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Abstract

The complexity and richness of telecommunications traffic is such that one may despair to find any regularity or explanatory principles.
Nonetheless, the discovery of scaling behavior in tele-traffic has provided hope that parsimonious models can be found. The statistics of
scaling behavior present many challenges, especially in non-stationary environments. In this paper, we overview the state of the art in this
area, focusing on the capabilities of the wavelet transform as a key tool for unravelling the mysteries of traffic statistics and dynamics.
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I. TRAFFIC AND SCALING

By the term telecommunications traffic or tele-traffic we mean the flow of information, or data, in telecommunications
networks of all kinds. From its origins as an analog signal carrying encoded voice over a dedicated wire or “circuit”, traffic
now covers information of all kinds, including voice, video, text, telemetry, and real-time versions of each, including
distributed gaming. Instead of the dedicated circuits of traditional telephone networks, packet switching technology
is now used to carry traffic of all types in a uniform format (to a first approximation): as a stream of packets, each

containing a header with networking information and a payload of bytes of “data”.

Box 1: Tele-Traffic: A Turbulent River over a Rugged Landscape

3/

The geographic and topological com-
plexity of the Internet “infoways” has
reached a point that it is now a
significant challenge to provide even
rough maps of the major tribu-
taries. The Skitter program, a CAIDA
(Cooperative Association for Internet
Data Analysis http://www.caida.org/)
project, attempts to provide maps such
as the one shown here, tracing connec-
tivity of hosts throughout the Internet
by sending messages out to diverse des-
tinations and counting the number of
links traversed to reach them. Each
line represents a logical link between
nodes, passing from red on the out-
bound side to blue on the inbound.
The data visible here is only a small
part of a large dataset of around 29,000
destinations.

(Figure reproduced with the kind per-
mission of CAIDA. copyright 2001
CAIDA/UC Regents. Mapnet Author:
Bradley Huffaker, CAIDA. The three
dimensional rendering is provided by
the hypviewer tool.)

Although created by man
and machine, the complex-
ity of teletraffic is such that
in many ways it requires
treatment as a natural phe-
nomenon. It can be likened
to a turbulent, pulsating
river flowing along a highly
convoluted landscape, but
where streams may flow in
all directions in defiance of
gravity. The landscape is
the network. It consists
of a deep hierarchy of sys-
tems with complexity at
many levels. Of these, the
“geographical” complexity
or connectivity of network
links and nodes, illustrated
in Box 1, is of central im-
portance. Other key as-
pects include the size or
bandwidth of links (the vol-
ume of the river beds), and
at the lowest level, a wide
variety of physical trans-
port mechanisms (copper,

optic fibre, etc.) exist with their own reliability and connectivity characteristics. Although each atomic component
is well-understood, the whole is so complex that it must be measured and its emergent properties “discovered”. Com-
prehensive simulation is difficult.
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A key concept in networking is the existence of network protocols, and their encapsulation. Let us explain with an
example: The Internet protocol (IP) is used to allow the transport of packets over heterogeneous networks. The protocol
understands and knows how to process information such as addressing details contained in the header of IP packets.
However, by itself IP is only a forwarding mechanism without any guarantee of successful delivery. At the next higher
level, the transfer control protocol (TCP) provides such a guarantee by establishing a virtual connection between two
end points and monitoring the safe arrival of IP packets, and managing the retransmission of any lost packets. On a
still higher level, web-page transfers occur via the Hypertext transport protocol (HTTP), which uses TCP for reliable
transfer.

The resulting encapsulation “HTTP over TCP over IP”, therefore means that HT'TP oversees the transfer of text and
images etc, while the actual data files are handed over to TCP for reliable transfer. TCP chops the data into datagrams
(packets) which are handed to IP for proper routing through the network. This organization offers hierarchal structuring
of network functionality and traffic but also adds complexity: each level has its own dynamics and mechanisms, as well
as time scales.

Over this landscape flows the teletraffic, which has even more levels of complexity than the underlying network. Three
general categories can be distinguished.

Geographic complexity plays a major role. Although one can think of the Internet as consisting of a “core” of very high
bandwidth links and very fast switches, with traffic sources at the network “edge”, the distances from the edge to the core
vary greatly, and the topology

is highly convoluted. Access - -
bandwidths vary widely, from Box 2: Temporal Burstiness in Traffic
slow modems to gigabit Ether-

Here, we present an analysis of a standard trace of Ethernet traffic, “pAug” from
net local area networks, and mo-

: . [14]. An entry Y (k) of this time series represents the number of bytes observed
bile access creates traffic which | o, he Ethernet at Bellcore during the k-th time slot of duration & = 12ms of the
.chz.mges its spatial character— measurement. Denote by Y (") the aggregated series of level m; for example }’(3)(1) =
istics.  Sources are inhomo- | (y(1) 4y y(2) 4+ v (3)) /3 represents then the average traffic observed in time slots of
geneously dlStrlb.Uted’ for ex- duration 39. Through this averaging operator, scale invariance can be illustrated in
ample concentrations are found | . i p1e but powerful way . From top to bottom, the first 512 points of four series
in locations such as univer- | oo plotted: Y (k) = YO(K), Y® (&), Y0 (k), and Y1) (k), with § varying from

sities and major corporations. | s _ o ct0 5 — 12588 % 8ms, or 6.1s.
Furthermore traffic streams are

split and recombined in switches 10000l 5=12ms
in possibly very heterogeneous

. 5000
ways, and what is at one level a

superposition of sources can be 50 100 150 200 250 300 350 400 450 500
seen at another level, closer to 8000} 5=12*8ms
the core, as a single, more com- s |
plex kind of “source”. 2000

Oﬁered ijﬁc complexity re- 0 50 100 150 200 250 300 350 400 450 500
lates to the multilayered na- sooo- 5=12*8* 8 ms
ture of traffic demands. Users, 4000}
generating web browsing ses- 2000 m
sions for example, come and go 0 50 100 150 200 250 300 350 400 450 500
in random patterns and remain 4000} 5=12*8*8*B ms

for widely varying periods of
time, during which their activity
levels (number of pages down- 0
loaded) may vary both qualita-
tively and quantitatively. The

2000 H

users’ applications will them- The decrease in variability with increased smoothing is very slow, consistent with
selves employ a variety of proto-
cols that generate different traf- Var[Y (™] = 0(m™"), B~04¢(0,1)

fic patterns, and finally, the
underlying objects themselves,
text, audio, images, video, have

the so called “slowly decaying variance” of long memory processes.
A wavelet analysis of this series appears in Figure 8, middle plot.

widely differing properties.

Temporal complexity is omnipresent. All of the above aspects of traffic are time varying, and take place over a very
wide range of time-scales, from microseconds for protocols acting on packets at the local area network level, through
daily and weekly cycles, up to the evolution of the phenomena themselves over months and years.
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The huge range of time-scales in traffic and the equally impressive range of bandwidths, from a kilobytes up to
terabytes per second over large optical backbone links, offers enormous scope for scale dependent behavior in traffic.
But is this scope actually “exploited” in real traffic? Is traffic in fact regular on most time scales, with variability easily
reducible to, say, a diurnal cycle plus some added variance arising from the nature of the most popular data-type/protocol
combination? Since the early nineties, when detailed measurements of packet traffic were made and seriously analyzed
for the first time [21], [15], [14], we know that the answer is an emphatic “No”. Far from being smooth and dominated
by a single identifiable factor, packet traffic exhibits scale invariance features, with no clear dominant component.

For instance, long memory is a scale invariance phenomenon that can be seen in the time series Y'(¢) describing the
data transfer rate over a link at time ¢. Other examples of time series with long memory are the number of active TCP
connections in successive time intervals, or the successive interarrival times of IP packets shown in Figure 1.

The philosophy of scale invariance or “scaling” can be expressed as the lack of any special characteristic time or space
scale describing fluctuations in Y'(¢). Instead one needs to describe the steady progression across scales. In the case of
traffic such a progression has been found empirically and has lead to long memory models and more generally to models
with fractal features, as we will explore.

The scale invariant features of traffic can also be thought of as giving precise meaning to the important but potentially
vague notion of traffic burstiness, which means, roughly, a lack of smoothness. In very general terms, burstiness is
important because from the field of performance analysis of networks, and in particular that of switches via queueing
theory, we know that increased burstiness results in lower levels of resource utilization for a fixed quality of service,
and therefore to higher costs. At the engineering level, service quality refers to metrics such as available bandwidth,
data transfer delay, and packet loss. The impact of scale invariance extends to network management issues such as call
admission control, congestion control, as well as policies for fairness and pricing.

It is important to distinguish between two canonical meanings of the term burstiness, which have their counter-
parts in models and analysis. Again let us take “traffic” to be the data rate Y'(¢), nominally in bytes per sec-
ond, over a link at time ¢. One kind of burstiness arises from dependencies over long time periods, which can be
made precise in terms of the

correlation function of Y'(t) (as-
suming stationarity and that
second order statistics exist).
As shown in Box 2, such tem-
poral burstiness was explored
when scaling was first found in
packet traffic. More precisely,
the well known Long-Range De-
pendent (LRD) property of traf-
fic is a phenomenon defined in
terms of temporal correlation,
whose network origins are now

Box 3: Amplitude Burstiness in Traffic.

Consider a particular time series derived from Internet data, the durations (in seconds)
of successive TCP connections dur(k), k = 1, 2---175223, for connections beginning
during a 6.4 hour long subset of a much larger trace. The subset was selected for
apparent stationarity across a range of criteria.

The left plot shows the time series. Gaussian models can provide in some cases
reasonable approximations to traffic traces, but certainly not here. Indeed, the sample
standard deviation to mean ratio is & 12, which given the natural constraint of
positivity for the series, is decidedly non-normal!

x 108uccessive TCP Durations Log - Histogram

thought to be quite well under-
stood in terms of the paradigm 4 E
of heavy tails of file sizes of re- g A
quested objects, which causes 23 -% .
sources to transmit over ex- 2, E L T S E S IR e S
tended periods [36]. H =
A second kind of burstiness 1 5
describes variability, the size =
of fluctuations in value or am- 5 10 15 10° 10°
plitude, and therefore concerns # « 10* sec

small scales. It refers therefore
to the marginal distribution of

Y (t), as characterized for exam-
ple by the ratio of standard de-
viation to mean if this exists,
as the local singular behavior of
multifractal models (described
in the next section), or alterna-
tively as a heavy tail parameter

The marginal of the series is examined in the right plot, in a log-log plot of the sample
complementary probability distribution function P(dur) > z. The roughly straight
line strongly suggests a heavy power-law like tail, with an index which is close to the
boundary of infinite variance. The horizontal lines highlight, from top to bottom, the
20%, 90%, and 95% quantiles respectively.

of the distribution of the instantaneous traffic load in the case of infinite variance models. Box 3 illustrates this latter
case for the time series of successive TCP connection durations, derived from measurements taken over a 2Mbps access
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link, made available at the University of Waikato [22]. Even when an apparently stationary subset is selected, the vari-
ation in value or amplitude is very significant, and highly non-Gaussian. Marginals of other time series do not always
yield such extreme power-law tails; however Weibullian or log-normal behavior is more common than Gaussian, unless
the data has already been highly aggregated or if scales above a few seconds are examined.

The two types of burstiness just described are quite different. However, often it is convenient to work not with a
stationary series like Y'(¢), but with its integrated or “counting process” equivalent N(¢), which counts the amount of
traffic arriving in [0,¢]. It is then important to bear in mind that the statistics of N(t) are a function both of the
temporal and the amplitude burstiness of the rate process Y'(¢).

The next step in this introduction to scaling in traffic is to draw attention to the fact that, although at large scales
(seconds and beyond) astonishingly clear, simple and relatively well understood scaling laws are found, the same cannot
be said at small scales. This is true for example of the inter-arrival time series shown in Figure 1, a discrete series
giving the successive intervals (in milliseconds) between the arrival of new TCP connections. When examined with the
naked eye this series may be accused of having long memory, with a marginal slightly deviating from Gaussianity. In
reality, in addition to long memory, it contains much non-trivial scaling structure at small scales (see Figure 8) which
is suggestive of a rich underlying dynamics of TCP connection creation. Investigation of such dynamics is beyond the
scope of this review, however knowledge of its scaling properties, as examined in section 3 (see [32] for more details),
lays a foundation for an informed investigation.

The fact is that much work remains to be done to achieve a clear understanding of traffic scaling over small scales,
which is characterized by far higher variability, more complex and less definitive scaling laws, and the necessity of
dealing with non-Gaussian data and hence statistics beyond second order. The high variability on small scales is shown
in Figures 2 and 3 for a publicly available trace collected at the Lawrence Berkeley Laboratory. The time series of
the number of TCP packets arriving per time interval has very irregular local structure, as seen in the blowups in the
lower plots. While large scale behavior such as long memory matters for many network design and management issues,

understanding small scale behavior is

particularly important for flow control,
performance and efficiency. In terms of

8000

network performance, variability is (al-
most) always an undesirable feature of
traffic data. Therefore, a key motivation
for investigating such scaling is to help
identify generating mechanisms leading
to an understanding of their root causes
in networking terms. If for example it
were known that a certain feature of the

o!
415 42 425 43 435 44 445 45 455 46 465

T @ mw me we ww TCP protocol was responsible for gener-

ating the observed complex scaling be-

Fig. 1. A series of inter-arrival times of Fig. 2. A snap shot (seconds 415’000 — !

TCP connections, showing highly de- 470'000) of the LBL trace of packet havior at small scales, then we would
tailed local structure as well as long arrival per time depicting erratically be in a position to perhaps eliminate
memory. varying regularity. or moderate it via modifications to the
protocol. Alternatively, if a property of
= = certain traffic source types was the cul-
- N prit, then we could predict if the scaling
] o would persist in the future or fade away
“ b as the nature of telecommunications ser-

N B vices evolve.
. . To conclude this introduction to scal-
R e S e ing in telecommunications, we point out
that in many series derived from traffic
Fig. 3. Zooms: 429’500 — 432’000, 463’000 — 466’000, and again: 463’700 — 464’ 100. data, in particular TCP/IP traffic and
Demonstrating the existence of long memory as well as the interwoven coexis- including the data in Figure 1, (see Fig-
tence of smooth and bursty periods at all times. ure 8, right most plot and Box 12), a

recurring feature is the existence of a
characteristic scale at around 1 second,
which separates the now classic “mono-scaling” at large scales indicative of long memory, from the more complex, but
none-the-less scaling behavior, at small scales. Multifractal models are one possible approach for the latter domain,
whereas infinitely divisible cascades offer the possibility of integrating both regimes in a single description. In the fol-
lowing two sections we will describe these models and the associated traffic phenomena in detail, together with wavelet
based statistical methods which enable them to be effectively explored.

&
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II. SCALING MODELS

The notion of scaling is defined loosely, as a negative property of a time series:

Fig. 4.

distinguished from the whole.

Statistical Self-Similarity. A di-
lated portion of the sample path of a self-
similar process cannot be (statistically)

the absence of characteristic scales. Its main consequence is that the whole and
its parts cannot be statistically distinguished from each other. The absence of
such scales means that new signal processing tools are needed both for analy-
sis and modelling, whilst standard techniques built on characteristic times (for
example simple Markov models) must be abandoned. This section provides an
introductory review of various models used to give flesh to the spirit of scaling.

Self-Similarity. The purest formal framework for scaling is undoubtedly that
of exactly self-similar processes. Self-similarity (see Figure 4 for an illustration,
Box 4 for a technical definition and, e.g., [33] for further information) means that
the sample paths of the process X (¢) and those of a rescaled version ¢ X (t/c),
obtained by simultaneously dilating the time axis by a factor ¢ > 0, and the
amplitude axis by a factor ¢, cannot be statistically distinguished from each
other. H is called the self-similarity or Hurst parameter. Equivalently, it implies
that an affine dilated subset of one sample path cannot be distinguished from its

whole. It is therefore not possible to identify a reference scale of time, and thus
there is no such reference scale. Exact statistical self-similarity thereby fulfils the

intuition of scaling in a simple and precise way.

Self-similar processes are, by definition, non stationary, as can be seen from equation (2). However the most impor-
tant subclass, namely self-similar processes with stationary increments (H-sssi processes), are non-stationary in a very
homogeneous way. They can be thought as the integral of some stationary process. Fractional Brownian motion is the
unique Gaussian self-similar process with stationary increments, and is the most widely used process to model scaling

Box 4: Self Similar Processes with Stationary Increments.

A process X (¢) is said to be self-similar, with self similarity parameter H > 0, if
{(X(t),t € RY L {cHX(t/c),t € R}, Ve >0, (1)

where £ means equality for all finite dimensional distributions. A major consequence
of this definition is that the moments of X, provided they exist, behave as power-laws
of time:

E|X (8)]7 = BLX (1)t (2)

For applications, one usually restricts the class of self-similar processes to that of
self-similar processes with stationary increments (or H-sssi processes). A process X
is said to have stationary increments Y (0, ¢) if

(V(6,8) := Ys(t) == X (¢ +6) — X(b), t € R} L {X(5) — X (0)}, V5, (3)

or, in other words, if none of the finite dimensional laws of Y'(§,¢) depend on ¢.

For a H-sssi process X, the self-similarity parameter necessarily falls in 0 < H < 1
and the covariance function, when it exists, takes a specific, unique, and constrained
form: EX ()X (s) = % (Jt[>7 + |s|*" — |t — s} ,0® = E|X(1)[>. Moreover, it can
be shown that the autocovariance function of the increment process Ys reads:

0.2

EY;(t)Y5(t+s) = 7(|s+<5|2H+|s—<5|2H—2|s|2H). (4)

The self similarity of the process X is transferred to its increments insofar as:

Y(5,t) <
V(6,07 =

My (6/c,t/e), (5)

E E|X (¢ +0) — X (1) = o2|6]*H. (6)

properties in empirical times se-
ries.  For example it has been
used to model the data shown in
Box 2, more specifically to model
the variability of the number of
Ethernet bytes in the interval [0, ¢].
Practically, self-similarity is usually
tested for and analyzed through its
increments and the relation (6).

Limitations of Self-Similarity.
Self-similar processes with station-
ary increments, and more specifi-
cally fractional Brownian motions,
are very attractive models to de-
scribe scaling because they are
mathematically well-defined and
well-documented. In addition, their
great advantage lies in being sim-
ple and parsimonious: each of their
properties is defined and controlled
by the same parameter, H. Their
main drawback however, lies in
them being ...simple. It is indeed
unlikely that the wide variety of
scaling encountered in data can be
modelled by a process with a sin-
gle parameter. The model is overly
rigid in several respects. First, def-
inition 1 is valid for all positive real
¢, which means that the scaling ex-
ists for all scales or dilation factors
ranging from 0 to co. Equivalently,

one can say, looking at equation (5), that the scaling relation holds whatever the value of the scaling factor. In actual
real world data, scaling can naturally exist only within a finite range of scales and will typically only be approximative.
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Moreover, one may find evidence for scaling only in the asymptotic regions, i.e., only within the very large (or the very
small) scales. Second, self-similarity implies (see equation (2) that scaling holds for each moment order ¢ (provided
it exists), with scaling exponent ¢H. In empirical data, moments of different orders may have scaling exponents that
are not controlled by a single parameter, and some moments may simply not exhibit scaling at all. Even worse, the
empirical moments might be misleading when

the theoretical moments of the true distribution
do not exist at all, as is the case with stable laws. Box 5 : Long—Range DepeﬂdeﬂCe
In the case of traffic data, most often scaling

; ; . Let {X(t),t € R} denote a second-order stationary stochastic process,
models with a single parameter are appropriate

and ry and 'y its covariance function and spectral density. We will say

at large Scales‘, but at small scales [nore param- | that the process { X (t),t € R} is Long-Range Dependent (LRD) if either
eters are required. In rarer cases, definitive ev-

idence for scaling is lacking altogether. Infinite rx(8) ~c1]6", § = +o0, v € (0,1) (7)
moments can play a role for quantities such as
TCP connection durations, but in term of scal- |or

ing models, those most commonly used are of the Ix(v) ~clv|™7, v—0, v€(0,1), (8)
finite (positive) moment type.

The remainder of this section details more flex-
ible models that enable such deviations from ex-
act self-similarity. We first explore those that
concentrate on scaling in second order statis-
tics, that is, involving autocovariance functions
and spectra or power spectral densities. Pro- /00

with ¢o = 2(27) " "T'(y) sin((1 — v)7/2)c; . In most practical situations,
rx is regularly varying or even asymptotically monotone, in which case
these relations are in fact equivalent.

With this definition, the autocovariance function decreases so slowly, the
past is so weighty, that its sum diverges, i.e., for any A > 0,

cesses whose spectra obey a power-law within a rx (8)dd = oco.

A

given (and sufficiently wide) range of frequencies
(scales) are often referred to as 1/f processes:

Tx(v) =Colv| ™7, vm < V| < v

The two special cases where the scale range is semi-infinite, either at small frequencies, v,, — 0 (equivalently, large
scales) or at large frequencies, vy — oo (small scales), define two interesting models, namely those of Long-Range

Dependent processes (see Box 5) and monofractal processes (see Box 6).
Long-Range Dependence.  Long-range dependence (LRD) or long memory [5] is a model for scaling observed
in the limit of the largest scales, and is defined in terms of second-order statistics (see Box 5). LRD is usually equated
with an asymptotic power law decrease of the autocovariance function, that

should be compared to the exponential one encountered in more classical

H=025 =075 models (like ARMA processes). An exponential behavior implies, by defini-
tion, a characteristic time while a power law, in contrast, is naturally scale
invariant,.

All processes with exact self-similarity exhibit LRD. Indeed, let X be a
H-sssi process with finite variance. Then it follows from equation (4) that,
asymptotically, the covariance function of its increments Yy reads

1 sample path
1 sample path

ry, (s) == BY3(t + s)Y5(t) ~ 0?H(2H — 1) s> =1 53 4.

H=0.25 H=0.75

which shows that, for 1/2 < H < 1, the increments are long-range dependent
processes with v = 2H — 1.

Long range dependence is often theoretically and practically studied
through the technique of aggregation. As explained and illustrated in Box 2,
aggregation consists of studying windowed average versions of the data as a
function of the window width T'. The covariance functions of the aggregated
Fig. 5. Hurst and Hélder in fractional Brownian| LRD processes converge to the form given in equation (4) for the fractional

motion. The larger the Hurst exponent H, the|  (Gangsian noise (the increment process of fBm), which is itself invariant under
smoother the sample path (top row). The Holder . . .. . . .
characterization of roughness can be visualized by | 28gregation. This explains its canonical role in analyzing long-range depen-
binding together a number of realizations at some | dence in empirical time series. The variance of the aggregated LRD process
arbitrary point, and by superimposing (in red) the | * 3]s0 hehaves as a power-law of the aggregation length with an exponent con-
right-hand side of eq.(10), with h = H and K = . . . . . .
30 (bottom row). trolled by v (Box 2). This property provides the basis for simple time domain
estimators for the exponent (see, e.g., [34]). For traffic data, LRD models

have been the most widely used. For example both the Ethernet data of
Box 2 and the TCP data of Figure 1 exhibit strong LRD.
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Fractal Processes. Local Holder regularity (see Box 6) describes the regularity of sample paths of stochastic
processes by means of a local comparison against a power-law function, and is therefore closely related to scaling in
the limit of small scales [9]. The exponent of this power-law, h(t), is called the (local) Holder exponent and depends
typically on both time and the sample path of X. Processes for which the Holder exponent h(t) is the same for all
t, such as fractional Brownian motion, exhibit constant regularity along their sample paths; they are often referred to
as monofractal processes. The Holder exponent h(t) provides a measure of local path-regularity or roughness which
generalizes the notion of differentiability: sample paths exhibit more and more variability as h is decreased from 1 to 0.
This is clearly seen for fractional Brownian motion in the top row of Figure 5.

While a rigorous proof is hard, it is easy to convince oneself of the monofractal character of fractional Brownian motion
exploiting its H-sssi property combined with the centered nature of the Gaussian marginals. Indeed, from equation (6)
the autocovariance of the increments Yy of a second order H-sssi process X behaves as

EIY (6,0) = BIX(t + ) - X(O]? = 0[5!

which is independent of ¢. In Box 6 we find in equation (9) an asymptotically equivalent property for some stationary
processes with a certain autocorrelation function. Let us add the assumption that our process X is Gaussian, i.e.,
restrict X to fractional Brownian motion. Since the Gaussian distribution is well centered, meaning that most samples
are within a few standard deviations from the mean, the net result is that the oscillations of X over intervals of length §
are roughly of the size 6% - \/IE[X2(1)]. Indeed, it can be shown that for any h < H (and for no h > H) almost all sample
paths satisfy (10) at each to. Thus, the variability (oscillations) of fBm are of equal strength everywhere, confirming its
monofractal character which it is

entirely controlled by H. An-
other heuristic argument uses
self-similarity to re-scale time and
space through X(ct) = cHX(t)
(see (1)) with the same ra-
tio between time and space at
“all”  times. Similar as for
long-range dependence, also local

Box 6: Local Holder Regularity

Let {X(t),t € R} denote a second-order stationary stochastic process, whose auto-
covariance function has the cusp-like behavior EX (£) X (t + §) ~ (o2/2C)(1 — C|5|**)
(with A > 0) when § — 0. This implies that small step increments of X satisfy:

E|X (t +0) — X(t)]* ~ 0?|6]*",6 — 0. (9)

Holder regularity is often stud-
ied through the increments of the
process, according to relation (9).

Moving beyond monofractality,
one could think of allowing the
exponent h in relation (9) to be
a function of time:

E|X (t4+6)—X (t)|* ~ O(t) |§]*"®.

Such a process could describe
data which have locally fractal
properties which evolve slowly
and fairly smoothly over time. If
0 < h(t) < 1 is a deterministic
function with enough regularity,
the process X is said to be mul-
tifractional or, when Gaussian,
locally self-similar. This means
that locally around time ¢, X (t)
is very much like a fBm with pa-

This relation gives an information on the regularity of X since the condition h > 0
guarantees mean-square continuity, whereas differentiability can only be achieved if
h > 1. In other words, within the range 0 < h < 1, sample paths of X are everywhere
continuous and nowhere differentiable.
The description of such “wild” trajectories can be made more precise by referring to
Holder exponents. A signal X (t) is said to be of Holder regularity h > 0 in #o if one
can find a local polynomial P, (t) of degree n = |h] and a constant K > 0 such that
|X(t) — P, (t)| < K|t — to|". In the case where 0 < h < 1, the regular part of X (t)
reduces to P, (t) = X (tp), leading to the simpler relation, based on increments only:
X (to + ) — X (to)] < K |0]", (10)
and the largest such value of h is the Holder exponent.
Holder regularity is also closely connected to the algebraic behavior (9) of the incre-
ments variance, and even in the case of non-stationary processes, provided they have
stationary increments. Stochastic processes that present a local Holder regularity
that is constant along their sample paths are often referred to as monofractal pro-
cesses. More sophisticated situations can be encountered, where the Holder exponent
is no longer unique, but can vary from point to point. This is especially the case in
multifractal situations (see Box 7).

rameter H = h(t) (see [25] for details). Such a multifractional model clearly no longer has stationary increments, since
their distributions depend by definition on the deterministically changing h(t). Also, such a model is not multifractal
in the true sense: although locally fractal with a varying exponent h(t), it suffers from two deficiencies. First, the local
irregularity h(t) at a given time ¢ is “deterministic”, meaning that it is the same for almost all realizations, whereas it is
random for truly multifractal processes. Second, h(t) varies very slowly or “smoothly” while true multifractal processes
exhibit a full range of different values h(t) in any time interval, however small. For these two reasons, multifractional
models really aim at describing a form of non-stationarity. Network traffic, however, can exhibit rich, true multifractal
behavior (see Figures 1 and 2).

Multifractals. When the regularity h(t) is itself a highly irregular function of ¢, possibly even a
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random process rather than a constant or a fixed
deterministic function, the process X is said to
be multifractal. In such situations, the fluctua-
tions in regularity along paths are no longer de-
scribed in terms of a function h(t) but through

1 0
M; *Mg
1
40
2
2 1 of
2 1 o[M1*Mo™Mgl 20)
Mo"Mo™Mg| MMM ) 1
2MiMomZm =M
1 % 02 04 3 [

Binomial Cascade. Dyadic tree based construction — first three interme-
diate stages (values of the measure on coarsest intervals) — a sample path.

the so-called multifractal spectrum D(h) (see Box
7 and [9], [29]). Tele-traffic time series, for ex-
ample those in Figures 1, 2, in fact often have
local Holder exponents h(t) which change errat-
ically with location t. Such behavior is loosely
termed multifractal. A model class which is rich

enough to capture multifractal properties is that

of multiplicative cascades. One of the most celebrated examples is that of the Binomial cascade X, defined here for

convenience on [0, 1] through:

X((2k +1)/27) = X (2k/27) £ MEF - (X ((k+1)/27) - X (k/27) £ T] M, - (X(1) - X (0)).

Here the M ,z are independent posi-
tive random variables called the multipli-
ers such that “siblings” add up to one:
Mt + M;,j:i_ll = 1. Thus, (11) “re-
partitions” the increments of X iteratively.
Setting X(0) = 0 and X (1) = 1) (for
convenience) defines the process on [0, 1].
This is a particular incarnation of a gen-
eral approach to the generation of multi-
fractal processes, namely the iteration of a
multiplicative procedure. Note that all in-
crements are positive and that the aspect
ratios, given by the My, ;, depend explic-
itly on the location where the re-scaling is
done. This is in stark contrast to the scaling
of fractional Brownian motion and the re-
lation (5) for self-similarity, and is the most
immediate reason for the multifractal struc-
ture of cascades. An illustration of this con-
struction procedure as well as an example
of resulting sample path is shown on Fig-
ure (6). Comparing by eye with the net-
work time series of Figures (1, 2), a clear
visual agreement is evident. A disadvan-
tage of binomial cascades is that they are
not even second order stationary. Station-
ary multifractal models are only just ap-
pearing in the literature [20].

One of the major consequences of multi-
fractality in processes lies in the fact that
quantities usually called partition functions
present power law behaviors in the limit of
small scales:

1/6

Ss(q) =YY ((k+1)8,0))|" = > [X((k+1)0) — X (kd)|* = ¢,[8]°9 ", [5] = 0.

k=1

n+1
(11)

Box 7: Multifractals

Let {X(t),t € R} denote a stochastic process. The local Holder exponent h(s)
of the process at time s is a random variable defined pathwise as the largest
h > 0 such that | X (t) — P,(t)| < K |t — s|". Here, P,(t) is the local polynomial
of degree n = | h| as in Box 6. If the Taylor polynomial of degree n exists, then
this polynomial is necessarily that Taylor polynomial; but in general the path
of X might not have n derivatives.

In the case where the local polynomial P; is constant then h(s) is the largest
h such that

|X (s +8) — X(s)| < K |6]". (12)

holds. Note that h(s) may very well be larger than 1, as is the case with
all cascades. A simple argument yields [31] the more useful dual statement:
if the largest h satisfying (12) is non-integer, then the local polynomial P is
necessarily constant and h(s) can be computed using (12).

Fig 5 demonstrates the simple scaling structure of fractional Brownian motion;
for almost every path and at any time instance one finds the same local scaling
exponent: h(t) = H. In real world data such as network traffic the local scaling
h(t) changes erratically and randomly in time. The multifractal spectrum D of
a process X provides a mean to capture this complexity; it is defined path-wise
and is, thus, random. Denoting the Hausdorff dimension of a set E by dim(FE)
the spectrum is

D(a) := dim({t € R : h(t) = a}) (13)

The multifractal spectrum of cascades and self-similar processes is the same for
almost all paths. In particular, for fBm it consists of only one point: D(H) =1,
while it has an inverted-“U” shape for multiplicative cascades.

While estimating D from traces is very hard, there exist almost sure upper
bounds which are easier to estimate (see Box 11). For an overview see [31].

1/6
(14)
k=1

For instance, for the binomial cascade above, assuming that all multipliers in (11) are identically distributed, (14) holds
(and also (19) below), at least for lags § = 1/2™ and with ((q) = —logIEM?. For processes with stationary increments,
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the time averages Ss(¢)/0 can be seen as esti-
mators for the statistical averages IE|Xs(t)|?.
Therefore, relation (14) above is highly rem-
iniscent of the fundamental equation (2) im-
plied by self-similarity. A major difference,
however, lies in the fact that the exponent
¢(¢q) need not a priori follow the linear be-
havior ¢H of self-similarity. In other words,
to describe cascades using one single expo-
nent or parameter is impossible and an entire
collection of exponents is needed. The mea-
surement of the ((q) exponents offer, through
a Legendre transform, a useful way to esti-
mate the multifractal spectrum (see Box 11
and [31]).

Beyond power laws.  Multifractal scaling
offers an extension to self-similarity insofar as
the scaling of moments is no longer governed
by one single exponent H but by a collection
of exponents. However, it maintains a key
feature: moments behave as power laws of the
scales. When analyzing actual data, it may
very well be observed that this is not the case,
see e.g., [39]. To account for those situations,
the infinitely divisible cascade (IDC) model
provides an extra degree of freedom.

The concept of infinitely divisible cascades
(IDC) was first introduced by B. Castaing in
[6] and rephrased in the wavelet framework in
[4]. Box 8 briefly recalls its definition, conse-
quences and relations to other models. The
central and defining quantity of an IDC is the
propagator or kernel G 5. Infinite divisibil-
ity generalizes the concept of self-similarity;
it simply says that the marginal distributions
at different scales are related to each other
through a simple convolution with the prop-
agator (G; thus, G completely captures and
controls the multiscale statistics. Leaving de-
tails to Box 8, let us be explicit in the case
of self-similarity where the propagator takes
a particular simple form due to (1): G5
is a Dirac function. In more precise terms,
the distribution at scale ¢’ is obtained by
convolving the distribution at scale § with
Gss(Ina) = d(lna — HIn(d/d"))). Since
the Laplace transform reads as GN’M/ (q) =
exp {¢H In(§/6")} we may interpret Gss as
the In(d/6")-fold self-convolution of an ele-
mentary propagator Gy which describes a
“unit change of scale”. For comparison, we
note

Self-Similarity E|Xs(t)|? =
Multifractal Scaling E|X5(t)|7 =
Infinitely Divisible Cascade E|X;s(t)|? =

Box 8: Infinitely Divisible Cascades

Self-similarity implies that the probability density function (pdf) ps of the
increments X at scale §, is a dilated version of the pdf of those at a larger
scale §": ps(z) = (1/ap) ps'(x/ap) where the dilation factor is unique :
ap = (6/8")H. In the cascade model, the key ingredient is that there is no
longer a unique factor but a collection of dilation factors a ; consequently
ps will result from a weighted sum of dilated incarnations of ps:

T

ps(x) = /G575r(1n @) l175r (—) dln a.
a a
The function G54 is called the kernel or the propagator of the cascade. A
change of variable shows that the definition above relates the pdfs p. and
p;, of the log-increments In|Xs| at different scales through a convolution
with the propagator :

ps(Infz|) = /G(575r(lna)£6,(ln|x|—lna)dlna

= (Gss *py,)(Ina). (15)
Infinite divisibility implies by definition that no scale between ¢ and ¢’
plays any specific role, i.e, if scale 0" lies between scales § and ¢’ then
Gs,50 = Gs50 % Gsn 5. This convolutive property implies that propagators
can be written in terms of an elementary function G convolved with itself
a number of times, where that number depends on ¢ and ¢’

GS,(S/ (ln a) = [Go (ln a)]*(”(‘s)—n(é’)) -

Here, G*™ denotes n fold convolution of G with itself.

Using the Laplace transform GN’M/ (g) of Gs,, this can be rewritten as
Gs.5(q) = exp{H(q)(n(d) —n(d")}, with H(q) = InGo(g). This yields
(compare with eq. (20)): the following relations, fundamental for the anal-
ysis [39]:

hE|Xs|? = H(q)n(d)+ K, (16)
H(q)
1H]E|X§|q = mlﬂE|X§|p +Hq,p' (17)

A possible interpretation of this relation is that the function G defines the
elementary step of the cascade whereas the quantity n(d) —n(d') quantifies
the number of times this elementary step is to be applied to proceed from
scales § to ¢’. The derivative of n with respect to ¢ describes in some
sense the speed of the cascade at scale §. When the function n takes the
specific form n(d) = Ind, the infinitely divisible cascade is said to be scale
invariant and reduces to multifractal scaling. The exponents ((g) associated
to the multifractal spectrum are then related to the Laplace transform of
the propagator through &(q) = H(q) (see Box 8). As detailed in the text,
self-similarity is also included as an even more special case. For further
details on infinitely divisible cascade, see [39].

cql6|™ = ¢, exp(qHIn §)
Cq|5|C(q) = ¢q exp(¢(q)In d)
cq exp(H (¢)n(9)) (20)

where the function n(J) is not necessarily In ¢, just as the function H(q) is not a priori ¢H.
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ITII. WAVELETS FOR ANALYSIS AND INFERENCE

Box 9: A Wayvelet Primer

In contrast to the Fourier transform which analyzes signals in terms of oscillating sinu-
soidal waves e/27/t the wavelet transform conducts a local Fourier analysis by projecting
the signal X (¢) onto locally oscillating waveforms, referred to as “wavelets.” A wavelet
¥(t) is a bandpass function which oscillates with some central frequency fy. Scaling (by
dilating or compressing) and shifting the wavelet:

Vik(t) = 2792277t — k), (21)

moves its central frequency to 277 fo, and shifts its time center by 27k.

oA~ —
—JV-
2l

Fig. 7. Wavelets from a length-8 Daubechies filterbank. ;From top to bottom: 19,0(t), ¥1,3(t), ¥3,22(t)-

Besides the wavelet ¢(t), a wavelet decomposition makes use of a companion low-pass
function ¢(t) (referred to as a scaling function) which can be scaled and shifted in the
same way. Just as a signal can be built up from a sum of weighted sinusoids, it can be
built up from a sum of weighted scaling functions and wavelets

X(t) =Y "ex(o k)bjor + D Y dx (G, k) x(t). (22)
k

i<jo k

The ¢x (jo, k) are called the scaling coefficients; and the dx (4, k) the wavelet coefficients.
The first term reconstructs a coarse-resolution approximation to X (¢). The second term
adds in detail information at finer and finer scales (higher and higher frequencies) as
j — —oo. By careful design, the wavelet and scaling functions can be constructed to be
orthogonal, meaning we can compute the wavelet and scaling coefficients as simple inner
products:

CX(j,k) = <X7 ¢j7k>, dX(],k) = <X7 1/}]',16)' (23)

As an extension to the band-pass requirement (i.e., ¢ has zero mean), a further property
of any wavelet is its number of vanishing moments, i.e., the largest number N > 1 such
that

/tkw(t)dt:();k:O,l,...N—l. (24)

There are large families of orthogonal wavelets and scaling functions. The Daubechies—8
wavelets pictured above (for which N = 4) are but one example.

From a practical point of view, the scaling and wavelet coefficients are related by a
filterbank. To create cx (j, k), dx (4, k), we pass cx (j+1, k) at the next finer scale through
both a lowpass and a highpass discrete-time filter and then downsample by skipping every
other sample. The filter responses are elegantly related to the continuous-time scaling
and wavelet functions. This algorithm is applicable also to discrete-time signals and is
extremely efficient (O(n) time to compute all available scales of a n point signal).

IEEE SIGNAL PROCESSING MAGAZINE

We saw from the previous sec-
tion that diverse signatures of
scaling can be observed both
with respect to time (regular-
ity of sample paths, slow de-
cay of correlation functions,. .. ),
or to frequency/scale (power-law
spectrum, aggregation, zoom-
ing, small scale increments,. .. ).
This suggests that to identify
and characterize scaling an ap-
proach which combines time and
frequency/scale, and which for-
malizes properly the idea of a si-
multaneous analysis at a contin-
uum of scales, should be taken.
In this respect, wavelet analy-
sis appears as the most natural
framework.

By definition, wavelet analy-
sis (see Box 9 for basics and
[18] for a comprehensive survey)
acts as a mathematical micro-
scope which allows one to zoom
in on fine structures of a sig-
nal or, alternatively, to reveal
large scale structures by zoom-
ing out. Therefore, when a
signal or a process obeys some
form of scale invariance, some
self-reproducing property under
dilation, wavelets are naturally
able to reveal it by a corre-
sponding self-reproducing prop-
erty across scales. Moreover, the
time-dependence of the wavelet
transform allows for a time-
localization of scaling features.

In its discrete version operat-
ing on dyadic scales, the wavelet
transform (WT) is a rigorous
and invertible way of perform-
ing a multiresolution analysis, a
splitting of a signal into a low-
pass approximation and a high-
pass detail, at any level of res-
olution. Iterating the proce-
dure, one arrives at a represen-
tation which consists of a low-
resolution approximation, and a
collection of details of higher
and higher resolution. From
the perspective of more clas-
sical methods used for scaling
data, iterating low-pass approx-

imations, at coarser and coarser resolutions, is an implicit way of aggregating data, whereas evaluating high-pass details,
as differences between approximations, is nothing but a refined way of computing increments (of order N for a wavelet
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with N vanishing moments). Combining these two key elements makes of multiresolution a natural language for scaling
processes.

As explained in Section II, self-similarity is the canonical reference model for scaling behavior. Self-similar processes
with stationary increments are traditionally analyzed through their increments, however reasons for resorting to wavelets
are at least threefold:

1 Scaling — Due to its built-in scaling structure, the wavelet transform reproduces any scaling present in the data, with
a geometrical progression of all (existing) moments across scales, as:

E|dx (j, k)|* = Eldx (0, k)|7 - 290 +1/2), (25)

2 Stationarization — Due to the bandpass nature of admissible wavelets, sequences of wavelet coefficients can be seen
as (filtered) increment processes at different scales: this makes the analysis extensible to non-stationary processes with
stationary increments (like H-sssi processes), resulting in stationary sequences at each scale.
3 Almost decorrelation — Whereas direct manipulation of LRD processes is hampered by slowly-decaying correlations,
it turns out that [11], [37]

Edx (j, K)dx (j, k +m) ~ C(j)[m[" =2V,

N being the number of vanishing moments of the wavelet. Under the mild condition N > H + 1/2, global LRD existing

|m| — oo,

among the increments of H-sssi processes, can thus be turned, at each scale, into short-range dependence.

Another advantage is that, due
to the frequency interpretation of
wavelets, wavelet analysis can serve as
a basis for useful substitutes for spec-
tral analysis. Indeed, it can be shown
that for stationary processes X with
power spectrum I'x (v), we have

Edx (j, k)* = /Fx(ll) 27 |W(271) 2 dv.

When in addition X is a long range
dependent process, this yields

E|dx (j, k)] ~ C'27%, j — +o0, (28)

and it can be shown [2] that the cor-
responding wavelet coefficients are also
short range dependent as soon as N >
a/2.

Wavelet coefficients are also useful to
study Holder regularity. This relies on
the fact that if X is Holder continuous
of degree h(t) at t then the wavelet co-
efficients at ¢ decay as

|dx (j, k)| < 20 (0+1/2) (29)

as the intervals [k27, (k + 1)27] close in
ont (j - —o0). Under certain con-
ditions, the bound is asymptotically
tight [13], [7]. For monofractal pro-
cesses, that is for processes for which
Holder exponents h(t) remain constant

Box 10: Wavelet Analysis of 2nd Order Scaling

Scaling processes (be they LRD, 1/f-type, mono- or multifractal) share the
property of exhibiting power-law spectra in some frequency range, whence the
idea of estimating scaling exponents from a spectral estimation. The wavelet
transform offers an alternative to classical spectrum analysis [2], based on a
power law behavior of the wavelet detail variances across scales
E|dx (j,k)|* ~ C277, (26)
reminiscent of equation (25) with ¢ = 2 for self-similarity, (28) for long range
dependence and (30) for monofractality. These are all suggestive of a linear
relationship log, IEdx (j, k)? ~ vj + C in a log-log plot.
The stationarization property together with the almost decorrelation property
(see points 2 and 3 in text) justify that the variance involved in (26) can be
efficiently estimated on the basis of the simple empirical estimate:

1 & o
Hj = ;de(]ak)za (27)

J k=1

where n; is the number of coefficients available at octave j. The graph of
log, p; against j (together with proper confidence intervals) is referred to as
the (second-order) Logscale Diagram (LD) [3]. Examples are given in Figure 8.
Straight lines in such diagrams can be understood as evidence for the existence
of scaling in analyzed data, while the range of scales involved gives information
on its precise nature (self-similarity, long memory, ...). Estimation of scaling
exponents can be carried out from such graphs via weighted linear-fit techniques
(see [3], [38], [1] for details). The possibility of varying the number of vanishing
moments of the mother wavelet bring robustness to the analysis procedure
against non-stationarities.

along sample paths, we have the following relation,

E|dx (j, k)[> ~ C"27ChD) [ j 5 —oo,

(30)

to be compared to equations (25) and (28) above.
To summarize, the wavelet transform closely reproduces the scaling properties that exist in data, be it self-similarity,

long range dependence, or monofractality, and, at the same time, replaces one single poorly behaved (non-stationary,
LRD) time series by a collection of much better behaved sequences (stationary, SRD), amenable to standard statistical
tools. Therefore, second order statistical scaling properties can be efficiently estimated from marginalized scalograms,
that is squared wavelet coefficients averaged over time, circumventing the difficulties usually attached to scaling processes.
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Using this idea, Box 10
details the steps lead-

ing to an estimation of
the exponent of second
order scaling, in a log-
log plot known as the
Logscale Diagram.

PRI |

ociave Octave | octave

Examples of such sec-

Fig. 8. Second Order Logscale Diagrams. For each of five different time series, scaling behavior is identified | ond order analysis are

over the range fitted in red, as described in Box 10. Left two plots: a LRD series with scaling at large scales, and given in Figure 8 for
a self-similar process, where the scaling is seen across all scales. The next two plots are from the same “pAug”
Ethernet trace as Box 2. Left: discrete time series of IP packet inter-arrival times showing LRD, and Right: the X K
bytes per bin data of Box 2, showing empirical self-similarity. Far right plot: Interarrival time series of TCP | S€ries and three series
connections (see Figure 1), showing an abrupt change point separating two apparently different scaling behaviors, | from traffic data, as
at a characteristic time scale of about 1s. These two scaling regimes can be linked via the Infinitely Divisible detailed further in the
Cascade model.

two synthesized time

caption. The plots
grouped in the box are
two different time series extracted from the same celebrated Ethernet trace [14] discussed in Box 2. Series from this
trace provided one of the first clear indications of long range dependence in traffic. The advent of wavelet-based analysis
added precision and completeness to the study of the empirical scaling, and to the corresponding measurements of the
Hurst parameter [3], [38], as well as estimates of the prefactor C' (equation 28), of importance in applications. Crucially,
it also helped settle controversy as to the interpretation of the discovery, by showing that the observed scaling in the
time series was not the result of corrupting non-stationarities, but actually corresponded to long range dependencies.
The diversity of behavior in the examples of Figure 8 illustrates an important advantage of a semi-parametric analysis
framework, such as the wavelet approach described here. The analysis need not make any a priori assumption about the
range of scales over which scaling may exist. The range is rather inferred from the analysis itself, leading to an identifica-
tion of the scaling type, such as LRD at large scales and/or multifractality at small scales, prior to any estimation phase.
Indeed, the rightmost plot shows two different scaling regimes for a series derived from Internet data, which (from a purely
second order viewpoint), requires two independent estimations. In contrast, parametric methods can easily give very mis-
leading results if the data is not close to the assumed model class, making them unsuitable for the exploration of real, and
complex, data. The
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Fig. 9. Left: Superimposed log-log plots, at several values of g, of the partition sum against scale for a time series cess of interest, with

of bytes per bin of TCP traffic (taken from the LBL-TCP3 trace [24]) (on left), and a matched binomial cascade undesirable conse-
(right).

quences. These
include invalidat-

Fig. 10. Right: Multifractal spectrum of local Hélder exponents estimated via the Legendre transform.

ing the stationar-
ity property of the LRD process under study, or mimicking LRD correlations when added to a short-range dependent
process [1]. Wavelets are a versatile solution to this crucial issue, since they offer the possibility of being blind to poly-
nomial trends. Recall that any admissible wavelet has zero mean. This is equivalent to having a zeroth order vanishing
moment, or in other words, to be orthogonal to constants. In fact N vanishing moments implies that the wavelet is
blind to polynomials up to order p < N — 1. Trends which are “close” to polynomial can be effectively eliminated in
this manner [3], and the advantage of being able to do so without even testing for their presence is an important one
when making sense of real data, and in particular when trying the distinguish non-stationarity from scaling behavior.
Building on the advantages of the wavelet approach, a statistical test for the constancy of a scaling exponent can be
defined [40] which helps resolve this difficult issue.

Finally, the analysis of scaling processes is often faced, and particularly so in the case of tele-traffic, with enormous
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quantities of data, thereby requiring methods which are efficient from a computational point of view. Because of their
multiresolution structure and the related ability to be implemented as a filter bank, wavelet-based methods are associated
with fast algorithms, out performing FFT-based competitors with a complexity of only O(n) in computation (compared
to O(nlog(n))) and O(log(n)) in memory, for n data points. These advantages hold not only at second order, but more
generally, including for the more advanced types of analysis we now discuss.

Beyond Second Order Analysis As explained in Section 2, scaling may involve statistics beyond second order,
which if observed in the limit of small scales, calls for a multifractal interpretation. Multifractal analysis provides a
“finger print” of local scaling properties of the paths of a process X through the multifractal spectrum D(h), and
the multifractal formalism provides a powerful approach to numerically estimating it. Just as for second order scaling
analysis, estimates can be based on increments of the process or time series, however, from arguments close to those
developed at second order, wavelet coefficients offer themselves as an ideal alternative. Notably, tuning the number of
vanishing moments of the mother wavelet allows the analysis of processes with Holder exponents larger than 1. Box 11

gives a more detailed pictures of this wavelet based multifractal analysis.

Box 11: Wavelet-based Multifractal Formalism

The wavelet based partition function,

Sila) =Y 1279 dx (j, k)|, (31)

k

constitutes the wavelet counterpart of the traditional partition function (equa-
tion (14)). It can be bounded from below by summing only over a subset of indices
k, say those for which |277/2dx (j, k)| ~ 27". For the sake of argument we assume
that this marks the locations where the Holder regularity of the path is indeed h
(compare (29)). It follows then from box-counting methods, a standard technique
in fractal geometry, that the number of such indices grows asymptotically at least
as 277P(") implying that S;j(g) grows at least as 2/(4"=P(")_ Since the choice of
h was arbitrary, we arrive at the asymptotic bound

S;(q) > 2infr(i(gh=D(h))) (32)

which is provably tight in the limit 2/ — 0 using a steepest descent argument.
Estimating ((q) from the decay of estimates of the moments S;(q) ~ 27¢(@ we
arrive at an asymptotic estimate

D(h) < D**(h) = ¢*(h), (33)

where g*(z) = inf, (zy —g(y)) denotes the Legendre transform of a function g. Note
that applying the transform twice yields the concave hull g** of g. It is notable, that
the statistically and numerically robust global estimator ¢ provides information on
the delicate local properties captured in D(h), which would be almost impossible
to access directly.

In practice, ((q) is estimated as the least square slope of a log-log plot of the
partition sum against scale, i.e., log(S;(¢)) against log2’. Comparing with Box 10,
this demonstrates quite explicitly how multifractal analysis goes beyond second
order statistics. Figure 9 shows examples. This wavelet based estimator can be
further developed using the wavelet maxima method [23], [4] which addresses in
particular the invertibility of (29).

Figure 9 depicts log-log plots of
S;(q) against 27 for a real world trace
(the LBL-TCP3 trace of [24]) and a
synthetic cascade which has been de-
signed to match the second moments
of the series on all dyadic scales. It is
notable that also the sample moments
of orders —3.2 < ¢ < 3.2 agree closely.
Consequently, the functions ((¢q) and
the estimated spectrum D(h) = (*(h)
are very close. This is demonstrated in
Figure 10 where the spectrum of an ad-
ditive tree model is added for compar-
ison. This additive model matches the
same second order moments as the cas-
cade, but it is Gaussian in nature with
only little variation in its local Holder
exponents and consequently shows a
narrow spectrum different from the
real trace. This example again shows
that in numerous computer network
time series, scaling occurring at small
scales cannot be described by a single
exponent but require an entire family.
Current research focusses on its im-
pact on performance evaluation, net-
work design and control [8], [28].

The infinitely divisible cascade model,
introduced in Box 8 using increments
for simplicity, can also be rephrased
in wavelet terms [4], [39] with, again,
many advantages similar to those de-
tailed above for the second order case.
Box 12 illustrates the analysis, esti-
mation, and verification procedure of
this more practical wavelet incarna-
tion. The time series is that of Fig-

ure 1, the list of successive inter-arrival times of TCP connections. The study of the nature of such a series gives us
direct insight into the statistical genesis of TCP connections in a heterogeneous environment. The series was extracted
from exceptionally precise TCP/IP trace made available by the WAND group at the University of Waikato. This
archive, the “Auckland II” traces, are taken from both directions of the access link of the University of Auckland to
the external Internet [22]. As detailed in Box 12, an infinitely divisible cascade model provides a relevant description
of the analyzed time series on a wide range of scales: 2% < 2/ < 2. The key observation is that no other scaling
model could have been applied over the full range, because of the change in behavior at the change point at around j,.
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Box 12: Extracting an Infinitely Divisible Cascade
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The IDC model is used here
to analyze the TCP connection
inter-arrival time series of Fig-
ure 1. The top left plot shows
that the third order moments of
the wavelet coefficients do not
behave as power-laws of scale
over the full range of scales, dis-
allowing a self-similar or even
a multifractal model over this
range. The top right plot shows
that relative power-laws do ex-
ist over the full range for the
(for example, fifth order) mo-
ments, suggesting an Infinitely
Divisible Cascade model can ap-
ply. Note the confidence inter-
vals in both directions, as esti-
mates are plotted on both axes.
The middle plots show respec-
tively the estimates of the func-
tions n(27) and H(q), defining
the IDC propagator. The bot-
tom left plot shows the esti-
mated probability density func-
tions of the wavelet coefficients
at scales 2% to 2'1. In the bottom
right plot, those densities have
been numerically “propagated”
through the cascade, using the
estimated propagator. The col-
lapse of the curves illustrates the
meaningfulness of the fitted In-
finitely Divisible Cascade model,
as well as the accuracy of the es-
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time series.
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Here as in many other se-
ries extracted from Inter-
net traces, j, corresponds to
a characteristic time of 2.5
to 3.5 seconds, in keeping
with findings in [10], and
of our own measurements of
round trip times of TCP /IP
connections. Indeed, when
examining individual log-log
plots such as the top left
in Box 12 (or the far right
in Figure 8), without the
IDC framework one would
be forced to conclude that
two entirely different scaling
models apply, over two dif-
ferent scaling ranges. Using
the IDC formalism it is pos-
sible to note that the change
is restricted to n(27), the
wavelet counterpart of the
n(d) function introduced in
Box 8, whereas H(q) is typ-
ically observed to be close
to linear. We can there-
fore integrate the observa-
tions into a single scaling
picture over the full range
of scales, and interpret the
piecewise-log form of n(27)
as an abrupt change of speed
of some underlying mul-
tiplicative mechanism, de-
scribed by H(q), which is
itself unchanged. Although
“only statistical”, such a spe-
cific hypothesis leads us to
search for causal explana-
tions, in traffic sources, net-

works themselves and their protocols, that could be capable of generating effects of this type. Using infinitely divisible
cascades to model a variety of time series describing different aspects of the same raw Internet data, is a starting point
for ongoing modelling work, some early results of which can be found in [39], [32].

IV. SELECTED APPLICATIONS OF MULTISCALE TRAFFIC MODELS

A triumph of multiscale analysis techniques in networking has been the discovery of strong scaling phenomena as well
as convincing evidence pointing to causes behind it: networking mechanisms, protocols, source characteristics and so
on. But the multiscale concept is applicable to network related problems beyond the mere analysis of traffic traces. In
this section, we briefly outline some applications that directly leverage the multiscale framework.

Multiscale Queuing Analysis

Since the construction of network routers consists largely in combining queues

(buffers), queuing analysis plays a crucial role in their design and performance. In the simplest queuing analysis, an
aggregate traffic input X (¢) is fed into a single-server queue of size B bytes with service rate s bytes/s, and we wish to
determine information about Q(t), the queue size in bytes at time ¢. For example, we might desire the average queue
size or the probability that the queue will overflow, the tail queue probability P(() > B). Queuing analysis in general
is extremely difficult, owing to the inherent non-linearities associated with a queue emptying (few packet arrivals) and
overflowing (too many packet arrivals).

A distinct advantage of the classical Poisson traffic model for X (t) is the existence of analytic formulae for P(Q) > B)
[17]. However, the fact that real traffic is not Poisson renders these results of limited utility in real-world situations.
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Another, approximate approach is to study only the so-called critical time scale that dominates queue overflow.

But as we have seen, real traffic is not typically dominated in a simple way by a single time scale. Real traffic is
multiscale, and so we should study the queue size Q(t) at multiple time scales and fuse the results into a single statistic.
A multiscale model for X (¢) (such as fBm or a binomial cascade) facilitates the investigation of the distribution of
Q(t) at multiple scales, incorporating the full multiscale structure. In this framework, the distributions of the wavelet
coefficients of the fBm model, or multipliers in the cascade models, are combined into a simple formula that provides a
close approximation to the tail queue probability. See [27] for more details.

Multiscale Path Probing To understand and predict the performance of end-to-end protocols such as TCP and
modern streaming protocols, it is crucial to understand the dynamics of the end-to-end paths through a network. In
particular, we could have interest in the delays and losses experienced by packets transmitted end-to-end. Here we focus
on delay rather than loss.

Information on packet delay can be obtained either by actively probing the path with packets or by passively monitoring
packets as they pass a fixed point. We will focus on an active strategy. The delay a packet will incur is bounded below
by the propagation delay from the transmitter to receiver. However, it can be considerably larger if there is significant
cross-traffic that forces the packet to wait in a buffer before it is serviced. Clearly, modelling the end-to-end packet delay
process implicitly involves modelling the cross-traffic, since large delays are caused by large traffic flows along the path.

A typical Internet end-to-end path can easily pass through fifteen or more queues, which complicates analysis and
modelling considerably. Fortunately, in certain cases, an end-to-end path can be replaced by single “bottleneck” queue
that is driven both by the probe traffic and an “effective cross-traffic” stream that models the contributions of all
competing traffic along the path. Our fundamental observation for this bottleneck queue model is as follows: the delay
spread at the receiver between two probe packets transmitted closely spaced in time corresponds directly to the amount
of cross-traffic along the path.

Inherent in any probing scheme is an uncertainty principle, or “accuracy/sparsity tradeoff.” The volume of cross-
traffic entering the bottleneck queue between the two probes can be computed essentially exactly from the delay spread
of the two packets at the receiver provided the queue does not empty in between. Unfortunately, this emptying will
certainly occur unless the probes are spaced very closely. Even worse, long probing trains of closely spaced packets will
overwhelm the very network we are trying to model. If the probes are spaced far apart, then the queue can empty in
between, which results in uncertainty in the cross-traffic measurement.

Again, help is on the way with a multiscale model. Modelling the cross-traffic as a multiscale process (fBm or binomial
cascade for example), we can transmit a stream of packets that probes simultaneously at several time scales. For example,
by spacing the packets exponentially (two packets with small spacing T followed by a packet every 2*T, k =1, 2,.. .,
we probe the bottleneck queue at a multitude of dyadic scales.

This so-called “chirp packet train” balances the accuracy/sparcity tradeoff by being highly accurate initially and highly
sparse at the end [28]. Packet chirps allows us to estimate the cross-traffic volume (or equivalently delay distribution) at
any dyadic scale of interest. The algorithm works quite well in simulation studies; currently it is under more exhaustive
testing on real networks.

V. CONCLUSIONS

In this paper, we have seen that the complexity and richness of tele-traffic is well matched by the multiscale analysis and
modelling frameworks of self-similarity, long-range dependence, fractals, multifractals, and infinitely divisible cascades.
These frameworks not only allow us to confirm and formalise the presence of multiscale behavior in traffic, but also point
to possible causes of multiscale structure in the physical networking infrastructure. The choice of framework, from a
simple fBm to a more complicated multifractal or cascade, clearly depends on the application and the data at hand. But
whatever the framework, the multiscale wavelet transform provides a parsimonious and efficient domain for processing.

Finally, we note that the tools overviewed here have found a home in numerous other areas of science and engineering,
including turbulence and percolation, among many others!.
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