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Abstract

Most network traffic analysis and modeling studies lump all connections together into a single flow. Such ag-
gregate traffic typically exhibits long-range-dependent (LRD) correlations and non-Gaussian marginal distributions.
Importantly, in a typical aggregate traffic model, traffic bursts arise from many connections being active simultane-
ously. In this report, we develop a new framework for analyzing and modeling network traffic that moves beyond
aggregation by incorporating connection-level information. A careful study of many traffic traces acquired in dif-
ferent networking situations reveals (in opposition to the aggregate modeling ideal) that traffic bursts typically arise
from a single high-volume connection that dominates all others. We term such dominating connections alpha traffic.
Alpha traffic is caused by large files transmissions over high bandwidth links and is extremely bursty (non-Gaussian).
Stripping the alpha traffic from an aggregate trace leaves a beta traffic residual that is Gaussian, LRD, and shares
the same fractal scaling exponent as the aggregate traffic. Beta traffic is caused by both small file transmissions and
large files transmissions over low bandwidth links. In our alpha/beta traffic model, the heterogeneity of the network
resources give rise to burstiness and heavy-tailed connection durations give rise to LRD.

1 Introduction

Network traffic analysis and modeling play a major role in characterizing network performance. Models that accurately
capture the salient characteristics of traffic are useful for analysis and simulation, and they further our understanding
of network dynamics and so aid design.

Most traffic analysis and modeling studies to date have attempted to understand aggregate traffic, in which all
simultaneously active connections are lumped together into a single flow. Typical aggregate time series include the
number of packets or bytes per time unit over some interval. Numerous studies have found that aggregate traffic
exhibits fractal or self-similar scaling behavior, that is, the traffic “looks statistically similar” on all time scales [18].
Self similarity endows traffic with long-range-dependence (LRD) [18]. Numerous studies have also shown that traffic
can be extremely bursty, resulting in a non-Gaussian marginal distribution [29]. These findings are in sharp contrast to
classical traffic models such as Markov or homogeneous Poisson. LRD and non-Gaussianity can lead to much higher
packet losses than predicted by classical Markov/Poisson queueing analyses [6, 18].

The discovery of self-similar behavior in traffic led immediately to new fractal aggregate traffic models (see [2, 31],
for example). Fractional Gaussian noise (fGn), the most widely applied fractal model, is a Gaussian process with
strong scaling behavior. Due to its Gaussianity, it lends itself to rigorous analytical studies of queueing behavior.
Also, approximate fGn can be synthesized rapidly by a variety of different techniques, including wavelets.

A strong argument for fGn in networks is that often aggregate traffic can be viewed as a superposition of a large
number of independent individual ON/OFF sources, with the ON durations heavy-tailed [3, 34].

Unfortunately, fGn is unrealistic for bursty non-Gaussian traffic. For instance, when the standard deviation of the
traffic exceeds its mean, a considerable portion of an fGn traffic synthesis is negative. These failings have motivated
more complicated models for aggregate traffic such as multifractals and infinitely divisible cascades [29]. However,
while more statistically accurate, these models lack network relevance in their parameterizations.

Aggregate analysis and modeling lump all traffic bytes or packets together into a single flow. In this report,
we exploit the connection-level information contained in most publicly available traffic traces that aggregate models
ignore. Define a connection as the unique four-tuple comprising a source IP address, destination IP address, source
port number, and destination port number.

Connection-level information enables us to conduct a refined analysis of traffic bursts. In aggregate traffic models
(including the ON/OFF model), traffic bursts arise from a large number of connections transmitting bytes or packets
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simultaneously. That is, bursts stem from a kind of “constructive interference” of many connections. With connection-
level information, we can test this hypothesis. If it were true, then we should observe in real traffic traces a large
number of active connections during bursts. However, this was not the case. The bursts in the bytes-per-time plot
generally do not coincide with large values in the connections-per-time plot.

Quite to the contrary, a careful analysis of a great many real traces reveals that generally a single high-rate connec-
tion dominates during a burst. This surprising finding has far-reaching implications for traffic analysis and modeling.

To explore further, we propose a new analysis technique that exploits connection-level information to separate
traffic into two distinct components at a time-scale � of interest. We call the traffic corresponding to the dominant
connections the alpha component. The residual traffic is called beta component. � Our procedure decomposes an
aggregate traffic trace into

total traffic � alpha traffic � beta traffic� (1)

We have applied the alpha/beta traffic decomposition to many real-world traffic traces (from Auck [24] to LBL
[16]) and found tremendous consistency in our results.

Beta traffic: At time-scales coarser than the round-trip time, the beta component is very nearly Gaussian and
strongly LRD (i.e., approximately fGn), provided a sufficiently large number of connections are present. Moreover,
the beta component carries the same fractal scaling (LRD) exponent as the aggregate traffic.

Alpha traffic: The alpha component constitutes a small fraction of the total workload, but is entirely responsible
for the bursty behavior.

Our alpha/beta decomposition technique suggests an intuitive and natural traffic model that takes into account both
the network topology and user behavior. A major conclusion of our analysis is that the burstiness in network traffic
is caused by the heterogeneity in link speeds and computational power within the network (including the networking
software/hardware of the clients) and user behavior.

Consider a simplified taxonomy of a network system. There are roughly two kinds of file sizes: large ones such
as jpeg images and small ones such as text emails. There are also roughly two speeds of connections: fast ones such
as Ethernet or DSL lines and slow ones such as 56k modems. We argue that only large files over fast links contribute
to alpha traffic. The remaining combinations aggregate together into fGn beta traffic. Therefore, we model traffic as a
sum of alpha and beta traffic. Such traffic is simple to both analyze and synthesize.

The beta component succinctly collects all the “average” connections and is well modeled as fGn with LRD
parameter equal to that of the overall traffic. The alpha component consists of the dominant, burst causing connections
and contributes low traffic volume but essentially all bursts, which arrive in a pattern according to the capabilities
of network and requests of the clients routing through the given point of measurement. The alpha burst arrivals are
not exactly Poisson but can to a first approximation be modeled as such (most likely, they are compound Poisson).
Furthermore, the dominant connections are uncorrelated with the overall connection arrivals and thus can be modeled
as an independent process.

Careful analysis of many data sets has ruled out the possibility of other possible mechanisms that could cause alpha
traffic bursts, such as unruly TCP slow starts, sudden rerouting, or transient behavior due to starting and stopping of
connections. Rather, as a rule, we found all bursts to be caused by source-destination pairs with fast connections and
large-volume transfers. Moreover, we found that any source-destination pair that once causes a burst will always cause
a burst when transferring a large load.

Our alpha/beta model is predictive, since for a given topology and user behavior, we can determine a priori which
connections will aggregate into the fGn background and which connections will cause bursts. Syntheses from our
model then closely match real traffic and controlled ns simulations. For example, under heavy utilization (when the
router at which we take our measurements becomes itself the bottleneck link for all connections) or with a considerably
homogeneous clientele, we should and do observe fewer bursts and more Gaussian traffic. We observe exactly the
contrary in the LBL data [16]; there are not enough active connections to give a full fGn beta component once the
dominant connection is stripped away.

Finally, through queueing simulations, we have demonstrated that the beta component affects the tail queue prob-
ability for small queue sizes, whereas the alpha component determines the tail queue probability for large queue sizes.

�By analogy to the dominating alpha males and submissive beta males observed in the animal kingdom.



2 Background on aggregate traffic models

There exist a wide range of mathematical models of self-similar or long-range dependent traffic each with its own
idiosyncrasies [2, 4, 8, 19, 25, 29, 34]. Some are physically motivated and others show that long-range dependence
may be generated in diverse ways. We review some of the important traffic models. In the fGn model [6], the
traffic is modeled as a fGn process that is characterized by strong scaling behavior and Gaussianity. The wavelet
domain independent Gaussian (WIG) model [15, 20] synthesizes a Gaussian process capturing both the long and
short-term correlations, using wavelet transforms. In the multifractal wavelet model (MWM) [29], the multifractal
scaling behavior of the traffic is captured. Finally, we look at the physically motivated ON/OFF model [34] in which
the traffic is modeled as an aggregate of ON/OFF sources with heavy tailed ON and OFF times.

2.1 fGn model

Fractional Gaussian noise (fGn) processes posses self-similar scaling properties that are also observed in network
traffic. Hence fGn serves as a good model for network traffic.

A process � is H-self-similar with stationary increments (�-sssi) if it has stationary increments and for all � � �

� ����
��
� ��� ��� (2)

A random process that satisfies 2 is the fractional Brownian motion (fBm) ����. This process is uniquely defined
through two properties: �-sssi and Gaussianity [21]. The Hurst parameter lies in the range � 	 � 	 �.

The increments of fBm, 
��� are known as the fractional Gaussian noise (fGn), defined by


��� � ���Æ�������� ��Æ��� (3)

for finite increment Æt. While fBm is non-stationary, fGn is stationary.
It can be shown [9] that fGn has an autocorrelation function
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with Æ a constant. Moreover, fGn satisfies the scaling property
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where 
��� is the aggregate
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Network traffic modeling using fGn has the big advantage of providing a complete description of the resulting
traffic with just three parameters: mean, variance, and the Hurst parameter. Erramilli et al [5] note that the fGn model
can be expected to be an appropriate model for data traffic provided (i) the traffic is aggregated over a large number of
independent and not too wildly fluctuating connections (to ensure Gaussianity), (ii) the effects of flow control on any
one connection is negligible and (iii) the time scales of interest coincide with the scaling region where (5) holds. In
practice, these conditions are often satisfied in the backbone (i.e., high levels of aggregation) and for time scales larger
than the typical round-trip time of a packet in the network [30].

2.2 Wavelet-domain Independent Gaussian (WIG) model

Wavelets serve as an approximate Karhunen-Loève or decorrelating transform for fBm [9], fGn, and more general
LRD signals [15]. This property can be exploited for modeling LRD traffic, by modeling the data in the wavelet
domain instead of the time domain.

The WIG model synthesizes Gaussian LRD data by generating the parent node of the scaling coefficient tree, � ���,
with a required Gaussian distribution and wavelet coefficients as independent (and hence uncorrelated) zero-mean
Gaussian random variables, identically distributed within scale according to

�	�� � ���� ��	 �� (7)



with ��	 the wavelet-coefficient variance at scale � [9, 14, 20, 33, 35]. Scaling coefficients at finer scales on the tree
are then recursively computed until the finest scale scaling coefficients and hence the required signal is obtained. The
result is a fast ���� algorithm for generating a length-� signal.

An attractive feature of the WIG model is its flexibility in matching different correlation structures of LRD pro-
cesses. A power-law decay for the ��	 ’s leads to approximate wavelet synthesis of fBm or fGn [9, 35]. However, while
network traffic may exhibit LRD consistent with fBm or fGn, it may have short-term correlations that vary consid-
erably from pure fBm or fGn scaling. Such LRD processes can be modeled by setting � �

	 to match the measured or
theoretical variances of the wavelet coefficients of the desired process [20]. Thus, for a length-� signal, the WIG is
characterized by approximately ��
���� parameters.

2.3 Multifractal wavelet model

Unlike the WIG model, the multifractal wavelet model (MWM) is based on a multiplicative cascade in the wavelet
domain. MWM matches the qualitative visual appearance, queueing behavior and the marginals of bursty network
traffic better than the Gaussian models like fGn and WIG [29], especially at fine time scales.

MWM is based on a multiplicative cascade in which refinements from coarse to finer time scales is done mul-
tiplicatively. Given the approximation to the signal ���� at resolution 	�	 , we compute the wavelet coefficients
�	�� � �	���	�� with random �	��. Here � and � refer to the scale (higher � is finer time resolution) and location
of the wavelet coefficient. The approximation to ���� at resolution 	��	��� is then obtained from scaled sums and
differences of the �	�� and �	��. This process can be iterated until any desired resolution is reached, with a total cost
associated ���� for � point output.

Multiplicative cascades like the MWM synthesize data with approximately lognormal marginals, due to the central
limit theorem.

2.4 ON/OFF model

The ON/OFF model, hinted in [17] and formally introduced in [34] is a mathematical abstraction which provides
a foundation for physical traffic modeling based on physically verifiable properties. The basis of this model is that
the network traffic is a superposition of a large number of independent ON/OFF sources with heavy tailed ON and
OFF periods. This model gives rise to self-similarity in the aggregate process — an fGn process — whose LRD is
determined by the heavy-tailed nature of the ON and OFF periods. The ON/OFF model has its roots in a certain
renewal reward process introduced by Mandelbrot [22] (and further studied in [32]) and provides the theoretical
underpinnings for much of the recent works on the physical modeling of network traffic. K. Park et al [26] have
shown that the application layer property of heavy-tailed file sizes is preserved by the protocol stack and mapped to
approximately heavy-tailed busy periods at the network layer. The ON/OFF model is able to induce both Gaussianity
and asymptotic second order self similarity.

The weakness of the ON/OFF model is that it assumes that all connections send data at the same rate during the
ON period. It also assumes independence of ON/OFF sources. The resulting trace obtained from ON/OFF models is
Gaussian, and thus does not model bursty traffic well.

3 Connection level traffic analysis

Network traffic is highly non-Gaussian [1, 29] and as a result the classical models such as fGn and ON/OFF are inad-
equate to describe it. In this chapter, we present a connection-level analysis of network traffic to understand the cause
of non-Gaussianity. We show that the aggregate traffic can be separated into two components: the Gaussian (Beta)
component and the bursty (Alpha) component. Whereas the majority of connections constitute the Beta component
of traffic, a very small number of burst causing connections add up to give the Alpha traffic that has heavy tailed
marginals. We look at several schemes to separate the Alpha and Beta components of traffic. In cases where connec-
tion level details are not available, we perform fGn denoising using a wavelet based colored denoising technique [13]
for burstiness extraction. We also study the hourly variation of burstiness in traffic during the course of the day. The
analysis indicates that network traffic is more Gaussian (i.e., kurtosis� closer to �) when the link utilization is high.

�Please see appendix for a review on kurtosis



Table 1: Network trace files used in the study

Dataset Filename Duration Number of Packets
(sec) packets recorded

Auck-1 20000125-143640-0 2086 650,732 all
Auck-2 19991207-125019-0 3182 1,000,000 all
Auck-3 19991207-125019-1 3182 971,673 all
Auck-4 19991201-192548-0 86400 16,690,066 all
Auck-5 19991201-192548-1 86400 15,561,266 all

DEC-PKT-3 DEC-PKT-3 3600 2,873,588 TCP
LBL-PKT-4 LBL-PKT-4 3600 862,945 TCP
LBL-PKT-5 LBL-PKT-5 3600 677,845 TCP

Table 2: Trace file details

Dataset overall data Mean data rate Number of Utilization
sent (MBytes) (KBytes/sec) connections (percent)

Auck-1 341.14 163.51 43728 65.40
Auck-2 571.23 179.47 64087 71.78
Auck-3 227.82 71.57 65372 28.63
Auck-4 7934.7 36.73 Not available 36.73
Auck-5 4717.0 21.83 Not available 21.84

DEC-PKT-3 650.32 180.66 66252 Not available
LBL-PKT-4 130.93 36.38 6238 Not available
LBL-PKT-5 94.13 26.16 4777 Not available

3.1 Network traces used

Three sets of traces, namely Auck, DEC and LBL are used in the analysis, as summarized in Table 1.
The first set of traces were recorded at the University of Auckland [24]. The traces are part of a large collection of

GPS synchronized IP header traces captured with a DAG2 system at the University of Auckland Internet uplink by the
WAND (Waikato Applied Network Dynamics) research group, which is based in the University of Waikato Computer
Science Department. The University of Auckland ITSS department operates an OC3 ATM link to carry a wide variety
of services off the main campus. A single ATM channel is used to connect the university to the global Internet, and
since it is the only connection, all packets for all external connections pass the measurement point. The connection
has a packet peak rate of 2 MBits/sec in each direction. For more details, see [24].

The DEC-PKT-3 trace was gathered at the primary Internet access point for the Digital Equipment Corporation.
Digital’s Palo Alto research groups operate the access points. The trace captured all TCP packets and lasted 1 hour.

The last set of data are the LBL-PKT-4 and LBL-PKT-5 gathered at the Lawrence Berkeley Laboratory’s wide-area
Internet gateway [16]. The traces captured all TCP packets and lasted 1 hour each. For more details on the LBL and
DEC traces, see [16].

All traces have details on individual packets, such as the timestamp (with resolution � microsecond), packet size,
source IP address and port number, and destination IP address and port number. The traces used are summarized in
Table 1.

3.2 Analysis of burstiness in network traffic

To analyze burstiness in network traffic, consider the Auck-2 trace as an example. Figure 1(a) shows the bytes per
time plot of this trace at ���ms time-scale. The traffic is clearly spiky at this time scale. The histogram of the traffic,
shown in Figure 1(b) has a slowly decaying tail. This is also reflected in the kurtosis (see appendix for a review of
kurtosis) value of ����, which indicates that the traffic trace is non-Gaussian.
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Figure 1: (a) Bytes-per-time arrival process at 500ms aggregation level for Aggregate network traffic (Auck-2) and (b) Histogram
of aggregate traffic.

Next, we look at the number of active connections in each time bin. We define a connection as a unique four-tuple
comprising a source IP address, destination IP address, source port number and destination port number. Figure 2(a)
shows the number of active connections at each time bin of ���ms. This trace looks significantly less bursty, and its
histogram, shown in Figure 2(b), looks more Gaussian. Indeed, the kurtosis for this trace is ����. If the ON/OFF
model was accurate, we would expect the bytes per time plot to be a scaled version of the connections per time plot.
This is because, in the connections per time plot, each active connection contributes a constant value (namely one) in
that time bin, similar to what the ON/OFF model does.

We note that the bytes per time plot and the connections per time plot look similar except for the spikiness in the
former. This is reflected in the correlation coefficient between the two traces, which is ����.

Next we look at the connection level contribution of bytes at the Alpha components of the traffic. In the framework
of the classical ON/OFF model, the peaks can be explained only through the presence of a very large number of active
connections each sending data at a constant rate. To test whether this hypothesis is true, let us choose the peak at time
bin ��� (corresponding to 	�� seconds from the start of the trace). Figure 3(a) gives the connections strengths in bytes
per time for the �� active connections present in this time bin. The connections are numbered in descending order of
connection strengths. It is clear from this figure that we have one connection that sends a significantly large number of
bytes compared to the other active connections in this time bin. This reveals that the peak at time bin ��� is caused by
a single dominant connection. To verify if all the spikes are due to single dominant connections, we do the following.
We select the time instants when a single connection contributes more than ��� of the traffic and check if they pick
out the bursts. Figure 3(b) illustrates that this indeed is the case. The selected time instances are circled in the trace,
and we observe that most of the bursts are captured.

3.3 Separation into Alpha and Beta traffic

The above analysis of bursts motivates a separation of connections into two classes: one that dominates other active
connections and cause bursts, and the other that comprise the remaining connections. The connections that cause
bursts can be aggregated together to give the Alpha component of traffic. The remaining traffic is grouped together to
give the Beta component. We show that the Beta component is Gaussian if there is sufficient amount of traffic. There
are several ways in which the Alpha and Beta components can be separated. We discuss four schemes below.

3.3.1 Threshold-based separation

In this scheme we consider all time instances where the number of bytes exceeds the threshold of mean rate plus
three standard deviations. For Auck-2 data, this threshold is ���� �	� bytes. At each of the time instances where the
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Figure 2: Number of connections active in intervals of 500ms duration for the Auck-2 trace: (a) time series and (b) histogram.
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Figure 3: (a) Connection strengths at time bin 568 at 500ms resolution and (b) time instances when a single connection contributes
more than ��� of the traffic.

data rate exceeds the threshold, we subtract the contribution of the largest connection. If the ON/OFF model were
accurate, subtracting one connection at a peak should produce a traffic trace that looks similar to the original bytes
per trace plot. This is because the model assumes that peaks are caused due to a large number of equally strong active
connections, and as a result removing one component will not reduce the peak significantly. On the other hand, if the
hypothesis that bursts are caused due to the presence of a single dominant connection is true, we should expect to see
a considerably smoother traffic trace. Indeed, this is the case observed, as shown in Figure 4(a). The resulting trace
(Beta component) looks significantly less spiky, and is reflected in the low kurtosis value of ����, which is very nearly
Gaussian. The resulting trace can thus be well modeled by Gaussian models like fGn, WIG or ON/OFF. On the other
hand, the kurtosis of the Alpha component (Alpha component) is ��	���, which suggests that the non-Gaussianity is
captured in this component.

An important point to note is that the total number of connections that contribute to the Alpha component is just
��, out of a total of ����� connections that constituted the overall traffic. Thus burstiness is caused due to a very small
fraction of the total number of connections.
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Figure 4: (a) Bytes-per-time arrival process at 500ms aggregation level for the Beta component of the traffic using thresholding
scheme on Auck-2. Note its Gaussian character. (b) Similar Alpha component. Note its bursty character.

3.3.2 Uniform separation

The second method to extract Alpha and Beta components is to remove the maximum connection component uniformly
at all points in the trace. Figure 5 shows the resulting traces when this scheme is adopted. The kurtosis of the Beta
component is ���� and that of the Alpha component is �����. The advantage of this scheme is its simplicity, requiring
no thresholding. The disadvantage is that a large part of the Alpha traffic extracted in this scheme is smooth and not
bursty. This is because we removed the maximum connections even at non-bursty parts of traffic. It is desirable to
aggregate the smooth part with the Beta component. Also, the maximum connection component must be computed at
each time bin, and this may require some computations.

3.3.3 Connection based separation

In this method, we compute the maximum rate at which each connection sends data in ���ms time-bins. We select a
threshold of mean plus twice the standard deviation of the aggregate trace and divide the connections into two groups:
one in which the maximum connection rate exceeds the threshold and the second in which the maximum rate is less
than the threshold. For Auck-2 data, the number of connections whose rate exceeded the threshold is just �� out
of the total ����� connections that constitutes the aggregate traffic. These �� traces add up to give a highly bursty
traffic (Alpha component) with kurtosis �����. The remaining connections add up to give a Gaussian trace (Beta
component) with kurtosis ����. The resulting traces from this scheme are shown in Figure 6. Once again, we find that
the number of connections that contribute to the bursts is significantly smaller than the total number of connections.
The advantage of the connection based separation scheme is that we identify only those connections that are capable of
causing bursts. Hence this is a good way to get the smallest set of connections that cause bursts. However, this scheme
has some drawbacks. First, the computation time is high, since the maximum rate for each connection is required.
Secondly, a connection need not send data at high rates throughout its lifetime. The burst causing connections may
send data at low rates during its lifetime, and it is desirable to group this part with the Beta component.

3.3.4 Separation using wavelet denoising

In the last scheme to extract the Alpha and Beta components, we use only the aggregate traffic data and discard the
connection level information. This scheme is useful when connection level data of the traffic is not available. This
scheme is based on the fact that we can treat the Beta component as “noise” and the Alpha component as the “signal”,
and use well known denoising techniques to separate the two. We use Wavelet based denoising techniques, with
coefficient thresholding. For colored denoising, we use different thresholds for wavelet coefficients at different scales.
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Figure 5: (a) Bytes-per-time arrival process at 500ms aggregation level for Beta component using uniform separation scheme on
Auck-2 and (b) Alpha component
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Figure 6: (a) Bytes-per-time arrival process at 500ms aggregation level for Beta component using connection based separation on
Auck-2 and (b) Alpha component

Kaplan and Kuo [14] have shown that for Haar wavelet, the variance progression of the wavelet transform of fGn with
Hurst parameter � satisfies

�����	��� � 	�	������ (8)

where � is the resolution with increasing � denoting finer resolutions. In colored denoising scheme, the threshold
at each scale is made proportional to the expected standard deviation of the wavelet coefficients at that scale. Thus,
knowing the Hurst parameter, we can fix the threshold at each scale using equation (8) Johnstone et al [13] have shown
that this thresholding scheme is optimal for colored denoising.

For the Auck-2 trace, the Hurst parameter is estimated as ���� using variance time plot technique (see next section).
Figure 7 shows the Beta and Alpha components obtained by employing this colored denoising scheme. We use only
the first ���� data points in Auck-2 trace at ���ms resolution to facilitate wavelet decomposition. The kurtosis of
this truncated data set is ����. Note that the Beta component is zero mean, with the mean contributing to the Alpha
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Figure 7: (a) Bytes-per-time arrival process at 500ms aggregation level for Beta component using colored denoising on Auck-2
and (b) Alpha component
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Figure 8: For a comparison of thresholding and denoising schemes we plot on the left a slight zoom into Figure 4(b) to display
the same time range as in Figure 7(b). This plot is redone on the right, but where the mean is subtracted and the negative values are
discarded. This allows to compare the ability of the schemes to detect burst.

component. The kurtosis for the Beta component is ���	. To judge the effectiveness of the denoising scheme, we plot
the Alpha component computed by thresholding scheme and denoising scheme alongside in Figure 8. The mean of
Alpha component obtained from colored denoising is removed and only the positive values are plotted. We observe
that the locations and intensities of the bursts in denoising scheme compares well with the those computed using the
thresholding scheme.

3.4 Analysis of Beta traffic: Cause of LRD

We now argue that the LRD properties of the aggregate traffic comes from the Beta component. To see this, we use
the variance-time plot to estimate the Hurst parameter for the three traces in Figure 9. The Hurst parameter value and
the variance for the aggregate trace and the Beta trace are found to be nearly equal, with values of ���� and ����. Thus
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Figure 9: Variance-time plot of Auck-2 trace.

Table 3: Analysis of Auck-1 data.

Time Kurtosis Skew Kurtosis Skew Kurtosis
scale (ms) aggregate aggregate Beta Beta Alpha

50 4.778 1.009 2.994 0.626 165.829
500 4.754 0.737 2.821 0.299 200.992
5000 3.283 0.284 2.763 0.116 298.591

the Beta traffic carries the same fractal scaling exponent as the aggregate traffic.

3.5 Results of traffic trace analysis

We summarize the connection level analysis of the different traffic traces in Tables 3 to 8. In all the analysis, the
thresholding scheme of component separation is used. For Auck-1, Auck-2 and DEC traces, the removal of burst
causing connections results in a traffic trace with kurtosis very close to �, indicating that it is very close to Gaussian.
However, for the Auck-3 and LBL traces, the Beta component has high kurtosis. This is due to the small amount
of data transfer, justified by the utilization for Auck-3 and number of connections in LBL traces. In scenarios with
low link utilization or small number of connections, we does not have enough flows to add up in order to give rise to
Gaussianity. To illustrate this point further, Figure 10 shows the histograms of the traffic traces at ���ms resolution.
We observe that for Auck-3 and LBL traces, the histogram is not bell shaped. This is because we do not have enough
flows that aggregate to give rise to Gaussian marginals. In contrast, the histograms of Auck-1, Auck-2 and DEC traces
have a well defined bell-shape, which is captured well by the Beta component.

3.6 Dependence of burstiness on load

In this section we study the variation of burstiness with link utilization. Datasets Auck-4 and Auck-5 are used, both of
which are 	� hour long traces. The traces are the forward and reverse flows recorded at the same link simultaneously.
The traffic trace over the 	� hour duration is non-stationary. To circumvent the problem of non-stationarity, we split
the traces into 	� sub-traces each of � hour duration. We assume that the traffic is stationary within the sub-traces.
This assumption is found valid in the study of Paxson et al [27]. The main finding in our study is that the traffic is more
non-Gaussian when the link utilization is small, and vice versa. Also, the Beta component of the traffic has kurtosis
closer to � at high utilization.

Figures 12(a) and 12(d) give the utilization of the link on an hourly basis. This resembles the hourly variation in
traffic rates studied previously in [27]. The start time of the traces is ��:	�:�� hours on December �,���� Auckland
local time. The utilization is high during working hours with �� to �� percent in Auck-4 and 	� to �	 percent in Auck-



Table 4: Analysis of Auck-2 data.

Time Kurtosis Skew Kurtosis Skew Kurtosis
scale (ms) aggregate aggregate Beta Beta Alpha

50 4.777 0.892 2.976 0.455 143.057
500 5.808 0.803 3.359 0.112 112.062
5000 5.901 0.358 3.513 -0.296 151.470

Table 5: Analysis of Auck-3 data.

Time Kurtosis Skew Kurtosis Skew Kurtosis
scale (ms) aggregate aggregate Beta Beta Alpha

50 8.680 2.098 4.498 1.355 66.275
500 14.718 2.730 5.062 1.264 67.111
5000 15.098 2.640 4.201 1.044 76.372

Table 6: Analysis of DEC-PKT-3 data.

Time Kurtosis Skew Kurtosis Skew Kurtosis
scale (ms) aggregate aggregate Beta Beta Alpha

50 4.632 1.003 3.149 0.659 164.082
500 5.198 0.990 3.366 0.607 209.242
5000 4.701 0.780 2.977 0.389 166.420

Table 7: Analysis of LBL-PKT-4 data.

Time Kurtosis Skew Kurtosis Skew Kurtosis
scale (ms) aggregate aggregate Beta Beta Alpha

50 18.065 3.019 6.199 1.699 65.006
500 13.045 2.675 6.136 1.621 47.179
5000 7.485 1.961 5.051 1.416 48.778

Table 8: Analysis of LBL-PKT-5 data.

Time Kurtosis Skew Kurtosis Skew Kurtosis
scale (ms) aggregate aggregate Beta Beta Alpha

50 16.642 2.878 5.090 1.638 87.453
500 17.699 2.740 4.683 1.166 78.037
5000 12.567 2.001 4.555 0.860 91.379
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Figure 10: Histograms of aggregate traffic at 500ms for all traces
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Figure 11: Histograms of Beta component of traffic at 500ms for all traces

5. At other times, the link utilization is low. Since both traces record the flows in the forward and reverse directions,
we infer that there is more data flow in one direction than in the other.

In Figure 12(b) and Figure 12(e), we plot the kurtosis of the overall traffic and that of the Beta component, on
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Figure 12: Hourly variation of burstiness. Hour � corresponds to Auckland local time ��:��:��, on December �, ����.

an hourly basis. The traces are studied at ���ms resolution. There is a clear relation between kurtosis of the overall
traffic and the link utilization. With more link utilization, the overall traffic tends towards Gaussian. Also, the Beta
component of the traffic has kurtosis closer to � when at high utilization. Figure 12(c) and Figure 12(f) show the skew
variation during the course of 	� hours. Note that for the most part the skew is positive. This could be due to the
fact that the traffic trace is positive, and hence the tail on the positive side of the distribution is more than that on the
negative side.

4 Origin of Alpha traffic

In this section, we investigate the possible causes of burst causing connections. We list four reasons why we could
observe a burst causing connection. A simple test reveals that all the burst causing connections in the real traces can
be attributed to only one cause, namely heterogeneity in bottleneck bandwidths.

4.1 Potential causes of bursts

Burst causing connections can arise due to several reasons. An exhaustive list of such reasons is given below:

� Transient response to re-routing: This could happen if packets from a connection are re-routed from a high-
bandwidth end-to-end path to a low-bandwidth one. TCP, which probes for the available bandwidth by adjusting
its window size will find that the optimal window size to use in the new route is far less than the current window
size, which was suitable in the old route. Since feedback to TCP takes at least an RTT, we could expect a
transient bursty behavior.

� Transient response to start/stop of connections: Whenever other connections sharing the same link with a par-
ticular connection terminates, it causes freeing up of available bandwidth which can be used by the competing



connections. TCP will sense the increase in available bandwidth and try to grab its share. This might potentially
lead to bursty connections, especially for those connections where the phase of TCP is conducive to sudden
increase in window size, like slow-start.

� TCP slow-start peculiarities: In this case, some connections can get “lucky” during slow start in that it encoun-
ters no packet drops for unusually long time. This can happen when packet drops at congested routers happen
only for the competing connections, albeit with very low probability.

� Heterogeneity in bottleneck bandwidths: In this scenario, the connections active in the measured link can be
bottleneck-ed elsewhere. The bottlenecks need not be the same link, hence need not be similar. We can imagine
a wide range of bottleneck connections, ranging from slow modem lines to fast ones such as DSL and Ethernet.
When we have a large pool of connections, we would expect that the high bottleneck connections will dominate
over the low-bottleneck connections and could potentially cause bursts. This scenario assumes that there are
only a few connections that have high bottleneck bandwidth.

We will argue that the last scenario, i.e., the heterogeneity in bottleneck bandwidths is solely responsible for the
bursts observed in the traces we analyzed.
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Figure 13: Top: Peak rates for connections that share the same source and destination hosts. Three such groups are shown.
Bottom: Amount of data transferred in these connections

4.2 Testing for the origin of burstiness

To support our claim that the heterogeneity in bottleneck bandwidths is solely responsible for the observed bursts we
propose a test to identify whether the cause of burstiness is related to the end-to-end path. Among the four possible
causes of burstiness listed above, only the last one depends on the end-to-end path. For the traces analyzed here, the
tests were positive, the burst causing connections are due to end-to-end properties, and thus we can attribute the burst
phenomenon to the heterogeneity in bottleneck bandwidths.

The test involves selecting a burst causing connection and identify all connections that share the same source and
destination hosts. We filter out those connections that do not transmit more than a given amount of data, since these
connections cannot potentially create a burst. For each of the connections selected, we determine the maximum data
rate for the time period under study by sliding a moving window along the connection duration. We plot the peak
rate for all the connections selected. If burstiness is caused due to an end-to-end phenomena (like heterogeneity in



bottleneck bandwidths), we would expect all the selected connections to be high rate, since they share the same end-
to-end path with a burst causing connection. On the other hand, if the burstiness is due to other reasons (like transient
responses, etc.) then we would expect the initial bursty connection to be the only one among the selected connections
to be high rate.
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Figure 14: Peak rate and data rate coefficients

Figure 13 shows the results for a few groups of connections in the Auck-2 trace. We observe that all connections
within a group are of more or less equal strengths. We also plot the total bytes that were transferred in the connection.
Note that the peak-rate plot and the total-data plot are highly correlated. This suggests that many of the connections
did not utilize the full available bandwidth, because the entire file transfer was over by the time TCP could probe for
the optimal bandwidth.

If a burst causing connection is not due to heterogeneity in bottleneck bandwidths, we would see a high peak rate
for this connection compared to other connections sharing the same end-to-end hosts. This motivates a measure that
can pick out such connections. We define peak-rate-coefficient (PRC) as the ratio between the largest and second
largest peaks in an end-to-end connection group. PRC would thus be much larger than � if the cause is not hetero-
geneity in bandwidths. However, we can also expect large PRC when we have different file sizes. In other words, the
other connections in the connection group can have low peak rates due to small data transfers in those connections. To
tackle this problem, we define another measure, data-rate-coefficient (DRC), as the ratio of the bytes transferred in the
corresponding connections. If the increase in PRC was due to an increase in DRC, we can deduce that burstiness is
due to an end-to-end phenomena, namely heterogeneity in bottlenecks. Indeed, this was the case observed, as shown
in Figure 14. Thus we conclude that all burst causing connections are due to bottleneck heterogeneity.

5 Connection-level traffic model

We propose a network model to explain the origins of burst causing connections. The model is validated using
simulations in ns, a network simulator. We have seen in the previous chapter that the existence of bursts in real traces
cannot be explained in the framework of classical ON/OFF model. The burst causing connections, which send data
at rates considerably higher than other connections, form a small fraction of the total connections. This motivates a
model for the connections where the majority of TCP connections have similar bottleneck bandwidths in their end-
to-end path, while a small number of connections have high bottleneck bandwidths. The first kind of connections
aggregate to a fGn process plus a mean (the Beta component), and the second kind of connections add up to give the
burst component of the traffic. We model the connection durations as taken from heavy tailed Pareto distribution [26],
to impart LRD to traffic. Thus we argue that the heterogeneity in both bottleneck bandwidths and file-sizes gives rise
to the conspicuous features of realistic traffic namely burstiness and LRD. We simulate the above scenario in the well
known network simulator ns and show that it generates realistic traffic that is both LRD and non-Gaussian. ns [7, 23]
is LBNL’s event driven simulator derived from S. Keshav’s REAL network simulator.



5.1 Connection classes

The heterogeneity in file-sizes and bottleneck bandwidths motivates a classification of TCP connections into four
classes:

� Class 1: Low bottleneck rate and small connection load. We define connection load as the amount of data
transferred in that connection. This class includes data transfers of a few packets, like SMTP (email without
attachments), web traffic with small number of packets transfered, etc. We can also include telnet sessions and
ACK streams in this class, since they do not compete for bandwidth.

� Class 2: Low bottleneck rate and large connection load. Connections in this class are usually long HTTP
connections, SMTP (email with attachments), FTP, etc that are bottleneck-ed by a slow link in the end-to-end
path.

� Class 3: High bottleneck rate and small connection load. Here, the individual connections are short and spiky.

� Class 4: High bottleneck rate and large connection load. These connections are large file transfers similar to case
	 but where the bottleneck bandwidth is considerably higher than those of the other connections. The bottleneck
for these flows could be the link where the measurements are taken. These connections are the candidates that
can cause burstiness.

5.2 Network model to explain non-Gaussian LRD traffic

Based on our careful analysis of several real traffic traces presented in Chapter 3 and 4, we propose a network model
that gives rise to non-Gaussian LRD traffic as observed in the real world. The model introduces heterogeneity in the
bottleneck bandwidths of the TCP connections. This hypothesis agrees with the variations in link capacity in real
world networks, from analog modems to T� dedicated phone lines. The LRD property is brought about by the heavy
tailed distribution of file sizes. This model is verified in section 5.3 using ns simulations.

We model the different bottleneck constraints as follows. The majority of the connections have low to medium
bottleneck, whereas very few connections have high bottleneck capacities. The connections from small bottlenecks
aggregate to give a Gaussian traffic, and can be well modeled as fGn. The high bottleneck connections, on the other
hand, arrive infrequently and dominate the instantaneous arrival rates, causing bursts.

The proposed model captures both the local-topology information as well as the user behavior. Local-topology
information is used to determine the values of the bottleneck bandwidths. The user behavior is captured by the inter-
arrival of the bursts and the Hurst parameter of the Beta component of traffic. Adjusting these parameters give rise to
simulated traffic to match any realistic traffic trace.

5.3 Simulations to validate the network model

The objective in this section is two fold: to further validate the proposed network model using ns simulations, and to
have a simulation setup that produces realistic non-Gaussian LRD traffic.

The arguments in the previous section motivates a simulation setup in which majority of the TCP connections have
similar bottleneck bandwidths, and a small number of connections having much higher bandwidths. We adopt the
topology in Figure 15. The network has �� servers and a large number of clients. The number of clients is chosen
based on the intensity of traffic that we wish to simulate. The links ��� � serve as the bottlenecks for the end-to-end
path. Each of the link ���� to ���
 has bandwidth taken from a uniform distribution. The link ��� � has much
higher bandwidth, of about ��� to ���� times those of � � � �, � � � � �. The TCP connections that use this link as
the bottleneck will serve to create burstiness in the aggregate traffic observed at link ���.

The servers establish TCP connections with a client on the other side that is chosen at random. The connection
times and the idle times are taken from Pareto distribution with parameter � � ��	 (except for servers connected to
the large bottleneck link �� ��). The relationship between the expected Hurst parameter of the aggregate traffic and
� is given by [26]

� �
��� ��

	
(9)
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Figure 15: Left: ns topology to generate realistic traffic. Right: ns topology commonly used
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Figure 16: Bytes-per-time arrival process at 500ms aggregation level for (a) Aggregate network traffic (Auck-2) (b) The Beta
component and (c) Alpha component. The Alpha component comprise of bytes from a single connection at each time bin.
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Figure 17: Variance time plot for ns simulation. The Hurst parameter is ����.

Overall traffic that flows through link � � � is measured and aggregated over time-bins of ��ms and ���ms.
Figure 16 gives the bytes-per-time plot for the series obtained from simulation, with parameters taken from Table 10.

We note that the visual appearance of the traffic resembles realistic traffic. The kurtosis for this trace is ���� and the
Hurst parameter ���	, close to the value of ��� predicted by equation 9. If the burst causing connections are removed
from the trace, the kurtosis reduces to ����. This is consistent with the previous observations that the bursts are caused
due to single connections.

We mention that the often used ns topology, shown in Figure 15 does not give traffic with kurtosis significantly
greater than �. Thus we conclude that heterogeneity in bottleneck links are essential for producing realistic bursty
traffic.



Table 9: Link parameters used in the ns simulation

Link Bandwidth (Kbps) Latency (ms)
� � �� 12000 20
� � �� Unif(50,120) 20

to � � �

�� � ������� 5000 10
��� 20000 20
� �� 20000 20

��� to ��� 10000 20
� � ������� 10000 Unif(10,100)

to � � �������

Table 10: Network topology parameters for heavy traffic

Number of nodes �� 15
Number of clients per �� 6

Mean ON time (sec) 10
Mean OFF time (sec) 10
Pareto parameter � 1.2

6 Impact and applications of model

6.1 Impact on queueing

The importance of queuing analysis in network design and control cannot be overemphasized. Buffer dimensioning in
routers and call admission control are but two of the many crucial areas in networking research that rely on an accurate
characterization of the queuing behavior of data traffic. We begin by showing that the Alpha component of network
traffic significantly affects the tail queue probability, it contributes only a small fraction of the aggregate traffic load.
The Alpha component dictates the tail queue behavior for large queue sizes, whereas the Beta component controls the
tail queue behavior at small queue sizes.

We perform queueing experiments with the real data to study the impact of the Alpha and Beta components of the
traffic separately. The traffic is fed to an infinite queue with constant service rate. We then determine the probability
that the queue size exceeds a given value. We consider only the Auck traces, since the link capacity for these traces is
known, and is equal to 	Mbps. First we feed the queue with the overall traffic and study its tail queue behavior. Then
we feed the queue with the Alpha component plus the mean of the Beta component, to study the impact of burstiness.
The mean of Beta component is added in order to keep the link utilization equal. Similarly, to study the impact of the
Beta component on queueing, the queue is fed with the Beta component plus the mean of the Alpha component.

The impact of the Alpha component of the real data is considerable, as we demonstrate in Figure 18. We plot the
queue size versus tail-queue probability for the Auck traces. The plots reveal that the Alpha component significantly
affects the queueing behavior, especially for large queue sizes. This is remarkable, considering that the Alpha com-
ponent constitutes only a small fraction of the total load. The Beta component determines the queueing behavior at
small queue sizes. Note that for the Auck-3 trace, the Beta component of the traffic does not fill up the queue at all,
although it constitutes �� percent of the overall traffic. This is due to low link utilization (as we saw in Chapter 3).

6.2 Multifractal spectra of traffic

In this section, we study the multifractal spectra of network traffic and its components. In very rough terms, the
multifractal spectrum ���� of a function���� describes the singularity structure, i.e., the burstiness of � in a compact
way (see Figure 19): the parameter � measures the strength of a burst, while ���� measures how frequency it occurs
(see [29, 28]).

The spectrum � is often estimated through the Legendre path which seems the only practical way but which,
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Figure 18: Queueing behavior of traffic.
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Figure 19: Multifractal spectra of traffic

unfortunately, increases the estimation error and adds bias. In particular, the Legendre estimate of � is always very
smooth, while the true � might not be.

Let us first comment on the shape of the spectra of the components. The Beta component shows a rather narrow
spectrum, which could roughly be approximated by to line segments, one joining ����� ��� and ��� ��, the other ��� ��
with ����� ��. Such estimates are typically observed with fGn, thus confirming well the Gaussianity of this component.
Since other processes might show similar spectra, the shape of the spectrum should not be seen as a proof of the
Gaussianity. Nevertheless, we may conclude that fGn is an accurate model for the Beta component not only in what
concerns marginals and LRD, but also small scale properties.

The spectrum of the Alpha component, on the other hand, is broad, and shows in particular considerably large
���� values for � below �, this reflects the bursty behavior of this component. When comparing with the spectrum
of the overall traffic it is immediately evident that the bursty exponents (� 	 �) of the overall traffic steam from
the Alpha connections. Theory says (see [30, Section 4]) that the maximum of the spectra of the components, i.e.
�� ������� ������� should have the same convex hull as ����, the spectrum of the overall traffic. However, since the
Alpha traffic is so small in volume estimation errors prevent it from pushing up the left part of ���� as much as theory
predicts. Nevertheless, theory confirms that the bursts of the traffic is to an overwhelming degree due to the Alpha
component.



7 Discussion and Conclusions

7.1 Summary

In this report, we verified the following principle for burstiness in network traffic:

“In any series of elements to be controlled, a selected small fraction in terms of number of elements almost
always accounts for a large fraction in terms of effect.” —Pareto’s principle

A connection level analysis of network traffic reveals that the burstiness is caused by a small number of connec-
tions that transmits data at unusually high rates, thereby verifying Pareto’s principle in the context of network traffic
modeling.

Based on very careful analysis of several real traffic traces, we infer that Internet traffic can be separated into
two components: the Beta component and the Alpha component. The Alpha component is due to the small number
of connections that give rise to bursts. The Beta component, which is composed of the majority of the connections
captures the LRD and is well modeled as fGn plus mean.

A physical model which captures heterogeneity in bottleneck bandwidths and size of files transferred was intro-
duced to explain the Beta and Alpha components of the traffic. ns simulations were performed which support the
model.

Queueing experiments were done to determine the impact of the two components. Whereas Beta component
affects small queue sizes, the Alpha component controls the queueing behavior at large queue sizes.

7.2 Future work

The immediate goal is to estimate the bottleneck bandwidth of individual connections. This is a challenging problem
because we need the connections to send a large number of packets in order to accurately estimate the maximum rate.

It would be interesting to analyze the Alpha component of traffic and study the inter-arrival times of the burst-
causing connections. Preliminary investigations indicate that burst-causing connections arrive in a non-Poisson fash-
ion. Efforts to generalize the process such as non-homogeneous Poisson process or Weibull is underway.

A novel technique to analyze and separate Gaussian and non-Gaussian components of data using Independent
Component Analysis (ICA) [11] is planned.

An important item for future work is synthesis of network traffic using the fGn plus bursts model, trained on real
data sets. The synthetic traffic must match the real traffic in terms of queueing behavior.

The analysis of burstiness can be used in Active Queue Management (AQM) policies. For example, in schemes
such as Random Early Drop (RED), we can drop packets that belong to burst-causing connections instead of dropping
packets randomly. In this scheme, only the burst-causing connection is penalized.

A Tests for Gaussianity using Kurtosis and Skew

A.1 Kurtosis

The classical measure of non-Gaussianity is kurtosis. The kurtosis of a random variable� is the fourth central moment
divided by fourth power of the standard deviation.

!��� �
��� ����

���� ������
(10)

For a Gaussian � , the fourth central moment equals ������ ������. Thus, the kurtosis ���� � � for a Gaussian
random variable. For most non-Gaussian random variables, the Kurtosis differs from �.

Random variables that have Kurtosis less than � are called sub-Gaussian, and those with Kurtosis greater than �
are called super-Gaussian. In statistical literature, the corresponding expressions platykurtic and leptokurtic are used.
Super-Gaussian random variables have typically a “spiky” probability density function (pdf) with heavy tails, i.e., the
pdf is relatively large at large values of the variable. Sub-Gaussian random variables, on the other hand, have typically
a “flat” pdf, in which pdf is small for values far away from the mean when compared to a Gaussian random variable.
Figure 20 illustrates the differences between super-Gaussian and sub-Gaussian random variables.
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Figure 20: Examples of sub-Gaussian and super-Gaussian distributions

Typically non-Gaussianity is measured by the deviation of Kurtosis from � [11]. There are non-Gaussian random
variables that have a Kurtosis of � but they can be considered as very rare. An example of a random variable with
kurtosis � is the Weibull distribution with shape parameter 	�	 (approx.) [12].

The main reason for using Kurtosis as a measure of non-Gaussianity is its simplicity, both computational and
theoretical. Computationally, Kurtosis can be estimated simply by using the fourth and second central moments of
the sample data. Theoretical analysis is simplified because of the following linear property: If � � and �� are two
independent random variables with unit variance, then the following relations hold:

�!��� ����� �� � �!����� �� � �!����� �� (11)

and
�!������ �� � ���!����� �� (12)

where � is a scalar. These properties can be easily proven using the definition.
Kurtosis has also some drawbacks in practice, when its value has to be estimated from a measured sample. The

main problem is that Kurtosis can be very sensitive to outliers [10]. Its value may depend only on a few observations
in the tails of the distribution. In other words, Kurtosis may not be a robust measure of non-Gaussianity.
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Figure 21: Distributions with positive and negative skew



A.2 Skew

Skew is defined as the third central moment divided by the cube of the standard deviation.

"��� �
��� ���	

���� �����
�

�

(13)

A distribution is skewed if one of its tails is longer than the other. A skew value of zero indicates that the values
are evenly distributed on both sides of the mode. A negative skew indicates an uneven distribution with a higher than
normal distribution of values to the right of the mode, a positive value for the skew indicates a larger than normal
distribution of values to the left of the mode. Figure 21 illustrates this with examples.
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