale variable –
c continuous-time queue service rate –

Xτ traffic input to queue –

K
{X}
τ [t] traffic at time scale t K

{X}
τ [t] := � τ

τ−t Xωdω

Qτ queue size at time τ Qτ := supt>0 (Kτ [t] − ct)
b queue threshold –

λτ (b) critical time scale λτ (b) := arg supt>0 � {Kτ [t] − ct > b}
Cτ (b) critical time scale approximation of � {Q > b} Cτ (b) := supt>0 � {Kτ [t] − ct > b}

θ countable set of time scales –

Q
[θ]
τ approximation of Q using time scales t ∈ θ Q

[θ]
τ := supt∈θ (Kτ [t] − ct)

λ
[θ]
τ (b) approximation of λτ (b) λ

[θ]
τ (b) := arg supt∈θ � {Kτ [t] − ct > b}

M
[θ]
τ (b) max approximation of � {Q > b} M

[θ]
τ (b) := supt∈θ � {Kτ [t] − ct > b}

α exponential parameter α > 1
θα set of exponential time scales θα := {αj : j ∈

�
}

P
[θ]
τ (b) product approximation of � {Q > b} P

[θ]
τ (b) := 1 − � t∈θ � {Kτ [t] − ct < b}

S
[θ]
τ (b) sum approximation of � {Q > b} S

[θ]
τ (b) := � t∈θ � {Kτ [t] − ct > b}

β Beta distribution –
N Gaussian distribution –
H Hurst parameter 0 < H < 1

Bτ fractional Brownian motion (fBm) Baτ
d
= aHBτ

σ fBm standard deviation σ2 = var (B1)
m mean rate of an fBm-fed queue Kτ [t] := Bτ − Bτ−t + mt

Gτ [t] fractional Gaussian noise Gτ [t] := K
{∆τ B}
τ [t] = Bτ − B − τ − t�

c unused capacity of an fBm-fed queue
�
c = c − m

t′ finest time scale for fGn {Git′ [t
′]}i∈ �

g(b, t) function relevant to an fBm-fed queue g(b, t) := (b +
�
ct)/σtH

Φ Gaussian complementary c.d.f. –
dθ max. ratio of consecutive time scales dθ := supk tk/tk−1 , θ = {tk}k∈ �
hθ metric for “goodness” of θ hθ = supb>0 inft∈θ g(b, t)/ inft>0 g(b, t)

ζ(α, H) – ζ(α, H) =
(α−1)HH (1−H)1−H

(α−αH)1−H (αH−1)H

A(θ) number of elements of θ in (t, t) –
εH constant εH := min(H, 1 − H)

IH constant IH := min((1 − H)α−H + Hα(1−H), (1 − H)αH + Hα−(1−H))
Γ(α) set composed of time scale sets θ Γ(α) = {θ : hθ ≤ ζ(α, H)}
bk sequence of queue thresholds bk = αk

�
c(1 − H)/H, k ∈

�
η, ϑ constants � {Q∞ > b} ' ϑb(1−H)(1−2H)/He−ηb2−2H/2

Vj,k tree node at depth j and location k –
Zj,k WIG innovations Vj+1,2k = (Vj,k + Zj,k)/2
n tree model depth –
T tree model time interval T –

�c(n) queue service rate for a tree model queue �c(n) = cT2−n

Uj,k MWM innovations Vj+1,2k = Vj,kUj,k

pj parameter of MWM innovation Uj,k ∼ β(pj , pj), pj ≥ 0
end final time instant of tree process, 2n –

%, U−1 MWM root node parameters V0,0 ∼ %U−1

k, r, ak, l, i free variables –

Note: For clarity we occasionally add a superscript enclosed in { } to denote which input traffic process a quantity

corresponds to, for example S
{X},[θ]
τ (b) when the input process is X . Superscripts in square brackets “[ ]” denote sets of

time scales. Superscripts in parenthesis “( )” denote the tree-depth of the WIG and MWM models. For time-invariant
quantities we drop subscript τ .


