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ABSTRACT

We develop a general framework to simultaneously exploit texture and shape characterization in multiscale image
segmentation. By posing multiscale segmentation as a model selection problem, we invoke the powerful framework
offered by minimum description length (MDL). This framework dictates that multiscale segmentation comprises
multiscale texture characterization and multiscale shape coding. Analysis of current multiscale maximum a posteriori
(MAP) segmentation algorithms reveals that these algorithms implicitly use a shape coder with the aim to estimate
the optimal MDL solution, but find only an approximate solution.

Towards achieving better segmentation estimates, we first propose a shape coding algorithm based on zero-trees
which is well-suited to represent images with large homogeneous regions. For this coder, we design an efficient tree-
based algorithm using dynamic programming that attains the optimal MDL segmentation estimate. To incorporate
arbitrary shape coding techniques into segmentation, we design an iterative algorithm that uses dynamic program-
ming for each iteration. Though the iterative algorithm is not guaranteed to attain exactly optimal estimates, it
more effectively captures the prior set by the shape coder. Experiments demonstrate that the proposed algorithms
yield excellent segmentation results on both synthetic and real world data examples.

Keywords: Segmentation, texture, shape, minimum description length (MDL), wavelets, hidden Markov trees (HMT)

1. INTRODUCTION

An image segmentation algorithm aims to assign a class label to each pixel of an image based on the properties of
the pixel and its relationship with its neighbors. A “good” segmentation separates an image into simple regions with

homogeneous properties, each with a different “texture”.!

Recently, many authors have applied statistical techniques to jointly estimate the region shapes and determine
their classes.>™* Statistical techniques regard a sampled image x with support S as a realization of a random field
X with distinct and consistent stochastic behavior in different regions. Let Rj, Rs,..., R; be a partition of the
support S of x; i.e., Ri(\R; = 0,i # j, and |J; Ri = S. Let zp, denote the subset of image pixels supported by
the region R;. We assume that each region R; is fully covered by the texture A; € {A;,As,...,An.} and that no
two neighboring R; contain the same texture. The pixels in the image subregion z g, are assumed distributed with
joint probability density function (pdf) f(zg,|\:). Segmentation involves separating the image into regions R; and
assigning the corresponding texture \; to each. The problem can also be rephrased as: given an image x, estimate
for each pixel a class label from {A;,As,...,An.}. A realization ¢ € {Ay, As,...,An.}° with support S from the
labeling field C records the class label A of each pixel and is called the segmentation map.
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1.1. Maximum likelihood (ML) segmentation
The maximum likelihood (ML) segmentation estimate is obtained by maximizing the likelihood f(z|c), i.e.,

M= arg max f(zle). (1)

However, the joint likelihood f(z|c) of the entire image is never available in practice and needs to be estimated. A
common simplifying assumption in likelihood estimation is that the pixels z; ; of the image are independent given
the segmentation map ¢

fly~ T f@ile). (2)
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ML segmentation now reduces to pixel-wise maximization of f(x|c). The independence assumption, though conve-
nient, is unfortunately not valid, since texture characteristics are not localized to individual pixels. Hence, estimates
of f(z; ;|c) are not robust, making ML segmentation estimates unsatisfactory.

1.2. Maximum a posteriori (MAP) segmentation

ML segmentation implicitly assumes that any arrangement of class labels is equally likely. This assumption is
undesirable, since, for example, large homogeneous regions are more likely in typical applications. MAP segmentation
attempts to capture the class label spatial dependence by maximizing the likelihoods weighted by a prior p(c) for

each segmentation map c¢, i.e.,
MAP

c = argmax f(z|c)p(c). (3)
c
Such a modification can potentially provide better estimates than the ML method. However, MAP proves intractable,
since there exist far too many possible arrangements of class labels. Thus, while ML estimates are useless, exact
MAP estimates are intractable.

1.3. MAP = MDL

MAP segmentation aims to maximize the likelihood weighted by the priors on the class labels (see (3)). Alternatively,
taking negative logs in (3), MAP estimation can also be expressed as

MAP = arg mcin[— log, f(x|c) — log, p(c)]. )

From an information theoretic perspective, the two terms — log, f(x|c) and —log, p(c) can be interpreted as the code
length in bits required to describe the observed image assuming a given segmentation map ¢, and the code length
required to describe the ¢ respectively.® Thus, MAP estimation simply aims to find ¢ that minimizes the total
number of bits required to describe both the data and the segmentation map. This framework is commonly known
as the minimum description length (MDL) principle.5™8

Rissanen proposed the MDL principle as an information theoretic approach to model selection.®® MDL advocates
that from a given choice of competing models, the “best” model is the one that provides the shortest description.
The description comprises of the number of bits required to code the data assuming the given model, and the number
of bits required to describe the model itself.

Leclerc? and Keeler!? first posed segmentation as a model selection problem and invoked MDL to find the solution.
Later, Kerfoot analyzed the MDL criterion for segmentation in more detail.!! The different competing models are
the arrangements of the class labels, with each class label corresponding to a pixel in the image to be segmented.
For each model ¢, if the likelihood f(z|c) and the prior p(c) are available, then the MDL estimate can be obtained
by minimizing the description length (see (4)).

Since MAP and MDL are equivalent, the MDL estimate at the pixel level also has to deal with the problems of
unreliable likelihood estimates and too many possible models to search from.



1.4. Multiscale MAP segmentation

The distinguishing characteristics of a texture are not localized to individual pixels but are observed over a neigh-
borhood of pixels. Hence, classification windows of different sizes are used by current multiscale MAP segmentation
algorithms.'271% Large windows usually provide sufficiently accurate likelihood estimates by capturing the neighbor-
hood dependencies using the rich statistical information available. Consequently, classification using ML produces
accurate segmentations in large homogeneous regions. However, since a large window risks containing pixels of dif-
ferent classes, the resolution of the resulting segmentation is unacceptable particularly along the boundaries between
regions. In contrast, a small window is more appropriate near the boundaries between regions, because it reduces
the possibility of having multiple classes in the window. However, ML classification of small windows is unreliable
due to the paucity of statistical information. To overcome this “blockiness vs. robustness” tradeoff, multiscale MAP
segmentation builds on classification decisions made at coarser scales in the following way (see Figures 2 and 3 for
more details on the notations used):

1. Given the classification decisions at the coarser scale, a context, typically chosen as a group of pixels neighboring
the parent in the coarser scale, is defined. A predefined function uses this context to set a prior on the class
label of the current pixel. The function is estimated by either ad hoc rules or by using training samples.!?-1?

2. With the prior and the likelihood for the pixels at the current resolution now available, MAP classification
finds the class label that maximizes the likelihood weighted by the prior obtained in step 1. This yields the
segmentation map at the current resolution.

This process is iterated to finally obtain a segmentation map at the finest resolution. By making concrete class
labeling decisions at each resolution, and assuming that the class labels of the child are independent given the class
labels of the parents, the problem of optimizing over all possible arrangements of class labels is avoided.'?1?

1.5. Multiscale MAP = multiscale MDL

Given the classification window class labels, the likelihoods used by current multiscale MAP algorithms define the
code length required to describe the observed image at different resolutions. The priors calculated using the context
equivalently define the code length to describe each class label. If the collection of class labels at all scales are
considered to be one of the competing models, then the function defining the priors provides the description length
for each competing model. Thus, posed within an MDL framework, current multiscale MAP algorithms can be
interpreted as trying to estimate the optimal multiscale MDL model that minimizes the description length of the
data.

1.6. Elements of multiscale segmentation

The formulation of multiscale MAP segmentation using MDL is significant because MDL provides a clean framework
to decompose multiscale segmentation into two distinct components, namely, texture characterization and shape
coding. Henceforth, for the sake of clarity, we will assume that the image segmentation involves two class labels.

1.6.1. Texture characterization

Estimating the code length in bits to describe the observed image assuming a class label requires a pdf model for
each class. Different techniques can be used to estimate the pdf models.!®'®  One such technique proposed by
Crouse et al'® uses the hidden Markov tree (HMT) model, a parametric statistical model for wavelet transforms
that characterizes textures. Since textures are well characterized by their singularity (edge and ridge) structure, the
wavelet domain, which facilitates efficient multiscale edge detection, is well-suited for modeling and characterizing
different textures. The robust likelihood estimates provided by the HMT models are naturally arranged in the form
of a quad-tree (see Figure 3).



1.6.2. Shape coding

For a two-class problem, describing the class labels is equivalent to binary image coding. Since coding a binary
image is equivalent to coding the shape of its boundaries, binary shape coders can provide the code length in bits
required to describe the class labels. Two simple binary shape coders, zero-tree significance map (ZSM) coder and
the edge-persistent (EP) coder described in the later sections complement the quad-tree structure of the likelihoods
provided by texture characterization techniques such as the HMT.'® The ZSM coder is well-suited to represent
binary images with large homogeneous regions as is typical in segmentation maps. Similar to the ZSM coder, the EP
coder is also suited to represent binary images, but in addition, it also accounts for the evolution of the boundaries
of the homogeneous regions more efficiently.

1.7. Realizations using the MDL formulation

Using the clean framework provided by MDL, we can now identify the shortcomings of current multiscale segmentation
techniques. Thanks to MDL, we can link mature fields of binary image coding and shape characterization to
segmentation.

Current multiscale MAP algorithms make hard irreversible segmentation decisions at coarse scales that impose
a prior for segmentation at finer scales. However, it is easy to envision situations where such decisions are locally
optimal, but globally sub-optimal. Hence, the current MAP algorithms do not attain the optimal MDL estimate.

Current multiscale segmentation algorithms resort to training or ad hoc methods to choose a function that defines
the prior on the different pixels, thereby tuning the segmentation algorithm to specific application scenarios. From
an MDL perspective, this is equivalent to determining the “right” coder to describe the binary class labels at different
resolutions. Immediately, we realize that the “right” coder is the one that efficiently encodes the collection of the
different resolution class label binary images. Since the binary coding is a mature field, we can now tap into its
rich literature for potential solutions. Further, since it is easy to characterize shape in binary images, we can now
potentially incorporate explicit shape characterization concepts as well so as to tune the segmentation to favor specific
shapes.

The ability to explicitly incorporate different coding methods and notions of shape available in the literature,
however, hinges on designing algorithms that can efficiently search over the many possible model classes.

1.8. Tree-based joint texture and shape analysis

Since the likelihood estimates provided by the HMT and the class label description provided by shape coding
techniques such as ZSM coder and EP coder are conveniently defined on quad-trees, we are naturally led to searching
for tree-based algorithms to estimate the optimal MDL solution.

In a ZSM coder, the code length of a child is determined only by the corresponding parent on the quad-tree.
Hence, it becomes possible to use a dynamic programming algorithm'® consisting of a simple up-down sweep of the
quad-tree to estimate the optimal segmentation map. In contrast to current multiscale MAP algorithms, the class
labeling decisions at any level in this algorithm are influenced not only by the parent class labels, but also by the class
labeling decisions and likelihoods at all other levels. In an EP coder, the code length of the child is determined by
not only the parent but also by its neighbors. The efficient ZSM dynamic programming algorithm is not immediately
applicable in the EP case. Hence, we design an iterative algorithm based on dynamic programming for each iteration
to search for the multiscale segmentation map. The framework of the algorithm is general enough to accommodate
and exploit the global perspective of any shape-based coding algorithm.

Both the proposed segmentation algorithms provide robust estimates for the synthetic example shown in Figure 1.
However, the iterative EP coder algorithm has better resolution along the boundaries in the segmentation map. As
shown in Figure 7, the proposed algorithms provide excellent estimates for real world examples as well.

2. MDL AND SEGMENTATION

The MDL principle adopts an information theoretic approach to address the following philosophical model selection
question: among a given set, of models, which model provides the “best” description for the observed data? Rissanen
quantified “best” using the notion of code length in bits® as: the smaller the code length, the better the model.®8:2!
Thus, MDL’s answer to the model selection problem is to choose the model that gives the minimum description
length. The MDL principle also agrees with statistical inference’s fundamental philosophy proposed by the founding
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Figure 1. Synthetic image segmentation. (a) 512 x 512 grass texture image.”® (b) 512 x 512 wood texture image.”°
(c) 128 x 128 grass/wood mosaic test image T to be segmented. (d) The segmentation map used to synthesize the test
data. (e) Maximum likelihood (ML) segmentation map at a resolution of 8 x 8, 4 x 4, 2 x 2, and pixel-sized dyadic squares.
Classification accuracy increases with block size (towards coarser scales) because more statistical information is available for
the class label decision. This, however, comes at a cost of reduced boundary resolution. (f) Optimal MDL estimate when
the ZSM coder is used. An efficient dynamic programming algorithm can be used to search the exact minimizer of the MDL
criterion (see Section 5). (g) Sub-optimal MDL estimate when the EP coder is used. An iterative algorithm based on dynamic
programming for each iteration yields an excellent albeit sub-optimal estimate. The boundaries in the estimate have better
resolution than the estimate in (f) due to the properties of the EP coder.



fathers such as Fisher that “the objective of statistics is to reduce data”, and “we must not over-fit data by too

complex models” .22

2.1. MDL principle

Let = be the observed data, and let {p;(z|0;)}’<, be K competing probabilistic descriptions of z. Each of the K
models is characterized by their respective parameters #;. The Shannon code length for describing the data using
model i is given by — log, pi(x]6;).> Let L(6;) denote the number of bits required to describe the parameters of the
i model. Then, the optimal model M°P* proposed by MDL is

M = arg 91-6{2'1}.1.1.,01(}[_ log, pi(x0;) + L(6:)]. (5)

If the parameters 6; are distributed as py(6;) then
L(6;) := —log, py (6:). (6)

For deterministic parameters, Rissanen’s framework for specifying the parameters with asymptotic approximations
can be used.?

MDL has been applied to a wide variety of problems such as regression,?* density estimation,?! denoising,?®

and segmentation.” !' We now describe the formulation of segmentation as a model selection problem, and the role
played by MDL in the solution.

2.2. MDL formulation of segmentation

Leclerc® and Keeler!® proposed the use of MDL to perform segmentation. Kerfoot further analyzed the use of MDL
criterion for segmentation.!! The image = of support S to be segmented is the data to be described under the
hypothetical MDL experiment. If {A;, Az,...,An,} are the different possible class labels that any pixel can assume,
then the number of different segmentation maps ¢ possible is N¥. Each of the N7 different maps is a competing
model. Let f(x|c) be the likelihood of the data obtained using the model ¢. Then, according to MDL, the optimal
segmentation map is given by

M = argmin[~ log, f(zlc) + L(0)], (7)

where L(c) is the code length required to describe the segmentation map ¢. For the sake of clarity, we have henceforth
assumed that the images contain just two types of class labels, i.e., N, = 2.

At the pixel-level, the estimates of f(z|c) are unreliable. Further, the number of possible models to search
from is enormous. Since textures are better characterized at multiple resolutions, likelihoods estimates at different
resolutions can provide a good approximation to f(z|c).!®18 The reliability of the likelihoods can be exploited to
design robust algorithms that eliminate a majority of the unreasonable models.

2.3. Multiscale segmentation using MDL

We first formulate the problem of segmentation in the multiscale framework using MDL. Again, the observed image is
the data to be described by the hypothetical MDL experiment. However, in contrast to using pixel-level descriptions,
the multiresolution coefficients of the image are described. Each competing model in multiscale MDL segmentation
is one particular arrangement of class labels at all resolutions. In contrast to the formulation described in Section
2.2, each model is a hierarchical sequence of binary images, not just a single binary image. Multiscale segmentation
using MDL aims to find the arrangement of the class labels at all resolutions such the total of the bits required code
the model and the multiresolution coefficients under this model is minimized. Thus,

M := argmin[- log, f(27) + L), (8)

where 77" is the optimal model, ¢ is any arrangement of class labels at all resolutions, f(z|¢) denote the multiscale
likelihoods, and L(¢) denotes the number of bits required to describe the model €.
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Figure 2. (a) Image x divided into dyadic squares d{, where j denotes the scale, and i denotes one of the 2% dyadic squares
within the scale respectively. Each dyadic square can be associated with a subtree of Haar wavelet coefficients. (b) Quad-tree
structure of dyadic squares. The dyadic square d]p(_l; splits into four child squares at scale j.

2.3.1. Coding the data = texture characterization

Optimizing over the MDL criterion to obtain JL7A (see (8)) requires knowledge of the likelihoods f(z|¢). However,
these are never known in practice and must be estimated. Tezture characterization'®~'® provide an estimate of the
likelihood f(z|¢) for different €. We outline the texture characterization using the HMT model of Crouse et al'® in
Section 3.

2.3.2. Coding the model = shape coding

For a two-class segmentation problem, describing the models ¢ involves describing the binary symbols in the model.
Coding a binary image is equivalent to coding the shape of its boundaries. Hence, model specification can be viewed
either as a shape coding or a binary image coding problem.?®:2” Thus, L(¢) in (7) is the number of bits taken by
some fixed image coder to compress the segmentation map. In Section 4, we describe two shape coding algorithms
that can describe the model.

3. TEXTURE CHARACTERIZATION

Textures are characterized by consistent stochastic behavior of the pixels within their region of support. Using the
notations set out in the introduction, for a region R; occupied by any texture A € {A1, Ao, ..., AN, }, the respective
likelihood f(zg,|A\) dictates the probabilistic distribution of the pixels in R;. The behavior of pixels from different
regions is assumed to be independent of each other. Thus, we can write

k

fale) = T] fwn,

i=1

c). (9)

The above information is crucial to invoke statistical techniques in applications such as segmentation.

In multiscale segmentation using MDL, we desire that our texture models be defined for all possible shapes (all
subsets of S). Of course, the simplest way to do this to make each pixel statistically independent given the class map.
However, this approach does not adequately capture the statistical properties of texture. Textures contains many
singularities such as edges and ridges. Since the wavelet transform can be interpreted as a multiscale edge detector
that represents the singularity content of an image at multiple scales, the wavelet domain provides the ideal platform
to model textures. The hidden Markov tree model proposed by Crouse et al'® is a wavelet-domain parametric model
that can be defined on an arbitrary shape and captures the rich, multiscale properties of texture.

3.1. Wavelets

The wavelet transform captures the singularity content of an image at multiple scales and three different orientations
(see Figures 2 and 3). Wavelets overlying a singularity such as an edge yield large wavelet coefficients; wavelets
overlying a smooth region yield small coefficients. In combination, the multiscale singularity detection property and
tree structure imply that image singularities manifest themselves as cascades of large wavelet coefficients through
scale along the branches of the quad-tree.?® Conversely, smooth regions lead to cascades of small coefficients.

The wavelet transform represents the texture at a nested set of scales?® j = 0,...,J. Each wavelet coefficient
captures information about a M277 x M277 dyadic block in the image, where M is the side-length of the image
support. Four “child” wavelet coefficients at a given scale nest inside one “parent” at the next coarser scale, giving
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Figure 3. (a) Parent-child dependencies of the three 2-D wavelet transform subbands: Each arrow points from a parent
wavelet coefficient to its four children at the next finer scale. (b) More detailed view of the quad-tree structure in one subband.
Each black node corresponds to a wavelet coefficient. The figure also illustrates our tree indexing notation: T; is the subtree of
coefficients rooted at node i, and p(i) is the parent of node i. (c) 2-D wavelet hidden Markov tree (HMT) model. We model
each wavelet coefficient (black node) as a Gaussian mizture controlled by a hidden state variable (white node). To capture the
persistence across scale property of wavelet transforms, the states are connected vertically across scale in Markov-1 chains.'S

rise to a quad-tree structure of wavelet coefficients similar to the structure of the dyadic squares (see Figures 2 and 3).
In particular, with the Haar wavelet transform, each wavelet coefficient node in the wavelet quad-tree corresponds
to a wavelet supported exactly on the corresponding dyadic image square.

3.2. Hidden Markov tree texture model

Crouse et al'® have developed the hidden Markov tree (HMT) model, a parametric statistical model for wavelet
transforms that can be used to characterize textures. The HMT captures the fact that large and small wavelet
coefficients cascade through scale by using states are connected in a Markovian probabilistic quad-tree similar to
that of the wavelet coefficients. The output provided by the HMT is a model M that provides the approximate joint
pdf of the wavelet coefficients of the texture. Further, the HMT allows the likelihood calculation of texture regions
inside dyadic blocks of arbitrary size, which can be used to represent regions of arbitrary shape.

4. SHAPE CHARACTERIZATION AND CODING

Shape is a concept intuitively well understood yet difficult to precisely define.?? The shape of an object in an

image can be described by its boundary, which is a curve in two dimensions, or the arrangement of pixels within the
boundary. The concept of shape is used in applications such as object recognition, compression, etc. For typical gray
scale images, shape description is typically preceded by some kind of edge detection. However, for binary images,
the description becomes simpler. Further, coding the boundaries of the object is equivalent to coding the binary
image.3%

In multiscale segmentation using MDL, model description requires the specification of the arrangement of class
labels. For the two-class segmentation case, this arrangement of class labels is equivalent to specifying a sequence
of binary images of different resolutions. The choice of binary coder can significantly influence the segmentation
estimate. Hence, the binary image coder should be chosen according to the application. If the chosen coder efficiently
codes typical shapes encountered in the application, then these favored shapes are well-segmented in final estimate.
We present two algorithms that can be used to describe hierarchical binary images containing large homogeneous
regions, a feature that characterizes typical segmentation maps.

4.1. Zero-tree significance map (ZSM) coder

The past decade has witnessed a significant improvement over traditional image compression techniques such as
JPEG thanks to wavelets and Shapiro’s zero-tree coding algorithm.?! Most state-of-the-art image compression algo-
rithms?2-34 first transform an image to obtain the wavelet coefficients, and spend bits only on the large coefficients to
achieve compression. However, the decoding of the image needs not only the value of the large wavelet coefficients,
but also the locations of these coefficients.

The zero-tree algorithm uses significance maps to denote the locations of the large and small wavelet coefficients.
The significance map comprises of a quad-tree of binary symbols, each corresponding to a wavelet coefficient. Zeros
in the binary maps denote that corresponding wavelet coefficient is “insignificant”, i.e., small.
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Figure 4. (a) An 4x4 binary image of parent pixels at some arbitrary scale. (b) An 8x8 binary image of the child pixels
that directly lies below the parents pixels in a quad-tree. The shaded pixels are called edge children, while all the other pixels
are called homogeneous children.

The significance map is encoded using the following two rules:

1. If a parent coefficient is insignificant, i.e., zero, then all its four corresponding children are also assumed to be
insignificant, i.e., zero.

2. If any of the child coefficient differs from a parent coefficient, then its location is specified.

Given the parent binary map, the cost of encoding the binary map for the children is summarized by the following
two cases.

1. Child = parent: No cost in incurred, since this is the default assumption made by the decoder.

2. Child # parent: The decoder requires the location of this child. This costs log, N1 bits, where N denotes
the number of coefficients at that resolution in the quad-tree.

We term such a coder the zero-tree significance map (ZSM) coder. The ZSM coder is well-suited for coding binary
images with large homogeneous regions, and is particularly tailored for representing binary images containing shapes
comprising dyadic blocks. In preceding papers, Cohen et al®® exploited similar ideas to perform binary image coding
in a hierarchical fashion.

4.2. Edge-persistent (EP) coder

In a hierarchical binary image description, a shape refines at a fine scale by invoking transitions around the edges
of the coarser scale. The ZSM coder described above uniformly penalizes all children that do not agree with their
parents. A uniform penalty is justified when the probability of transition from a zero/one parent to a one/zero child
is the same everywhere. However, this assumption does not hold around the edges. Hence, we propose a simple
modification to exploit this phenomenon using the EP coder. This coder is similar to multiresolution contour coding
proposed by Lerman et al.?6

Before describing this algorithm, we refer the reader to Figure 4 where we introduce a few simple definitions. We
can now describe the binary coding algorithm using the following rules.

1. Homogeneous children are assumed to have the same binary value as the parent on the quad-tree.

2. All edge children are transmitted to the decoder with code-length determined by the probability of transition
around the edges for the image. The probability of transition is assumed to be uniform along the edges and
needs to be estimated or predetermined from training images. Since binary image coding is not the primary
focus of this paper, we assume an ad hoc value for the transition probability in the paper.

Given the parent binary map, the cost of encoding the child binary map is summarized by the following cases:

1. Homogeneous child = parent: No cost in incurred, since this is the default assumption made by the decoder.

2. Homogeneous child # parent: The decoder requires the location of this child. This costs log, Ny, bits,
where N, denotes the number of pixels in the binary image containing the child.
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Figure 5. Graphical formulation of multiscale segmentation. (a) The likelihoods for different resolution dyadic blocks.dg of
the image assuming Ao texture can be arranged as a quad-tree whose corresponding nodes are weighted by —log, f(d}|Ao).
These likelihoods are provided by texture characterization techniques such as HMT (see Section 3). (b) Quad-tree with nodes
weighted by —log, f(d?|A1). (c) A collection of segmentation maps at different resolutions can be arranged in the form
of a quad-tree. Black or white nodes denotes that the corresponding dyadic square in the collection of different resolution
segmentation maps is labeled as Ao or A1 respectively.

3. Edge child: The cost in bits is determined by the transition probability from parent to child around the edges.

Like the ZSM coder, the EP coder is also well-suited to represent binary images with large homogeneous regions
and, in particular, to represent binary images containing shapes comprising dyadic blocks. Further, it also allows for
refinement along the boundaries.

5. TREE-BASED JOINT TEXTURE AND SHAPE ANALYSIS

We are now in a position to design algorithms to estimate the segmentation map at multiple scales. We first
formulate the optimization required in multiscale segmentation graphically. A collection of segmentation maps at
different resolutions can be arranged in the form of a quad-tree (see Figure 5(c)). For eg., if dyadic block d? at scale j is
labeled as Ag, then so is the corresponding node on the quad-tree representing the multiscale segmentation map. The
aim of multiscale MDL segmentation is to construct a quad-tree that optimizes the MDL criterion. The likelihoods
obtained from characterization techniques such as the HMT!® can be used to construct two identical quad-trees whose
nodes are weighted by the code lengths — log, f(d?|Ao) and —log, f(d?|A1) respectively (see Figures 5(a) and (b)).
The shape coder used by MDL dictates the cost to make a choice between a Ag or A; node. Multiscale MDL
segmentation aims to construct a quad-tree such that the sum of the total node weights in the quad-tree, and the
cost of choosing the nodes is minimum.

5.1. Optimal segmentation with ZSM coder

In the ZSM coder, the code length of any child node depends only on the immediate parent in the quad-tree.
Graphically, this implies that the cost of choosing the node class depends only on the choice made at the parent in
the coarser scale. In such a case, a dynamic programming!'® algorithm comprising of a simple and efficient up-sweep
followed by a down-sweep on a quad-tree yields the segmentation map that exactly minimizes the MDL criterion.
The complexity of such an algorithm is just O(M ), where M is the number of pixels in the image.

5.2. Sub-optimal iterative segmentation with arbitrary shape coders

For coders such as EP, the dynamic programming approach proves impractical. In an EP coder, the code length
of any child node also depends on the choices made at the neighbors of the immediate parent node in the quad-
tree. Though dynamic programming can estimate the exact minimizer with an up-down sweep of the quad-tree, the
number of states to be stored during the up-sweep explodes exponentially with the depth of the quad-tree making the
algorithm infeasible. For other hierarchical coders such as JBIG,2% the cost of coding a child depends not only on
the parents neighborhood but also on its own neighborhood. To be able to incorporate any arbitrary shape coder in
the MDL framework, we devise a efficient albeit sub-optimal iterative algorithm that can accommodate any arbitrary
coder using dynamic programming for each iteration:

1. Step 1: Make a robust initial estimate using the ZSM segmentation algorithm.



(a) training data (b) test data

Figure 6. Original aerial photos to be segmented. (a) 1024 x 1024 aerial photo.?° (b) 512 x 512 test sub-image x. The
homogeneous ground/sea regions outside the test sub-image were used to train two HMTs.

2. Step 2: Assume that the multiscale segmentation map obtained in the previous iteration is exact. Calculate
the costs for a node to have the same or different class label as the parent node. Do this for each node in the
quad-tree using the chosen coder.

3. Step 3: With the costs of choosing between the nodes now available, use dynamic programming to find class
labels for the minimizer tree. Repeat step 2.

Though we have not yet rigorously analyzed the convergence properties of this algorithm, in practice, the algorithm
seems to capture the perspective of the image coder with just a few iterations.

6. RESULTS

We tested the proposed segmentation algorithms using a real world aerial photograph example.?? The original is
an 1024 x 1024 image with “ground” and “sea” regions as shown in Figure 6(a). Figure 6(b) shows an 512 x 512
sub-block of the full image that is to be segmented. Wavelet HMTs, trained on hand-segmented blocks from the
1024 x 1024 aerial photo in Figure 6(a) provide the texture likelihoods for the image. The pixel-level likelihoods are
obtained by using the pixel brightness of ground and sea textures.

Figure 7(a) show the segmentations at the finest three scales obtained by using ML at each scale. Figure 7(b) shows
the segmentations that exactly minimizes of the MDL criterion when a ZSM coder is assumed. The segmentations
are obtained an efficient dynamic programming algorithm. Figure 7(c) using the segmentation estimate obtained
afters three iterations of the iterative segmentation algorithm when the EP coder is assumed. Though the estimate
is not guaranteed to exactly minimize the corresponding MDL criterion, the segmentation results are more desirable
with better resolution along the boundaries, since the EP coder captures the characteristics of the ideal segmentation
maps better.

7. CONCLUSIONS

In this paper, we have proposed a general framework to simultaneously incorporate texture and shape information
into segmentation.

We have formulated the problem of multiscale segmentation as a model selection problem and used MDL to
estimate the segmentation map at multiple scales. Thanks to the formulation, we realize that segmentation can be
decomposed into texture characterization and shape coding. With the realization that using different shape coding
schemes tunes the segmentation to different applications, we can now turn to the mature fields of binary image
and shape coding for ideas to design application-specific segmentation algorithms. We also realize that the current
multiscale MAP segmentation algorithms attain sub-optimal estimates under the MDL criterion.



4 x 4 blocks 2 x 2 blocks pixel level
(a) segmentations using ML estimation

4 x 4 blocks 2 x 2 blocks pixel level
(b) MDL based segmentations with ZSM coder

4 x 4 blocks 2 x 2 blocks pixel level
(c) MDL based segmentations with EP coder

Figure 7. Aerial photo segmentation. (a) Maximum likelihood (ML) segmentation of Figure 6(b) at resolutions of 4 x4, 2x 2,
and pixel-sized dyadic squares. All the likelihoods were obtained using trained HMTs. (b) MDL segmentation estimate with
ZSM coder. An efficient dynamic programming algorithm can be used to search the exact minimizer of the MDL criterion (see
Section 5). The segmentation estimates fail to refine with finer scales, since the cost incurred by the ZSM coder to encode the
required transitions is very high. (c¢) MDL segmentation estimate with EP coder. The iterative algorithm based on dynamic
programming for each iteration yields an excellent albeit sub-optimal estimate. The pixel-level segmentation estimate from
Figure 7(b) is used as the initial estimate over which the iterations act. The boundaries in the estimate have better resolution
than the estimate in Figure 7(b) due to the properties of the EP coder.



We designed a tree-based algorithm that searches for the optimal MDL segmentation map when the ZSM shape
coding technique is assumed. The algorithm attains the solution with an efficient up-down sweep of a quad-tree.
Realizing that the exact MDL solution is not practically attainable for an arbitrary coder, we designed an iterative
segmentation procedure that can potentially accommodate any coder, so that the resulting segmentation can reflect
the essence of the coder. We tested this algorithm with the proposed edge-persistent coding scheme to obtain
desirable results on both synthetic and real world data.

We are currently studying the convergence and exact computational complexity of the proposed iterative seg-
mentation algorithm. We are also testing the impact of existing shape coding techniques on segmentation results.
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