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Abstract
Data collected in realistic mobility traces for mobile ad hoc networks (MANETS) is intrinsi-

cally high dimensional. Principal Component Analysis (PCA) is a good tool for reducing the data
dimemsion by extracting important features of the data. We propose a method for computing
principal components using iterative regression for high dimensional matricies with missing values
with an application to node degree time series. We expand this method to handle an additional
dimension of information for a defined neighborhood ancestry of node degree, exposing patterns
when they exist. We test our methodology on node degree data from a simulated university cam-
pus model (Pedsims) and real campus data. Results indicate that in both cases, the student’s
major field of study along with class schedule are strong factors to differentiate mobile node degree
time series. The ability to detect differences is a powerful tool for application specific network
management, allowing for: optimal placement of routers, design of specialized protocols for vari-
ous user populations and lending insight to gauging the energy/bandwidth needs of mobile devices.

Supported in part from NSF, grant number ANI-0338856, Texas ATP, project number 003604-
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1. INTRODUCTION
The most salient characteristic of mobile ad hoc networks

is their dynamic topology manifested as devices move around
or even enter and exit the network. Understanding the net-
work changes due to mobility on different time horizons is
pertinent to an efficient if not proper functioning of the net-
work on various layers of the protocol stack. Despite the
importance of this issue, studying mobility and its impact
on ad hoc networking still relies mainly on simulation and
has only few tools of analysis to draw from.

To allow for analytical tractability and ease of simulation,
the models of choice build on the principles of independent
node decisions and a simple Markovian decision structure
such as Random Walk, Random Waypoint, Random Direc-
tion, Gauss-Markov, Boundless Random, and others (see for
example [3, 4]). Other mobility models [6] and similarly [14]
incorporate adjustable levels coordination or correlation of
decisions and realism of decision rules as to reflect and model
complex tasks. With increasing complexity these models
become naturally more application specific. Understanding
how these models affect network performance is vital.

The aim of this paper is to introduce a tool which allows
for careful and detailed analysis of mobility traces from any
mobility model. Indeed, existing methodologies are typi-
cally ad hoc estimation of simple parameters such as time
averages which shine little to no light on the dynamic as-
pects which are so prominent in these traces. For example,
two mobility models that have the same average speed, node
degree distribution, etc. can still have different time dynam-
ics (spatial-temporal correlation) that are undetectable by
averages. A major issue that hinders most COTS (commer-
cial off the shelf) analysis tools (or at least biases their out-
comes) for time series observations of mobility traces is the
fact that nodes enter and exit the network, thereby creating
missing data observations in a large observation window.
This paper presents examples to show how poor handling
of missing data is detrimental to pattern finding among mo-
bile nodes, and we extend PCA so that it can handle missing
data in a larger observed dimension. Though the idea has
been applied in various application domains [11, 5, 12, 13],
we believe that the introduction of this tool for analyzing
mobility traces and our novel extension is new.

The degree (number of devices within range) for each in-
dividual provides a reasonable first description of the net-
work at a given time. As the network changes, we track
the time series of node degree. We demonstrate the useful-
ness of PCA by comparing node degree time series observed
from various simulations of mobility models, showing that
pattern-finding is possible when patterns exist and neglect-
ing to account for missing observations properly can lead to
erroneous conclusions.

In Section 2, we propose to use Principal Component
Analysis (PCA) as a tool for summarizing and understand-
ing the ensemble of time series of degree distribution (one for
each device). We apply the methods to two examples: ran-
dom waypoint (RWP) and Pedsims, a more realistic mobility
model. Our analysis shows how the more realistic mobility
differs from the synthetic RWP. In particular, it identifies
clear clusters of individuals that have similar connectivity
patterns.

Similar data can be collected in the real world. Su et. al.
conducted experiments at the University of Toronto involv-
ing distributing PDAs to students for the purpose of col-

lecting the Bluetooth periodic inquiry requests to describe
proximity relationships[10]. A feature of this data (and more
realistic simulations) is the presence of missing data that
makes conventional application of PCA impossible. An al-
ternative method to compute PCA for handling missing data
is presented in Section 3.

Moving beyond description of individuals with similar node
degree patterns, an important feature of the network topol-
ogy is the persistence of the network. Devices need to be in
range for some minimum amount of time to exchange hand-
shakes/data. Given a mobility trace, one can compute a
node’s neighborhood ancestry. We define neighborhood an-
cestry in the following way: Each mobile node at some time
t has n identifiable neighbors within range, then the k-th
neighborhood ancestry of a node is the number of identifi-
able ancestors that are present at time t − k ∗ ∆t that are
also present at time t and all intermediate timesteps. For
example, if at time t a node has neighbors (A, B, C) and at
time t − k ∗ ∆t we find that the same node had neighbors
(A, B), then the k-th neighborhood ancestry of this node is
2. Note that the sequence of neighborhood ancestry num-
bers is a monotonically decreasing sequence in k for a fixed
t, with the rate of decrease dependent on parameters of the
mobility model and associated devices (speed, size of the
simulation space, transmission range, and the size of ∆t).

Analysis of the neighborhood ancestry requires a novel
extension of the iterative methods for PCA outlined in Sec-
tion 3, which we present in Section 4. We conclude this
paper with a discussion on implications for ad hoc routing
protocols and MANET experiment design in Section 6.

2. ANALYZING MOBILITY FEATURES
WITH PCA

There appear to be two main trends in current research
for collecting network statistics: global and local. Global
statistics typically involve averages over time, e.g. average
link duration, average number of hops, average speed, etc.,
and in general involve a single value to summarize an en-
tire simulation. Rather than examining such end-values, we
consider metrics that can be computed on a discrete time
scale, local for each mobile node.

Of interest to current networking researchers is the node
degree time series (local), or node degree distribution (global).
For the remainder of the paper, we define node degree of
node ni as the total number of nodes within 100 meters of
ni. In this paper we consider local node degree time series,
and the data structure can be identified as a two-way table.
We can utilize PCA to examine such a table.

The following examples illustrate our findings with con-
ventional PCA on two simulated mobility models: Random
Waypoint (RWP) and Pedsims. In Random Waypoint, node
initial positions are uniformly distributed in the space. At
the start of the simulation, each node chooses a random des-
tination and random speed and proceeds to that location.
When the node arrives, the node ”rests” for a fixed amount
of time, and then again chooses a random destination and
speed. This activity continues until a predetermined halt to
the simulation. Random Waypoint has been studied in great
detail [3] and has been shown to have an initial period of in-
stability (mobility is not in a steady-state) which we have
taken care to remove. Since all nodes behave according to
the same algorithm, we do not expect to see any clustering
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Figure 1: Sample Pedsims Node Degree Timeseries

of nodes with similar mobility patterns, or more generally,
with similar node degree time series.

Pedsims [6] was built as a geographically accurate, schedule-
based, pedestrian-speed mobility model. The chosen geog-
raphy was a university campus, where the mobile nodes
(pedestrians) move about the campus along the sidewalk
structures only, according to generated schedules. The au-
thors claim that Pedsims is a more realistic mobility model
than RWP that does not exhibit steady-state behavior (see
sample node degree time series in Figure (1)). There exists
spatial-temporal correlation built into the mobility model,
and we expect similar relationships in node degree. With
relationships embedded in the model, we expect PCA to
effectively pattern-find.

2.1 Principal Component Analysis
When all timeseries data are complete, PCA is performed

in the following manner: Let Y be a data matrix of dimen-
sion t× n, where the n columns are time series of node de-
grees for our example. Compute the eigenvalue/eigenvector
decomposition of Y tY , using any desired method (can also
be accomplished generally using Singular Value Decompo-
sition). The result is a vector of eigenvalues λi and cor-
responding eigenvectors vi for i = 1 . . . n. Note that it is
customary to order λ1 > λ2 > . . . > λn. Note also that
the vectors vi form an orthonormal basis for Y tY . The ith
principal component is defined as vi such that i is the index
of the eigenvector with corresponding eigenvalue such that
λi−1 > λi > λi+1. In our example, we consider the first
three principal components which have the largest eigenval-
ues. Intuitively, most of the important patterns are in the
first few principal components.

In the following examples we plot the first three eigenvec-
tors as time series, which represent the main trends of node
degree as a function of time. We define w(i) = Y t ∗vi as the
ith “loading”. We compute w(1), w(2), and w(3) and plot
these vectors pairwise in the indicated scatterplots. The axis
on these plots vary according to the scale of the weights vi.

Figure 2: (RWP) Pairs plot of first three loadings

Informally, any clustering seen in the scatterplots is indica-
tive of nodes having similar degree time series.

2.2 Example 1: Random Waypoint
We simulated a standard Random Waypoint mobility model

with 300 nodes in a large area (1400 x 800 meters) with
pedestrian speed (uniformly sampled between 2 and 4 mph),
collecting node degree every 30 seconds for 2500 seconds, re-
moving the first 500 seconds as the ’burn-in’ period. The
resulting plots demonstrate what we have come to expect
from Random Waypoint (after burn-in is removed). Rela-
tive stationarity of node degree (Figure 3) is demonstrated
by a relatively constant first component and oscillating sec-
ond and third component. No particular differences between
the mobile nodes with respect to node degree (Figure 2) are
seen which is as expected. Consider then a more realistic
mobility model called Pedsims where a clustering of nodes
with respect to their degree time series is expected [6].

2.3 Example 2: Pedsims
In the Pedsims mobility design, cohorts of students with

similar schedules are expected to have similar node degree
time series, so a PCA on the data should reveal clusters
in the loadings. Overall, the schedules of the students are
themselves correlated, so a regular periodic pattern is ex-
pected to be found across all time series. Figure(5) shows
how PCA finds the underlying periodic pattern of the first
three principle components, and the clusters represented in
the pairs plot should be indicative of individuals with simi-
lar node degree time series (possibly individuals moving in
range together) (Figure 4). The clustering that is produced,
however, is not an expected characteristic of the model. Also
note the uncharacteristic decrease and increase of the prin-
cipal time series near the beginning and end of the series,
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Figure 3: (RWP) Time series plot of first three
eigenvectors

Figure 4: (Pedsims) Loading pairs - Erroneous Point
Source

Figure 5: (Pedsims) Time series of the first three
Components - Erroneous Point Source

respectively. It turns out that this trend dominates PCA’s
ability to pattern-find.

We can, of course, explain this behavior. A feature of
Pedsims is that mobile nodes enter and leave the model
somewhat freely (as they would on a university campus),
so computing node degree is not always possible for the life
of the simulation. The characteristic jump is not an under-
lying characteristic of the model, but is a result of including
node degree where none exists. In this case, the trace was
an input for the Network Simulator 2 (ns2), which requires
that all node positions be defined at the start of the sim-
ulation (and exist throughout the entire simulation). Node
degree was computed erroneously large near both the begin-
ning and end of the simulation, because Pedsims has only
a small number of start and endpoints where the nodes col-
lect. In short, there exists an “erroneous point source” for
the nodes at the beginning and end of the simulation. Im-
puting the values to 0 appears to help capture more of the
structure, in the time series (Figure 6), but the extra values
produce clustering (Figure 7) which not useful. These plots
are titled “0 != NA”, indicating imputation of values to 0 is
not equivalent to missing data. This is a simple example to
show how flawed improper data imputation can be.

3. ITERATIVE METHOD FOR PCA WITH
MISSING DATA

The problem of computing PCA for a sparse matrix has
been considered by many authors[12, 2, 11, 1] and the re-
gression approach in particular is clearly defined by [13]. We
remind the reader that a sparse matrix is a matrix with more
0 values than non 0 values. We are using the term “sparse”,
however, to describe a matrix with mostly missing data.

3.1 Computing PCA with Missing Data
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Figure 6: (Pedsims) Time series plot of first 3 eigen-
vectors: Erroneous 0 values

Figure 7: (Pedsims) First three loadings : Erroneous
0 values

We take the approach of [13], making 25 iterations for
each component. We note that convergence occurs some-
what quickly, so 25 iterations appears to be sufficient. Un-
derstanding the relationship between the sparseness of the
data and the rate of convergence of the components was not
the focus of this study, and remains an open research ques-
tion. The reader should continue to interpret the pairwise
scatterplots and time series plots as before.

Our implementation of the algorithm is as follows:

3.1.1 PCA - Missing Data Algorithm
Let (i, t) ∈ I, where I is the set of paired indicies of non-

missing data elements in the i-th timeseries. We model yit =
θiφt + εit where εit is N(0, σ2). Note that yit represents the
node degree node i at time t, non-missing. One can imagine
φt as the archetypical node degree time series of node i and
θi as a scaling factor of phit. Using a similar methodology
as [13], we formulate least squares estimates for θ, φ:

θ̂i =

∑
t φtyit∑
t(φt)2

(1)

φ̂t =

∑
i θiyit∑
i(θi)2

(2)

Since the parameters depend on each other, we use the
following iterative algorithm for estimation of any number
of eigenvectors:

1: Given ε1 > 0 and ε2 > 0.
2: for all i desired “principal vectors” do
3: Initialize θ[N ], φ[T ] as random vectors of sizes N , T

respectively.
4: θ ← θ

‖θ‖ ;

5: φ ← φ
‖φ‖ ;

6: repeat
7: Compute (1) for all i.
8: θ ← θ

‖θ‖ ;
9: Compute (2) for all t.

10: until ‖θcurrent − θlast‖2 < ε1 AND ‖φcurrent −
φlast‖2 < ε2

11: Reassemble y with estimate ŷit = θi ∗ φt

12: y ← y − ŷ
13: Report θ, φ as the ith desired “principal vector”.
14: end for

Intuitively, θ is the first few loadings that would be com-
puted from a regular PCA. We display θi graphically using
pairwise scatterplots as usual. Then φt is the first few prin-
cipal components, and it is displayed in the usual manner
as time series plots. Note that since our linear model is
multiplicative, we absorb any proportionality constant by
renormalizing all but one variable in the algorithm. Failing
to do this will force an “identifiability” statistical issue with
the parameter estimation.

3.2 Example 3: Pedsims PCA with missing
data

We continue Section 2.3 to demonstrate the usefulness of
the method and explore the difference of the results.

We note that the border effects from the erroneously im-
puted data is now corrected for in the principal time series
(Figure 9), and a more accurate clustering of the first few
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Figure 8: Pedsims: Theta pairs accounting for miss-
ing data

Figure 9: Pedsims: Phi(t) accounting for missing
data

Figure 10: Time series for each cluster

loadings occurs, even in the 2nd and 3rd loading (Figure
8). This clustering clearly seperates individuals with similar
node degree time series (as expected), giving us a clear idea
of three main patterns (the fourth cluster at (0, 0) is made
up of individuals that don’t fit into the other three groups)
of mobility, effectively decreasing the dimensionality of the
problem.

In Figure 10, the median time series plot for each cluster of
nodes is presented. The third plot is represents the median
time series plot for science and humanities majors, while
the other three plots correspond to business majors with
three different schedules. This pattern is explainable. In
Figure (11) it is clear that there is only one business related
activity location (B) which is somewhat isolated from the
science/humanities locations [(S,H) respectively], in terms
of our defined range (100 meters). In Pedsims, students of a
particular major are more likely to move to activity locations
associated with their major than other locations. Note that
all individuals at an activity location are considered within
range. As such, the business majors are very likely to have
a high node degree (though perhaps not a high level of con-
nectivity with the rest of the campus) and differ only by the
number of classes assigned. A similar pattern is found in
the clustering of the second and third component.

4. MODELING NEIGHBORHOOD ANCES-
TRY DATA

Our main contribution is then to solve the problem of
PCA modeling for data in a 3-way table with missing data.
Consider that we collect node degree as described above
and additionally, for every node and timestep, we collect
the neighborhood ancestry for K timesteps in the past (see
Section 1 for neighborhood ancestry definition).
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Figure 11: Rice University Map with assigned Ac-
tivity Types

4.1 Model and algorithm
Let i = 1, . . . , N ; t = 1, . . . , T and k = 0, . . . , K. Then let

yitk = θiφtγk+ εitk where εitk is N(0, σ2). Note that yitk

represents the node degree ancestry of node i at time t for
lag k, and that yit0 is simply the node degree for node i at
time t. We formulate least squares estimates for θ, φ, and γ
as the following:

θ̂i =

∑
t,k φtγkyitk∑
t,k(φtγk)2

(3)

φ̂t =

∑
i,k θiγkyitk∑
i,k(θiγk)2

(4)

γ̂k =

∑
i,t θiφtyitk∑
i,t(θiφt)2

(5)

The algorithm used to estimate is nearly identical to that
used in Section 3.1.1, save that we now renormalize both θi

and φt. We do not renormalize γk for the same identifiability
reasons as given in Section 3.1.1. Intuitively, since node
degree ancestry is a decreasing sequence we expect γk to
be decreasing in k. However, this procedure allows us to
discover the main dynamics of how γk decreases for each
model.

For purposes of illustration and comparison, we first give 2
examples of computed γk for Random Waypoint, and Ped-
sims, where k = 0, 1, . . . , 5. The θi and φt are produced
nearly identical to those plots shown above, and are not re-
produced here. In Section 5 we apply our method to real
data from [10].

4.2 Random Waypoint Example forγ

Figure 12: Neighborhood Ancestry trends for RWP

As expected, the first three principal “ancestories” are
similar, indicating (once again) no large differences in be-
havior by the nodes (see Figure 12). The shape is somewhat
linear, with a negative slope, implying that the ancestry of
each node decays at a constant rate. This is an interesting
result, since we can now compare mobility models against
Random Waypoint with respect to γk. The slope of this
line is an inidicator for this, which should change depending
on many initial mobility parameters, namely the speed at
which the nodes move. Classifying which parameters have
an impact on the decay rate remains an open question to
our knowledge.

4.3 Pedsims Example forγ
Once again, it’s not surprising that structure is be found.

However, γk here indicates 2 main patterns, a steady de-
crease in ancestry and a constant ancestry. This is due
again to the nature of Pedsims, which our method picks up
quite nicely. In the current version of Pedsims (a univeristy
model), students move between activity locations according
to a particular schedule. The decreasing neighborhood an-
cestry then is explaining the regular moving about of the
students, while the constant ancestry is capturing the an-
cestry patterns of the times these individuals remain at a
location for some time (class or otherwise). One can con-
ceivably model this as a two-state stochastic process and
perhaps design routing protocols that are specific to this
application.
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Figure 13: Neighborhood Ancestry trends for Ped-
sims

5. REAL DATA EXAMPLE
The data provided by [10] is more sparse (in terms of

missing data) than the simulated Pedsims data. It was col-
lected over the course of several days with many hours (and
days) of observations missing, for 21 devices handed out to
Computer Science (CS) and Electrical and Computer Engi-
neering (ECE) students.

Figure (14) shows shows a modest clustering of the mo-
bile devices with all CS students clustered together and the
ECE students scattered about (labeling not shown). This is
quite similar to the Pedsims data, as once again major field
of study appears to be the chief cause of the clustering. The
principal time series are shown for the first 1200 seconds
only, as the remainder of the series is flat. Differences be-
tween nodes based on activity is not clear. We hypothesize
that high activity near the beginning of the series between
disjoint time periods is indicative of “awareness bias”, where
the student may have subconsciously charged and activated
the device before class (perhaps as required by the project
research). Keeping the device on afterwards appeared to
show only small incidental contact with other mobile nodes.

In general we would hope the patterns in the degree ances-
try would be similar to Pedsims in Section (4.3), and there
are similarities. The first 2 components have a sharply de-
creasing trend, indicative of the device hearing other devices
in the first timestep and not in subsequent steps. The 3rd
component however is similar to Pedsims, in that it appears
to have an element of constant ancestry behavior.

One problem with this dataset is the number of devices, as
this strictly pushes the first few components of γk to have a
sharp decreasing pattern. Another is the length of recorded
time where nothing was observed. Clearly the method does
well with missing data in Pedsims, but the missing data in
this dataset outscales most of the key information at hand.
How to sample of the timeseries to mine the important parts

Figure 14: (Toronto) θ pairs

where information was recorded is an issue that needs resolv-
ing.

6. DISCUSSION
The problem of computing PCA on sparse matricies is

not a new, but the need for it in MANET research appears
to be. Much research is being poured into the construc-
tion of realistic mobility models to assist with design and
testing of ad hoc networks, and invariably connected with
realistic mobility is missing data that occurs when observ-
ing users/objects/mobile nodes move in and out of the ob-
servation range. We agree that realistic mobility models are
needed (and should be used) and it is our hope that we have
motivated the need for analysis of such data structures, and
shed light on a tool that can be flexible and useful for any
metric desired.

We took an additional step, however, and showed that
such a tool can be expanded a single dimension with good
results. The number of iterations necessary for convergence
was relatively small ( 25–50) and our estimates appear to
make sense with knowledge of the model. We also note that
too many iterations can lead to oversmoothing of the com-
ponents, In one case, analysis of the Pedsims data with over
150 iterations smoothed out most of the internal patterns
identified. The ability to correctly gauge the number of it-
erations is both a feature and a detriment to the tool. The
results of the method remain sensitive to mobility parame-
ters, namely speed of the nodes and size of the space.

Some implications of our work are the following: Consider
Pedsims. Using PCA for missing data one can feasibly col-
lect mobility data and attempt to identify node degree pat-
terns in time. Knowledge of the general time series can assist
engineers to build networks with capacity that is adaptable
to the temporal patterns. With knowledge of individual
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Figure 15: (Toronto) φ(t)

Figure 16: Neighborhood Ancestry trends for
Toronto data

clustering patterns, one could generate a more intelligent
routing protocol which would perhaps need to flood/explore
less often or only under certain circumstances. Finally, we
suggest that knowledge of the neighborhood ancestry is a
good indicator of “routing-table-decay”, being the rate at
which new routes need to be discovered. If this is known
and is believed to be stationary one can conceivably deter-
mine how much power a device requires to satisfy the needs
of the group in question, since power is directly related to
the amount of flooding the mobile device must do. Let the
reader note that we only used node degree as an example
metric, as other metrics may be applied for this methodology
with differing implications. We leave it to the community
to continue the exploration.

The obvious question remains: can we continue to increase
the number of dimensions (in the sense of the multiplicative
regression model we offered) and still obtain reasonable es-
timates of overall trends in each dimension? What are the
numerical stability issues? More pragmatically, can we even
imagine data structures in networking that make sense in
higher dimensions? Being mindful of the so-called “curse of
dimensionality”, we seek to answer these questions in future
research.

Acknowledgements: Financial support comes in part from
NSF, grant number ANI-0338856, Texas ATP, project num-
ber 003604- 0036-2003, and Los Alamos National Labora-
tory (CCS-5).

We would like to thank Jing Su from the University of
Toronto for generously providing the Toronto dataset.

7. REFERENCES
[1] A. d’Aspremont, L. Ghaoui, M. Jordan, G. Lanckriet. A direct

formulation for sparse PCA using semidefinite programming.
June 2004.

[2] M. W. Berry. Large Scale Sparse Singular Value
Computations. International Journal of Supercomputing
Applications. 1992, 6:13–49

[3] J. Boudec, M. Vojnovic. Perfect Simulation and Stationarity of
a Class of Mobility Models. Infocom 2005.

[4] T. Camp, J. Boleng, V. Davies. A Survey of Mobility Models
for Ad Hoc Network Research. Wireless Communications &
Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications, 2(5):483 502,
2002.

[5] C. Chennubhotla, A. Jepson. Sparse PCA: Extracting
Multi-scale Structure from Data, IEEE International
Conference on Computer Vision, 2001.

[6] H. Flores, S. Eidenbenz, N. Hengartner, R. Riedi and J. Smith.
PedSims: Building towards Realism of Mobility Models for
Wireless Networks. Technical Report Los Alamos National
Laboratory, 2006.

[7] W. Hsu, A. Helmy. Analyzing Principal Characteristics of User
Association Patterns and Eigen-behavior in Wireless LAN
Traces. 2006.

[8] A. Jardosh, E. Belding-Royer, K. Almeroth, S. Suri.
Real-world Environment Models for Mobile Network
Evaluation. Journal on Selected Areas in Communications
special issue on Wireless Ad hoc Networks, March 2005.

[9] J. E. Jackson. A User’s Guide to Principal Component
Analysis. Wiley Series in Probability and Statistics, 1991.

[10] J. Su, A. Chin, A. Popivanova, A. Goel, E. de Lara. User
Mobility for Opportunistic Ad-Hoc Networking. Proceedings of
the Sixth IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA’04) - Volume 00. 2004.

[11] H.Y.Shum, K. Ikeuchi, R. Reddy. Principal Component
Analysis with Missing Data and Its Application to Polyhedral
Object Modeling. IEEE Transactions on Pattern Analysis and
Machine Intelligence. September 1995 (Vol. 17, No. 9) pp.
854-867.

9



[12] T.Wiberg. Computation of Principle Component Analysis
when data are missing. Proceedings of the Second Symposium
on Computational Statistics, pp. 229–236, 1976.

[13] H. Zou, T. Hastie, R. Tibshirani. Sparse Principal Component
Analysis. 2004.

[14] Q. Zheng, X. Hong, J. Liu, ”An Agenda Based Mobility
Model21” anss , pp. 188-195, 2006.

10


	ricetechpaper_titlepage.pdf
	ricetechpaper.pdf

