An Improved Multifractal Formalism and Self-Affine Measures

1. A Multifractal Formalism
 1.1 The Status Quo
 1.2 An Improved Formalism
 1.3 The Legendre Transform of the Spectrum

2. Self-Similar Multifractals
 2.1 Cantor Set and Codespace
 2.2 Iterated Function Systems
 2.3 Spectrum of Self-Similar Multifractals
 2.4 Examples and Counterexamples
 2.4.1 Homogeneous Multifractals
 2.4.2 Explicit Formulas
 2.4.3 Atomic Multifractals
 2.4.4 Subsets of Given Local Hölder Exponent

3. Self-Affine Multifractals
 3.1 Geometric Properties
 3.2 Limit Theorems
 3.3 Generalized Dimensions
 3.3.1 Estimate
 3.3.2 Grid-Regularity
 3.3.3 Differentiability
 3.4 Box and Hausdorff Dimension
 3.5 Centered Self-Affine Multifractals
 3.5.1 Numerical Calculation
 3.5.2 Carpets and Subsets of Given Local Hölder Exponent
It has been recognized that most fractals K observed in nature are actually composed of an infinite set of interwoven subfractals. This structure becomes apparent when a particular probability measure \(\mu \) supported by \(K \) is considered; to every \(\alpha \) belongs the set \(C_\alpha \) of all points of \(K \), for which the measure of the balls with radius \(\rho \) roughly scales as \(\rho^\alpha \) for \(\rho \to 0 \). In other words the various \(C_\alpha \) are the sets of local Hölder exponent \(\alpha \). Since they are often fractals, \(\mu \) was termed multifractal.

The complexity of the geometry of \(C_\alpha \) is measured by the spectrum \(f(\alpha) \) which can be thought of as representing the box dimension of \(C_\alpha \). More precisely speaking the number of boxes \(B \) of a \(\delta \)-grid with \(\mu(B) \approx \delta^\alpha \) scales as \(\delta^{-f(\alpha)} \). However, the singularities of \(\mu \) may also be measured through the generalized dimensions \(d_q \), which are related to the scaling law of the partition sums: \(\sum \mu(B)^q \sim \delta^{d_q} \).

Spectrum and generalized dimensions are very helpful when comparing multifractals appearing in nature with analytically treatable measures. In various fields multifractality has been found to be appropriate to describe phenomena in nature, like catalytic reactions [38], the distribution of galaxies [5a], percolation, Brownian motion [Fed], growing structures [V1], and many others appearing in the theory of dynamical systems [V1].

Heuristical arguments suggest a close relation between \(d_q \) and \(f \): the convex \(\tau(q) = (1-q)d_q \) is the Legendre transform of the concave \(f(\alpha) \). This allows to reduce the somewhat tedious, if not impossible computation of \(f \) to the simpler one of \(d_q \).

Though used in different fields, the various notions developed for the purpose of numerical simulations differ only slightly. A mathematically precise definition as well as the important relation \(\tau(q) = \sup \{ f(\alpha) - q\alpha \} \) can be found in [Fal94]. But unfortunately this concept turns out to be unsatisfactory for two reasons.

First of all the spectrum is defined through a double limit, which usually does not exist for great \(\alpha \). Secondly the generalized dimensions take the irrelevant value \(d_q = \infty \) for negative \(q \). More concretely, for as simple multifractals as the middle third Cantor measure half of the singularity exponents are lost and, even worse, the important Legendre relation cannot be verified by [Fal94, prop. 17.2].

In the present thesis we propose a concept which meets the two mentioned problems by a simple improvement. Instead of boxes taken from a grid of size \(\delta \), we use a kind of parallel body of these boxes. This renders a measurement \(F \) resp. \(D_q \) of the singularities of \(\mu \), which carries relevant information on the measure and which can...
be treated with rigorous geometrical arguments. Furthermore, as an invaluable tool for analytical and practical treatment of the spectrum, we introduce the semispectra F^+ and F^-. Doing so avoids problems of convergence. Moreover, the semispectra are in some sense more regular than the spectrum itself.

The superiority of our concept is reflected in the following facts.

First, the generalized dimensions D_q and the semispectra $F^±$ are invariant under bilipschitzian coordinate transformations. Moreover, they depend regularly on the size $δ$ of the considered grids. In particular it is enough to consider the limit behaviour for any sequence $δ_n$ such that $δ_n ≥ δ_{n+1} ≥ 0$, with constant $ν$.

Secondly, the modification does not affect the generalized dimensions for positive q, i.e. $D_q = d_q (q ≥ 0)$.

Thirdly, the so-called singularity exponents $T(q) := (1 − q)D_q$ are indeed the Legendre transform of the spectrum $F(α)$. Therefore T is convex. And, what is even more interesting in applications, if T is continuously differentiable, then F is the Legendre transform of T. Similar properties have been claimed for f resp. $d_ν$ but hold only for positive q.

Multiplicative cascades generalize the construction of the middle third Cantor set. Starting with a compact set V_1, one chooses first r closed disjoint subsets V_i of V_1, then r closed disjoint subsets V_{ij} of each V_i and so on. Provided the diameters of the sets $V_{i_1,i_2,...,i_n}$ tend to zero with increasing n, this process generates a sequence of compact sets K_n, each consisting of r^n components, which decreases to a nonempty compact set K. Consequently K is homeomorphic to the product space $[1...r]^{[q]}$.

Now, given r positive numbers p_i with $p_1 + ... + p_r = 1$, there is a unique product measure corresponding to the measures $[i] → p_i$ on the factors of $[1...r]^{[q]}$. Its pullback $μ$ is a probability measure supported by K. The construction of $μ$ explains the term ‘multiplicative cascade’.

It is almost evident that the structure of the cascade must be reflected by the spectrum. Moreover, one's intuition should be that the so-called cylindrical sets $V_{i_1,i_2,...,i_n}$, which possess the measure $p_{i_1}...p_{i_n}$, give the essential information about the geometry of $μ$—at least if their shapes are similar.

As a consequence most of the notions of spectrum used for the study of multiplicative cascades work directly with coverings of K by cylindrical sets, instead of coverings by boxes from a grid. Such a formalism may rightly be called ‘tailored to multiplicative cascades’. It certainly possesses great advantages, since the embedding of $μ$ in the particular euclidean space causes no problem. Furthermore symbolic dynamics are used most effectively [BR, CM]. For instance the spectrum defined through cylindrical sets is always concave [Lan].

Furthermore, for self-similar measures, i.e. $μ = \Sigma p_i \nu_i$, the spectrum can be calculated with reasonable effort [HP]. On the other hand, the multifractal formalism cannot distinguish between $μ$ and the product measure. In other words it lacks geometrical relevance and cannot be used to detect structures.

But exactly this is the aim of our approach. In chapter 1 we develop a multifractal formalism which is based purely on the geometry of measures and which does not assume any structure in advance.

Consequently we will treat arbitrary probability measures with bounded support. Moreover, we will not assume concavity nor differentiability of the spectrum F. To support this approach examples will be developed, for which these properties do not hold. So the duality between $T(q)$ and $F(α)$ is violated: the singularity exponents depend more regularly on the measures of the boxes, since they are defined through a sum or ‘average’ [HJKPS]. The spectrum, on the other hand, carries a greater amount of information.

The present formalism can be applied to any probability measure, in particular to one obtained from observation and represented—incompletely of course—by some thousands of sample points. Since the multifractal formalism can be used to compare such an observed measure with an analytically treatable multifractal, we provide formulas for the spectrum of self-similar measures in chapter 2 and of certain self-affine measures in chapter 3.

A satisfying result is that the improved formalism leads to the same conclusions as the one “tailored to multiplicative cascades” at least for self-similar measures. In this case all the cylindrical sets have the same shape and can be approximated by balls. However, in the affine case, some of the cylindrical sets are long stretched and thin. These sets of course cannot be thought of as representing balls. Our treatment of this case shows how to modify one’s intuition.

Finally, besides a lot of examples, we provide evidence as well as rigorous results concerning the interpretation of $F(α)$ as the Hausdorff dimension of the sets $C_α$, $C_α$ of local Hölder exponent $α$. The main problem here is, that the boxes of size $δ$ with measure $≈ δ^α$ do not necessarily form a sequence of decreasing sets as $δ → 0$.

Summarizing we feel that the present thesis provides a better understanding of multifractality and refines one’s intuition on self-affine measures.
Abstract

To characterize the geometry of a probability measure \(\mu \) with bounded support, its so-called spectrum \(f \) has been introduced recently. A mathematically precise definition has been given in [Falc4]:

\[
f(\alpha) = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{\log(n_\alpha(\alpha + \varepsilon) - n_\alpha(\alpha - \varepsilon))}{-\log \delta}
\]

whenever this limit exists. Thereby \(n_\alpha(\alpha) \) is the number of boxes \(B = \prod_{k} \delta_k (k_k + 1) \delta_k \) in \(\mathbb{R}^d \) with integers \(k_k \), such that \(\mu(B) \geq \delta^\alpha \). As will be shown, this definition is unsatisfactory for reasons of convergence as well as undesired sensitivity to the particular choice of coordinates. A new definition \(F \) of the spectrum is introduced, which is based on box-counting too, but which carries relevant information about \(\mu \). The essential modification is that \(n_\alpha \) is replaced by the number of boxes \(N_\alpha(\alpha) \) with \(\mu((B)) \geq \delta^\alpha \), where \((B) \) is the box of size \(3\delta \) concentric to \(B \). In addition, the \(\lim_{\varepsilon \to 0} \) is replaced by the \(\lim \sup_{\varepsilon \to 0} \) for obvious reasons. The adaptation of the well known singularity exponents to this concept reads:

\[
T(q) = \limsup_{\varepsilon \to 0} \frac{\log \left(\sum \mu((B))^q \right)}{-\log \delta}
\]

This notion renders exponents \(T(q) \), which are invariant under bi-lipschitzian coordinate transformations and for which the limit behaviour can be extracted from considering any sequence \(\delta_n \) such that \(\delta_n \geq \delta_{n+1} \geq \nu \delta_n \) with constant \(\nu \).

The important relation

\[
T(q) = \sup_{q \in \mathbb{R}} \left(F(\alpha) - q \alpha \right)
\]

is valid for \(q \neq 0 \) and in the case of multiplicative cascades also for \(q = 0 \). Consequently \(T(q) \) is convex. On the other hand, \(F(\alpha) \) need not be concave, as examples prove. In other words \(F \) may provide more detailed information than the Legendre transform of \(T \). However, if \(T(q) \) equals \(\lim_{q \to 0} \ldots \) and is differentiable on all of \(\mathbb{R} \), then

\[
F(\alpha) = \lim_{\varepsilon \to 0} \lim_{\delta \to 0} \frac{\log(N_\alpha(\alpha + \varepsilon) - N_\alpha(\alpha - \varepsilon))}{-\log \delta} = \inf_{q \in \mathbb{R}} (T(q) + q \alpha)
\]

for all \(\alpha \).
Zusammenfassung

Um die Geometrie eines Wahrscheinlichkeitsmasses μ mit beschränktem Träger charakterisieren zu können, wurde der Begriff des ‘Spektrums’ F eingeführt. Eine mathematisch präzise Definition findet sich in [Fal94]:

$$f(\alpha) = \lim_{\delta \downarrow 0} \lim_{i \to \infty} \frac{\log(n_i(\alpha + \varepsilon) - n_i(\alpha - \varepsilon))}{- \log \delta}$$

wenn immer dieser Grenzwert existiert. Dabei ist $n_i(\alpha)$ die Anzahl der Würfel $B = \Pi_i[\kappa \delta, (l_i + 1)\delta]$ in \mathbb{R}^d mit ganzzahligen l_i, für welche $\mu(B) \geq \delta_i$. Wie gezeigt wird, ist diese Definition unabhängig von der Wahl der Koordinaten. Ein neues Spektrum F wird eingeführt, welches ebenfalls auf ‘box counting’ beruht, aber geome- trisch relevante Informationen trägt. Die wesentliche Veränderung besteht darin, dass neu statt $n_i(\alpha)$ die Anzahl $N_i(\alpha)$ der Würfel mit $\mu(B_i) \geq \delta_i$ verwendet wird, wobei B_i der zu B konzentrische Würfel mit Seite 3δ ist. Aus einleuchtenden Gründen wird zusätzlich der limsup$_{\alpha \to 0}$ ersetzt durch $\limsup_{\alpha \to 0}$. Die wohlgenannten ‘Sinngleichs Exponenten’ werden in diesem Konzept eingebettet durch die Definition

$$T(q) = \limsup_{\delta \downarrow 0} \lim_{i \to \infty} \frac{\log(\mu(B_i))q}{- \log \delta}$$

Sie sind invariant unter bilipschitz-stetigen Koordinatentransformationen, und das massgebende asymptotische Verhalten kann aus einer beliebigen Folge δ_n herausgelesen werden, vorausgesetzt $\delta_n \geq \delta_{n+1} \geq n\delta_n$ mit konstantem ν. Die wichtige Beziehung

$$T(q) = \sup_{\alpha \in \mathbb{R}} (F(\alpha) - q\alpha)$$

ist allgemein gültig für $q \neq 0$, und typischerweise auch für $q = 0$. Fölgerichtig ist $T(q)$ konvex. Andererseits muss $F(\alpha)$ keineswegs konvex sein, wie Beispiel belegen. In anderen Worten, $F(\alpha)$ kann mehr Information über μ beinhalten als die Legendre-Transformierte von $T(q)$. Doch solche Beispiele scheinen untypisch zu sein, denn es gilt: Falls $T(q)$ gleich limsup$_{\alpha \to 0} \ldots$ und differenzierbar ist überall auf \mathbb{R}, dann ist

$$F(\alpha) = \lim_{\delta \downarrow 0} \lim_{i \to \infty} \frac{\log(N_i(\alpha + \varepsilon) - N_i(\alpha - \varepsilon))}{- \log \delta} = \inf_{q \in \mathbb{R}} (T(q) + q\alpha)$$
Chapter 1

A Multifractal Formalism

To characterize the geometry of a measure, its so-called spectrum has proved to be an invaluable tool. The present chapter, dedicated to its study, is organized as follows: in the first section we introduce the multifractal formalism based on box-counting—as it is developed and used at present—and give two reasons why it should be changed. Thereby we stick to the notation of Falconer [Fal01]. In section two we present a new concept and show that it possesses the expected regularities. In the third section simple properties of the newly defined spectrum are discussed, in particular its connection to the so-called singularity exponents.

The spirit of our approach is summarized in two remarks. First, we shall consider arbitrary probability measures with compact support and provide results of considerable generality. However, when more is assumed about the measure, in particular that it is constructed by a multiplicative cascade, much more can be said. This will be carried out in the remaining chapters. Secondly, we focus in this work on a formalism based purely on the geometry of the measure, allowing a characterization free from any assumption on the structure in advance. This is quite different from a concept which emphasizes on multiplicative cascades and uses this underlying structure essentially. However for the measures considered in the subsequent chapters, the two formalisms lead to identical conclusions. This will allow us to study limit behaviours in the more convenient space \(\{1, \ldots, r\}^\mathbb{R} \) and to derive exact formulas for the spectra.

1.1 The Status Quo

A compact set \(K \) in euclidean space \(\mathbb{R}^d \), such as the middle third Cantor set, may carry a rich geometrical structure. One way to measure the complexity of its geometry is to use a \(\delta \)-grid with variable \(\delta > 0 \) in the following way: A set of the
Indeed, under certain conditions this is the intuitive understanding of the spectrum [HJKPS, JKL]. We have the `concavity of f and concavity of $\log f$ indicates that the decreasing part of f is usually a concave function related to the notion of spectrum tailored for multiplicative cascades rather than one relying on box-counting.

The spectrum often is a strictly concave function with a single maximum. But it may as well look quite different (see Ex. 2.15, 2.16, 2.17, 3.3, 3.5 and 3.6). Note that most proofs in the literature [BR, Lan] concerning this matter work with a notion of spectrum tailored for multiplicative cascades rather than one relying on box-counting.

However, provided f is concave, then $f(\alpha) = \sup \{ f(t) : t < \alpha \}$ in the increasing part and $f(\alpha) = \sup \{ f(t) : t > \alpha \}$ in the decreasing part of f. This leads us to defining the following auxiliary functions:

Definition 1.2 Let $m(\alpha)$ be the number of all boxes in G_k with $\mu(B) < \delta^\alpha$, so that $n(\alpha) + m(\alpha)$ equals $\#G_k$, the number of all δ-boxes with nonvanishing measure. Then set

$$ f^+(\alpha) = \limsup_{\delta \to 0} \frac{\log n(\alpha)}{-\log \delta} \quad \text{and} \quad f^-(\alpha) = \limsup_{\delta \to 0} \frac{\log m(\alpha)}{-\log \delta} $$

Despite their simplicity, f^+ and f^- usually contain the same information on μ as does f: when n_δ is strictly increasing at α, the term $n_\delta(\alpha + \epsilon) - n_\delta(\alpha - \epsilon)$ is negligible. So, the increasing part of f is usually equal to f^+. Since $n_\delta(\alpha + \epsilon) - n_\delta(\alpha - \epsilon) = n_\delta(\alpha - \epsilon) - n_\delta(\alpha + \epsilon)$, a similar argument shows that the decreasing part of f is usually equal to f^-. Performing numerical simulations or analytical investigations one will find it hard, if not impossible, to calculate f^+ and f^-. Even more tedious is the computation of f. But the related singularity exponents $\tau(q)$ defined below are easier to determine [KP2, CP1, Crl1, BP, JKP, BPV, L] in particular since they depend more regularly on the data $\mu(B)$ [JHKPS, JKL]. Because $f(\alpha)$ is usually a concave function related to $\tau(q)$ through the Legendre transformation [CLP, Falcon, BR] it is in most cases enough to know $\tau(q)$.

This points to certain advantages of f^\pm in contrast with f: their definition is simple and f^\pm are defined for all α. Moreover, it is straightforward that they are monotonous. As a consequence, f^+ and f^- can immediately be derived from $\tau(q)$, while the existence and the concavity of f do not hold in general and have to be verified before applying the Legendre transformation. (Compare our theorem 1.1 with proposition 17.2 in [Falc1].)

By introducing f^+ and f^\ast a central difficulty in the handling of spectra—existence and concavity of f—is removed.

To discuss a second difficulty hidden in definition of f let us introduce $\tau(q)$. We keep close to the notion in [Falc1, p 257]:
Definition 1.3 For \(q \in \mathbb{R} \) let \(s_q(B) := \sum_{B \in G_q} \mu(B)^q \) and define the singularity exponents to be

\[
\tau(q) = \limsup_{\delta \to 0} \frac{\log s_q(B)}{-\log \delta}
\]

For later convenience, denote the corresponding \(\liminf \) by \(\gamma(q) \). Finally the generalized dimensions are given by

\[
d_q := \frac{1}{1-q} \tau(q) \quad \text{for} \quad q \neq 1 \quad \text{and} \quad d_1 = \limsup_{\delta \to 0} \sum_{B \in G_q} \mu(B)^{1/q} \log \mu(B). \]

The definition of \(G_q \) guarantees that boxes of measure zero do not contribute to \(s_q \). Usually (see corollary 2.1) \(d_q \) is just \(\delta_{\text{min}}(K) \), which explains the name ‘generalized dimensions’. Since \(\tau(1) = 0 \) holds trivially, a closer look at \(d_1 \) is required. This will be carried out in section 1.3. The special value \(d_q \) which seems to be the most interesting of all \(d_q \) for several reasons [Gr2], was termed information dimension. Together with the correlation dimension \(d_q \) it was the first of all \(d_q \) to be introduced [GP1, GP2, OWY].

Several recent publications are concerned with the generalized dimensions of concrete examples and include more or less rigorously derived formulas. As it was recognized in [CLP, HR], the difficulty in calculating \(d_q \) is imperceptibly hidden in the negative \(q \)-range: Even for the simplest multifractals like the middle third Cantor set (Ex. 1.1), boxes with exceptionally small measure occur for certain scales \(\delta \) of the grid. When taken to a negative power the measures of these boxes give an unnatural large contribution to \(s_q(B) \). They will dominate the asymptotics of \(s_q(B) \), which is of course not intended.

A different asymptotic behaviour can only be obtained by restricting the measurement to certain scales \(\delta \) of the considered grids. But this requires that the structure to be detected is known in advance. This point will be made explicit in the following example. Note that it is neither exotic nor pathological, but on the contrary the multifractal presented the most.

Example 1.1 (Cantor Measure) Let \(p_1 > 0, p_2 > 0 \) with \(p_1 + p_2 = 1 \). Subdivide \([0, 1]\) into three equally spaced intervals, assign the measure \(p_1 \) to the left one, the measure \(p_2 \) to the right one and throw away the middle one. With the remaining two intervals proceed the same way, creating four intervals of length \(1/9 \) such that the first one obtains the measure \(p_1^2 \), the second and the third \(p_1 p_2 \) and the third one \(p_2^2 \) (see Fig. 1.1). Repeating this procedure ad infinitum leaves one with a Borel probability measure (compare section 2.1) having the well known middle third Cantor set as its support.

The first claim is:

\[
q < 0 \quad \Rightarrow \quad \tau(q) = \infty.
\]

Proof To every \(\alpha \in \mathbb{N} \) there is a \(\gamma_\alpha \in \mathbb{N} \) with \(p_1^{\gamma_\alpha} \leq (1/2 \cdot 3^{-n})^n \), because \(p_2 < 1 \). Without loss of generality \(\gamma_\alpha \geq n + 1 \). Then, \(\delta_n := (1 - 3^{-k}) \cdot 3^{-n} \) lies in

\[\left[1 - 3^{-\alpha}\right]^{\gamma_\alpha} - 3^{-\alpha} \right] \quad \text{for} \quad \alpha = 1, 2 \ldots \]

Since \((3^n + 1) \delta_n \geq 1 \), the box \(B_n := 3^n \delta_n \cdot [3^n + 1] \delta_n \) has very small measure: \(B_n \cap [0, 1] = [1 - 3^{-k}, 1] \), thus \(\mu(B_n) = p_1^{\gamma_n} \leq (\delta_n)^\gamma \). For \(q < 0 \) it follows

\[
s_q(B_n) \geq \mu(B_n)^q \geq (\delta_n)^{-q},
\]

which proves the claim. \(\diamond \)

To keep the proof simple, the box \(B_n \) was chosen in special position at the border of \([0, 1]\). However, the same behaviour can of course be recognized at every point of \(K \).

Only the restriction of \(\delta \) to a suitable sequence as e.g. \(\delta_n := 3^{-n} \) allows to observe the naturally expected behaviour:

\[
s_q(B_n) = \sum_{j=1}^{\gamma_n} p_1^j \cdot \ldots \cdot p_1^j = (p_1 + p_2)^{\gamma_n},
\]

and hence

\[
\tau(q) = \limsup_{n \to \infty} \frac{\log s_q(B_n)}{-\log \delta_n} = \frac{\log (p_1^\gamma + p_2^\gamma)}{-\log 3}.
\]

By the argument of theorem 1.2 the double lines

\[
f^* (\alpha) = \lim_{n \to \infty} \limsup_{\epsilon \to 0} \frac{\log (s_q(\alpha + \epsilon) - s_q(\alpha - \epsilon))}{-\log \delta_n}
\]

exists for all \(\alpha \in \mathbb{R} \) and equals the Legendre transform of \(\tau(q) + cq \) of \(\tau(q) \). The function \(f^* (\alpha) \) carries information about \(\mu \) and agrees with the intuitive understanding of the spectrum: it gives the dimension of the sets with Hölder exponent \(\alpha \). The graphs of \(f^* (\alpha) \) reveal the typical features, in particular the asymptotic behaviour of \(d_1 = \tau(1)/1-q \) and the concavity of \(f^* \) (see Fig. 1.2).

A closer look reveals \(\tau(q) = \tau(q) \forall q \in \mathbb{R} \) and even \(\tau(q) = \tau(q) = \tau(q) = \tau(q) \) for \(q \geq 0 \).

But note that this result is derived using strongly the particular position of \(K \) in the \(3^{-n} \)-grid.
Moreover, even if the latter would be assumed, one had to know in advance the contraction ratios of the self-similar process generating the multifractal.

Finally, one may interfere that the restriction of the considered values \(\delta \) to a suitable sequence \(\delta_n \) would be sufficient. But the comparison of \(\delta_n \) and \(\delta_n = \lfloor 1 - 3^{-n} \rfloor \) in example 1.1 must destroy any confidence in such practice, since strict self-similarity cannot be expected in numerical simulations. Moreover, even if the latter would be assumed, one had to know in advance the contraction ratios of the self-similar process generating the multifractal.

It is our concern to show that a simple but effective change in the way of measuring the concentrations of \(\mu \) is enough to make the generalized dimensions a useful tool also for negative \(q \).

\section{1.2 An Improved Formalism}

This section provides the definition as well as the basic properties of the formalism we propose.

Before starting we would like to put our method into a broader context.

Remember that the undesired behaviour described in the previous section arises from boxes with exceptionally small measure. Collet et al. [CLP] pointed out that for certain measures every such box possesses a neighbouring box with 'normal' measure. While in [CLP] a very technical partition sum is constructed to replace \(s_0(q) \), the idea in our mind is as simple as effective: we use the measure of boxes blown up by a factor three.

The essential geometrical argument in the proofs below will be the following: whenever a box intersecting \(K \) is considered, the enlarged concentric box \(B' \) meets \(K \) in its 'middle part', i.e. in \(B \). Hence \(B' \) is a better approximation of a ball with center in \(K \) than the original box \(B \) (see Fig. 1.3). So, we feel that this method is more accurate to measure local behaviour such as the Hölder exponents, where one usually works with balls centered in \(K \). Moreover, for multifractals constructed as the Cantor measure, a considerable part of \(K \) must be contained in the enlarged box, leading to further properties and to the formulas for the spectrum of self-similar and self-affine measures as given in the subsequent chapters.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure12.png}
\caption{Generalized dimensions (on the left) and spectrum of the middle third Cantor measure with \(p_1 = 2/3 \) and \(p_2 = 1/3 \). The dashed parts are the asymptotical lines for \(\delta^* \) resp. the internal bisector of the axes touching the graph of \(f^* \).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure13.png}
\caption{When a box intersects the support \(K \), then an enlarged and concentric box will constitute a better approximation of a ball centered in \(K \) and eventually meets \(K \) in a more representative part than the original box.}
\end{figure}
However, this does not mean that every multifractal can entirely be described by its spectrum. In particular, also the newly defined singularity exponents may be infinite and so-called left-sided spectra may occur. For examples see example 2.14 and [MEH, ME, GA]. But it is important to notice that with this new concept one can be sure that infinite singularity exponents imply arbitrarily large local Hölder exponents, while in the former formalism \(\tau(q) = \infty \) may as well arise from inappropriate measurement.

Our formalism uses the parallel-body of a box: for \(\kappa > 0 \) and \(B = \prod_{k=1}^{d} [l_k, (l_k + 1)\delta] \) let

\[
|B|_{\kappa} := \prod_{k=1}^{d} |l_k - \kappa\delta|, |l_k + \kappa\delta|.
\]

As will be shown, the particular choice of \(\kappa \) is of no importance, as long as it is kept fixed through the process. For numerical simulations it might be most convenient to choose \(\kappa = 1 \).

Definition 1.4 (Singularity Exponents) For \(q \in \mathbb{R} \) let \(S_{q}(\kappa) := \sum_{B \in G_{\kappa}} \mu((B)) \delta^{q} \) and set

\[
T(q) = \limsup_{\kappa \to 0} \frac{\log S_{q}(\kappa)}{-\log \delta}.
\]

Thereby the value \(\infty \) is allowed. For convenience denote the respective liminf by \(T(q) \). Moreover, whenever \(T(q) \) and \(T(q) \) coincide for a particular \(q \), \(T(q) \) will be called grid-regular.

Note that the condition \(\mu(B) \neq 0 \) chooses the boxes, not \(\mu((B)) \neq 0 \). This is the central idea of the new formalism (see also Fig. 1.3).

Note, furthermore, that \(T(q) = \infty \) for all \(q \) if \(\kappa \to 0 \), then \(S_{q}(\kappa) \geq 1 \). If \(q \geq 0 \) consider a \(\delta \)-box \(B \) with maximal measure. Of course \(\mu(B) \geq 1/\#G_{\delta} \), and since there are at the most \(\#G_{\delta} \leq c \cdot \delta^{d} \) boxes with nonvanishing measure, this leads to \(T(q) \geq \frac{\log \#G_{\delta}}{-\log \delta} \).

The question concerning the grid-regularity of \(T \) is of importance in applications for obvious reasons.

The same argument that gives the independence of \(T \) from the choice \(\kappa = 1 \) also proves its invariance under a considerable class of coordinate transformations and justifies the restriction of the considered \(\delta \) to a suitable sequence. So, the three assertions will be treated in one proposition. Following the usual lines of interest [OWY, Koh, FM] a bijective map \(\Phi \) from an open neighbourhood \(U \) of \(K = \text{supp}(\mu) \) into \(\mathbb{R}^{d} \) will be called an **admissible coordinate transformation**, if it is \(\delta \)-Lipschitzian, i.e. if \(L^{-1} |x - y| \leq |\Phi(x) - \Phi(y)| \leq L|x - y| \) for some constant \(L \). A sequence \(\{\delta_{n}\}_{n=1}^{\infty} \) will be called **admissible**, if \(\delta_{n} \to 0 \) and if there is a \(c > 0 \) such that \(\delta_{n} \geq \delta_{n+1} \geq c \delta_{n} \), \(\forall n \in \mathbb{R} \).

Proposition 1.5 Let \(\Phi \) be an admissible coordinate transformation, let \(\mu' = \Phi \circ \mu \), \(\kappa' > 0, \kappa > 0 \) and let \(\{\delta_{n}\}_{n=1}^{\infty} \) be an admissible sequence. Then

\[
T(q) = \limsup_{\delta \to 0} \frac{\log \left(\Sigma_{B \in G_{\kappa}} \mu((B)) \delta^{q} \right)}{-\log \delta} = \limsup_{\delta \to 0} \frac{\log \left(\Sigma_{B \in G_{\kappa'}} \mu'((B')) \delta^{q} \right)}{-\log \delta}
\]

for all \(q \in \mathbb{R} \). Similar for \(T(q) \). In particular these values are independent of \(\kappa \) and of the choice of the coordinate system.

Remark The same holds for \(\tau(q) \), but only for \(q \geq 0 \), as the two admissible sequences of example 1.1 show.

Proof We let \(G_{\delta}' = G_{\delta} \) be the set of \(\delta \)-boxes \(B \) with \(\mu(B) \neq 0 \) and compare the values \(S_{q}(\delta, (\kappa')) = \Sigma_{B \in G_{\delta}'} \mu((B')) \delta^{q} \) with \(S_{q}(\kappa, (\kappa')) = \Sigma_{B \in G_{\delta}'} \mu((B')) \delta^{q} \).

i) To every term in \(S_{q}(\delta, (\kappa')) \) a greater one will be constructed in \(S_{q}(\kappa, (\kappa')) \).

Take \(\delta > 0, \delta' \in G_{\delta}' \). Writing \(C := \Phi^{-1}(B) \) and \(D := \Phi^{-1}(B') \) for short, \(\mu(C) = \mu'(B') \neq 0 \) and \(\text{diam}(D) \leq L \cdot \text{diam}((B'))^{\kappa} \). For every \(\delta > 0 \), the choice of which is postponed at the moment, the \(\delta \)-boxes constitute a covering of \(\mathbb{R}^{d} \). Hence there must be one of them, say \(B_{\delta} \), which meets \(C \) and has no \(\mu \)-nullset. Consequently \(B_{\delta} \) is in \(G_{\delta} \). Choosing \(\delta' \) suitable can result in \((B)_{\delta} \subset D \subset (B')_{\delta} \), as desired.

![Figure 1.4: \(\Phi \) and \(\Phi^{-1} \) are Lipschitzian.](image)

\((1+2k)\delta \) \((1+2k')\delta' \)

- **a)** \(q \geq 0 \): The constructed box \(B_{\delta} \) should be large. The claim to prove is:\n
 \[
 \text{with } \eta_{1} := \kappa^{-1} L / \sqrt{2} (1 + 2\kappa') \text{ and } b_{1} := (L / \sqrt{2} \eta_{1} + 2)^{d} \text{ the estimate}
 \]

 \[
 S_{q}(\delta, (\kappa')) = \sum_{B \in G_{\delta}'} \mu((B')) \delta^{q} \leq b_{1} \sum_{B \in G_{\delta}'} \mu((B')) \delta^{q} = b_{1} S_{q}(\kappa, (\kappa'))
 \]

 is valid for every \(\delta \in [\eta_{1}, \kappa^{-1} L / \sqrt{2} (1 + 2\kappa')] \). First, the definition of \(\eta_{1} \) guarantees, that \(\kappa \delta \geq \text{diam}(D) \). Thus \(D \) is contained in \((B)_{\delta} \) (see Fig. 1.4), and

 \[
 \mu((B)_{\delta}) \geq \mu(D) = \mu'((B')) \neq 0.
 \]
The same estimate holds for the q-th powers and the larger term in $S_0(q,\kappa)$ is found. The given construction is not one-to-one, but the number of all δ-boxes B' for which the same box B'_0 has been constructed, is bounded by the constant b_1. Repeating each term in $S_0(q,\kappa)$ b_1 times produces a counterpart for every term in $S'_0(q,\kappa)$. This establishes (1.2). To prove the mentioned property of b_1 fix B. If B has been constructed as the counterpart of some B', then $\Phi(B) \cap B' \neq \emptyset$. But since $\text{diam}(\Phi(B)) \leq L\sqrt{\delta} \leq L\sqrt{\delta} - q\delta$, there are at most b_1 boxes B' which can intersect $\Phi(B)$. So, we are done.

b) $q < 0$: This time the constructed box B should be small. For any $\delta \leq \eta \cdot \delta' := ((1+\kappa)\sqrt{L})^{-1}\delta'$, the set B_0 is contained in D and so $0 \neq \mu(B) \leq \widehat{\mu}(B_0) \leq \mu(D) = \mu(B_0\cup\delta)$. Rising the inequality to the q-th power reverses the sign. Similar to a) the number of boxes B', which lead to the same B, is bounded: since $\text{diam}(\Phi(B')) \leq L\sqrt{\delta} - q\delta$, at the most $b_2 = (L\sqrt{\delta} + 2)\delta' \delta$-boxes can meet $\Phi(B)$. This implies immediately:

$$S_0^{q}(q,\kappa') \leq b_2 S_0(q,\kappa) \quad \forall \delta \leq \eta \delta'. \quad (1.3)$$

ii) Interchanging K with K' and κ with κ' yields:

a) $q \geq 0$: $S_0(q,\kappa) \leq b_0 S_0^{q}(q,\kappa') \quad \forall \delta' \in [\eta \delta', \eta^{-q}\delta']$. (1.4)

b) $q < 0$: $S_0(q,\kappa) \leq b_0 S_0^{q}(q,\kappa') \quad \forall \delta' \leq \eta \delta$. (1.5)

iii) It is easy to derive the desired conclusions from i) and ii). The proof is only given for the times superior:

a) $q \geq 0$: Applying (1.4) with $\delta' = \eta \delta$ implies:

$$\frac{\log S_0(q,\kappa)}{-\log \delta} \leq \frac{\log S_0^{q}(q,\kappa') + \log b_1}{-\log \delta' + \log \eta},$$

hence

$$\lim_{\delta \to 0} \frac{\log S_0(q,\kappa)}{-\log \delta} \leq \lim_{\delta' \to 0} \frac{\log S_0^{q}(q,\kappa')}{-\log \delta'}$$

On the other hand, given δ', κ can be chosen such that $\delta_n \geq \eta \delta > \delta_{n-1}$. Then $\delta_n \leq \eta \cdot \delta_{n-1} \leq \eta \cdot \eta^{-q} \delta'$, and with (1.2)

$$\frac{\log S_0^{q}(q,\kappa')}{-\log \delta'} \leq \frac{\log S_0(q,\kappa) + \log b_1}{-\log \delta_n + \log \eta},$$

thus

$$\lim_{\delta' \to 0} \frac{\log S_0^{q}(q,\kappa')}{-\log \delta'} \leq \lim_{\delta \to 0} \frac{\log S_0(q,\kappa)}{-\log \delta} \leq \lim_{\delta \to 0} \frac{\log S_0(q,\kappa)}{-\log \delta}.$$
Applying this to the admissible sequence δ_n, proposition 1.5 and (1.6) yield:

$$T(q) = \limsup_{n \to \infty} \frac{\log S_n(q)}{-\log \delta_n} \leq \limsup_{n \to \infty} \frac{\log s_n(q)}{-\log \delta_n} \leq \tau(q) \leq T(q).$$

It is not possible to carry out this construction for negative q. Of course to every δ-box C one may find a δ'-box B, the parallel body of which is contained in C. But as example 1.1 shows, it is not possible to guarantee simultaneously $\mu(B) \neq 0$ and $\delta' \geq \text{const} \cdot \delta$.

The definition of the spectrum will now be modified in the same way as the one for the singularity exponents.

Definition 1.7 (Spectrum) The semispectra F^+ and F^- are given through

$$N_0(\alpha) := \# \{ B \in G_1 : \mu((B)) \geq \delta^\alpha \} \quad M_0(\alpha) := \# \{ B \in G_3 : \mu((B)) < \delta^\alpha \}$$

$$F^+(\alpha) := \limsup_{\alpha \to 0} \frac{\log N_0(\alpha)}{-\log \delta} \quad F^-(\alpha) := \limsup_{\alpha \to 0} \frac{\log M_0(\alpha)}{-\log \delta}$$

They have to be considered as auxiliary functions enabling a better treatment of the spectrum, which is defined as follows:

$$F(\alpha) := \lim \limsup_{\alpha \to 0} \frac{\log (N_0(\alpha + \varepsilon) - N_0(\alpha - \varepsilon))}{-\log \delta},$$

Thereby the value $-\infty$ is allowed.

It should be emphasized that this notion uses measures $\mu((B))$ where the boxes B have been selected by the condition $\mu(B) \neq 0$. In order to discuss problems of convergence $F(\alpha)$ will be called grid-regular, whenever the limit $\lim \mu_{\delta, \alpha}$ is actually a lines, i.e. whenever

$$F(\alpha) = \lim \limsup_{\alpha \to 0} \frac{\log (N_0(\alpha + \varepsilon) - N_0(\alpha - \varepsilon))}{-\log \delta}.$$

for a particular α. F will prove to be free of the kind of anomalous behaviour f suffers from. For instance, for the middle third Cantor measure (Ex. 1.1) one finds $F \equiv f^*$, while f is only known in the increasing part.

First the regularities of the semispectra corresponding to the ones of the singularity exponents will be proven: The equality $T = \tau(q \geq 0)$ translates to $F^+(\alpha^+) = f^+(\alpha^+)$. In words: the rising part of the spectrum is essentially left unaffected by the replacement of $\mu(B)$ by $\mu((B))$. Moreover, F is essentially invariant under admissible coordinate transformations and one may use an admissible sequence for its calculation.

The functions $F^+(\alpha)$ and $F^+(\alpha)$ are monotous increasing, $F^+(\alpha)$ and $F^+(\alpha)$ monotous decreasing. Thus the one-sided limits $F^+(\alpha^+) = \lim_{\alpha \to 0} F^+(\alpha + \varepsilon)$, etc. exist.

Proposition 1.8 The values $F^+(\alpha^+)$, $F^+(\alpha^-)$, $F^-(\alpha^+)$ and $F^-(\alpha^-)$ are invariant under admissible coordinate transformations. Moreover, they can be calculated through admissible sequences and do not depend on the particular choice $\kappa = 1$ of the constant factor the boxes are enlarged with. In addition

$$F^+(\alpha^+) = f^+(\alpha^+), \quad F^-(\alpha^-) \leq f^-(\alpha^\pm).$$

Remark Equality between F^+ and f^+ may fail as example 2.1 shows.

Proof The labeling of the steps in this proof as well as some constants correspond to the ones in the proof of proposition 1.5, since the basic idea of the argumentation is the same. As above the notation $\mu' = \Phi(B)K' = \Phi(K)$ etc. is used. The counting function $N_0(\alpha, \kappa)$ corresponding to μ and enlarged boxes (B), is compared with $N_0(\alpha, \kappa')$ corresponding to μ' and enlargement κ'. This is done to take advantage of symmetries.

1) The case $\alpha < 0$ is trivial:

a) $N_0(\alpha, \kappa') = N_0(\alpha, \kappa) - N_0(\alpha) = 0$, $F^+(\alpha) = f^+(\alpha) = -\infty$.

b) $M_0(\alpha, \kappa') = M_0(\alpha) = G_3(\alpha, \kappa)$ and $M_0(\alpha, \kappa') = M_0(\alpha, \kappa)$ is $G_3(\alpha, \kappa') = G_3(\alpha, \kappa')$. Furthermore, $F^+(\alpha) = F^-(\alpha) = T(0)$ due to (1.2) and (1.4) with $q = 0$.

For the remainder $\alpha > 0$ is assumed.

2) Take $\delta' > 0$, $B' \in G'_\delta$ and $\varepsilon > 0$ arbitrarily. Since $\Phi^{-1}(B')$ has positive μ-measure, there must be a box B from G_1^δ intersecting it. The intention is to compare $\mu'((B'))$ with $\mu((B))$ for a suitable δ.

a) Concerning N_0: Take B' with $\mu'((B')) \geq \delta^0$. Choose δ such that $|\delta| > \frac{1}{\sqrt{\mu(B)}}$ has large measure too for $\delta \in [\eta \delta', \sqrt{\mu(B)} \delta']$ the set $\Phi^{-1}((B'))$ is contained in (B). For δ small enough, i.e. $\delta \leq (\eta/\sqrt{\mu(B)})^\delta$, one obtains

$$\mu((B)) \leq \mu'((B')) \geq \delta^0 \geq \delta^\varepsilon \geq \delta^\varepsilon \geq \delta^\varepsilon.$$
b) Concerning M_b: Take B' with $\mu'(B') < \delta^\nu$ and choose δ such that $\{B_n\}$ has small measure too; for $\delta \leq \nu \gamma$ the set $\{B_n\}$ is contained in $\Phi^{-1}(\{B_n\})$. So, if $\delta \leq \nu \gamma$, then

$$\mu'(\{B_n\}) \leq \mu'(\{B_n\}) < \delta^\nu \gamma \leq \delta^{\nu + \epsilon}.$$

And by a similar argument as above

$$M'_b(\alpha, \kappa) \leq b_2 M_b(\alpha - \epsilon, \kappa).$$

Moreover, if $n \in \mathbb{N}$ is such that $\delta_{n+1} \geq \nu \gamma \delta_n$ then $\delta_n \geq \nu_0 \gamma \delta_n$. Using this to estimate the denominator the considerations above yield

$$\limsup_{\nu, \delta} \frac{\log M'_b(\alpha, \kappa')}{-\log \delta_n} \leq \limsup_{\nu, \delta} \frac{\log M_b(\alpha - \epsilon)}{-\log \delta_n} \leq F^*(\alpha - \epsilon).$$ (1.10)

ii) Interchanging K with K' and κ with κ' in i) gives:

a) Concerning N_b^k: $N_b^k(\alpha, \kappa) \leq b_2 N_b'(\alpha + \epsilon, \kappa')$ for $\delta' \in [\nu \delta, \nu^{-1} \nu \gamma \delta]$ and δ sufficiently small. With $\kappa = 1$ and $\delta' = \nu \gamma$,

$$F_+^k(\alpha) \leq \limsup_{\nu, \delta} \frac{\log N_b'(\alpha + \epsilon, \kappa')}{-\log \delta_n},$$ (1.11)

and with $\kappa = \kappa' = 1$, $\Phi =$ identity

$$\liminf_{\nu, \delta} \frac{\log N_b(\alpha)}{-\log \delta_n} \leq \liminf_{\nu, \delta} \frac{\log N_b'(\alpha + \epsilon)}{-\log \delta_n}.$$ (1.12)

Therefore one has to pick the one integer n satisfying $\nu^{-1} \nu \gamma \delta_{n+1} < \delta' \leq \nu^{-1} \nu \gamma \delta_n$ for given δ' (1.12) will be used later.

b) Concerning M_b: $M_b(\alpha, \kappa) \leq b_2 M'_b(\alpha - \epsilon, \kappa')$ for $\delta' = \nu \gamma \delta$ and δ sufficiently small. With $\kappa = 1$:

$$F_-(\alpha) \leq \limsup_{\nu, \delta} \frac{\log M'_b(\alpha - \epsilon, \kappa')}{-\log \delta_n}.$$ (1.13)

iii) Applying (1.9) and (1.11), resp. (1.10) and (1.13) with different values $\alpha, \alpha + \epsilon, \alpha - \epsilon$ and so on, the invariance of $F^+(\epsilon \alpha \kappa)$ resp. $F^-(\alpha \kappa)$ is readily derived.

Finally let us compare F with the former formalism f.

iv) The trivial estimate $\mu(B) \leq \mu(B')$ implies $f^+(\alpha) \leq F^+(\alpha)$ and $f^-(\alpha) \geq F^-(\alpha)$.

v) Let $\epsilon > 0$. To every given δ-box B with $\mu(B) \geq \delta^\alpha (1.7)$ gives a δ-box B_α with

$$\mu(B_\alpha) \geq \delta^\alpha \mu(B) \geq \delta^{\alpha + \epsilon},$$

provided $\delta \leq \delta_0^\nu$. At the most b_0 boxes B may generate the same (fixed) C_B. Consequently, $N_b(\alpha) \leq b_0 \cdot n_0(\alpha + \epsilon)$ and $F^+(\alpha) \leq F^+(\alpha + \epsilon)$.

12. AN IMPROVED FORMALISM

vi) From i) and v) $f^+(\alpha \epsilon) = F^+(\alpha \kappa)$ and $f^-(\alpha \epsilon) = F^-(\alpha \kappa)$.

Besides being monotonic, F^+ and F^- possess further simple properties. In the region $\alpha < 0$ for instance $F^+(\alpha) = -\infty$ and $F^-(\alpha) = T(0)$. This is generalized by:

Lemma 1.9

$$T(0) \leq \max(1, F^+(\alpha), F^-(\alpha)) \leq T(0) \quad \forall \alpha \in \mathbb{R}.$$

Proof The upper bound is trivial due to $\#G_0 = S_b(0)$. Assume now $F^+(\alpha) < T(0)$. Choose $\eta > 0$ such that $F^+(\alpha + 3 \eta) \leq T(0)$. Then choose a sequence δ_n, $n \in \mathbb{N}$, tending to zero such that

$$S_b(0) \geq \delta_n \supset [0, \eta]$$

and $\delta_n \leq \frac{1}{2} \delta_n$. Now there is η_0 such that

$$N_b(\alpha) \leq \delta_n \supset [0, \eta] \leq \frac{1}{2} S_b(0) \quad \forall n \geq n_0.$$

This implies

$$M_b(\alpha, \eta) = S_b(0) - N_b(\alpha) \geq \frac{1}{2} S_b(0)$$

and thus $F^+(\alpha) \geq T(0)$, which proves the claim.

Finally the relation between the semispectrum and the spectrum is investigated. Certainly

$$F(\alpha) \leq \min(F^+(\alpha), F^-(\alpha)).$$ (1.14)

The intuition, that equality in (1.14) should hold, is supported by lemma 1.9, by the monotonicity of the semispectrum and the intuition that $F(\alpha) = \sup(F(t') : t < \alpha) = F^+(\alpha)$ in the increasing part and $F(\alpha) = \sup(F(t') : t > \alpha) = F^-(\alpha)$ in the decreasing part. Consider figure 1.5, which suggests for which α one can expect $F(\alpha) = F^+(\alpha)$ at the points where $F^+(\alpha) = \epsilon \alpha$ is either strictly monotonic or equal to $-\infty$. In fact, to prove the desired equality it is sufficient to require an even weaker condition: A function t is called quasi increasing at α, if

$$\alpha' < \alpha < \alpha''$$

implies $t(\alpha') < t(\alpha'')$.

Thereby $-\infty < \alpha < -\infty$ by definition. When the same holds with reversed inequality, t is called quasi decreasing at α.

Proposition 1.10 a) If F^+ is quasi increasing at α, then

$$F(\alpha) = F^+(\alpha) + f(\alpha)$$

and $F(\alpha)$ shares the properties of $F^+(\alpha)$ stated in proposition 1.8. If in addition for any sufficiently small $\epsilon > 0$ there is an admissible sequence δ_n for which

$$\lim_{n \to \infty} \frac{\log N_b(\alpha + \epsilon)}{-\log \delta_n}$$

exists, then $F(\alpha)$ is grid-regular.
b) If F^- is quasi decreasing at α, then

$$F(\alpha) = F^-(\alpha^-)$$

and $F(\alpha)$ shares the properties of $F^-(\alpha^-)$ stated in proposition 1.8. If in addition for any sufficiently small $\varepsilon > 0$ there is an admissible sequence δ_n for which

$$\lim_{n \to \infty} \frac{\log N_\alpha(\alpha - \varepsilon)}{-\log \delta_n}$$

exists, then $F(\alpha)$ is grid-regular.

![Figure 1.5: The connection between semispectra and spectrum illustrated using the spectrum of the middle third Cantor set: the increasing part of F is given by F^+, the decreasing part by F^-. Thus $F = \min(F^+, F^-)$ in this example.](image)

Proof For reasons of simplicity only the case $\kappa = 1$ is considered. However, it is immediate that the arguments below apply to any choice of κ. From this follows the independence of F from κ under the stated hypothesis.

i) Assume that ε satisfies $F^+(\alpha - \varepsilon) < F^+(\alpha + \varepsilon)$. Given the case $F^+(\alpha - \varepsilon) \neq -\infty$ this means that $N_\delta(\alpha + \varepsilon)$ grows essentially faster than $N_\delta(\alpha - \varepsilon)$. More precisely: choose $n > 0$ such that $F^+(\alpha - \varepsilon) + 3\delta_n \leq F^+(\alpha + \varepsilon)$ and take a sequence δ_n, which gives the lim sup $F^+(\alpha + \varepsilon)$. This means that there is $N_\delta(n)$ with

$$N_\delta(n) \geq \delta_n^{-F^+(\alpha + \varepsilon)n}, \quad N_\delta(\alpha - \varepsilon) \leq \delta_n^{-F^+(\alpha - \varepsilon)n}, \quad \delta_n \leq \frac{1}{2}$$

for all $n \geq n_0$. This implies

$$\frac{1}{2}N_\delta(n) \leq N_\delta(n + \varepsilon) - N_\delta(n - \varepsilon) \quad \forall n \geq n_0.$$

(1.16)

Observing $N_\delta(\alpha - \varepsilon) \geq 0$ gives

$$F^+(\alpha + \varepsilon) \leq \limsup_{n \to \infty} \frac{\log (N_\delta(n + \varepsilon) - N_\delta(n - \varepsilon))}{-\log \delta} \leq F^+(\alpha + \varepsilon)$$

(1.17)

1.3. The Legendre Transform of the Spectrum

Given the case $F^+(\alpha - \varepsilon) = -\infty$ there is a $\delta_0 > 0$ with $N_\delta(\alpha - \varepsilon) = 0$ for $\delta \leq \delta_0$. The inequality (1.17) holds then trivially.

ii) Provided $F^+(\alpha)$ or $F^+(\alpha + \varepsilon)$ is quasi increasing at α, (1.17) holds for all $\varepsilon > 0$, implying $F(\alpha) = F^+(\alpha + \varepsilon)$ in this section. More formally, if F^+ is quasi decreasing at α, the term $M_\delta(\alpha - \varepsilon) - M_\delta(\alpha - \varepsilon)$ dominates the difference $M_\delta(\alpha + \varepsilon) - M_\delta(\alpha + \varepsilon)$, which equals $N_\delta(\alpha + \varepsilon) - N_\delta(\alpha - \varepsilon)$. Hence $F(\alpha) = F^+(\alpha - \varepsilon)$.

iii) Concerning the grid-regularity in α: by (1.12)

$$\lim_{\delta \to 0} \frac{\log N_\delta(\alpha + \varepsilon) - N_\delta(\alpha - \varepsilon)}{-\log \delta} = \lim_{\delta \to 0} \frac{\log N_\delta(\alpha + \varepsilon) + N_\delta(\alpha - \varepsilon)}{-\log \delta} = F^+(\alpha + \varepsilon) > F^+(\alpha - \varepsilon)$$

for sufficiently small $\varepsilon > 0$. Take first the case $F^+(\alpha - \varepsilon) \neq -\infty$. With $\eta > 0$ satisfying $F^+(\alpha - \varepsilon) + 3\eta \leq F^+(\alpha + \varepsilon)$, it may be proceeded as in i) finding (1.16) to hold for all sufficiently small $\delta > 0$. As a consequence

$$\lim_{\delta \to 0} \frac{\log (N_\delta(\alpha + \varepsilon) - N_\delta(\alpha - \varepsilon))}{-\log \delta} = \lim_{\delta \to 0} \frac{\log N_\delta(\alpha + \varepsilon) - N_\delta(\alpha - \varepsilon)}{-\log \delta} = F^+(\alpha + \varepsilon),$$

which is trivial in the case $F^+(\alpha - \varepsilon) = -\infty$. So (1.8) exists and takes the value $F^+(\alpha + \varepsilon) = F(\alpha)$ by ii). In the corresponding situation in b) one finds the existence of (1.8) and its value $F^+(\alpha - \varepsilon) = F(\alpha)$. \Diamond

Finally the modified definition of the generalized dimensions reads as:

Definition 1.11 (Generalized Dimensions)

$$D_\alpha := \frac{1}{1 - q} - T(q) \quad (q \neq 1) \quad D_\alpha := \limsup_{\delta \to 0} \frac{1}{\log(\delta)} \sum_{\mu(\nu)} \frac{\mu(\nu)}{\mu(\nu)}$$

1.3. The Legendre Transform of the Spectrum

As it was already mentioned—and what will be proved in this section—applying the transformation of Legendre to F leads to T. So, once the spectrum is computed the singularity exponents are readily obtained.

In typical applications, however, one will meet the converse situation: one would like to be able to deduce the spectrum from the singularity exponents. This matter would be straightforward if differentiability and concavity of the spectrum could be assumed; F would simply be the transform of T. But proofs establishing such qualities [BR, Lan] work with a multifractal notion ‘tailored to multiplicative cascades’ and do not apply to our formalism. Moreover, we put forward counterexamples with nonconcave spectrum F (Ex. 2.15 and 2.16). For these multifractals the singularity
exponents contain less information than the spectrum and cannot be used to obtain the entire $F(\alpha)$-curve. Calculating F as the Legendre transform of T is thus valid only if it is known in advance that the spectrum is differentiable and concave. It is more convenient to start with the semispectra F^+ and F^-, which are a priori known to be monotonous. This property will turn out to be enough to prove that T determines the semispectra and even the spectrum under reasonable conditions. In particular, no differentiability has to be assumed about F^\pm. To make the terminology precise we define:

Definition 1.12 (Convexity) A real-valued function t with domain \mathbb{D} is called convex at the point c_0, iff there are real numbers q and r such that

$$ r + q\alpha \leq t(\alpha) \quad \forall \alpha \in \mathbb{D} $$

(1.18)

with equality holding for $\alpha = c_0$. We call it strictly convex at c_0 iff the inequality (1.18) is strict for all $\alpha \neq c_0$ in \mathbb{D}. If t is convex at all points of \mathbb{D}, we call it convex in \mathbb{D}. If (1.18) holds with reversed sign we call t concave, respectively strictly concave.

First a simple result on the Legendre transform is needed. Instead of condemning the interested reader to an exhaustive search of this vast and well known topic we feel that the proofs are short enough to be presented right here. The assumptions are tailored to concave functions t and suit our purpose.

Lemma 1.13 Let $t : \mathbb{R} \to \mathbb{R} := \mathbb{R} \cup \{-\infty, +\infty\}$ be arbitrary and define its Legendre transform by $l(q) := \sup_{\alpha \in \mathbb{R}} [t(\alpha) - q\alpha]$ for $q \in \mathbb{R}$. Then, either l and t are both identically $-\infty$ or there exist four numbers $A_1 \leq A_2 \leq A_3 \leq A_4$ in \mathbb{R} such that

a) $l(q) = \infty$ for q not in $[A_1, A_4]$

b) l is real-valued, continuous and convex in $\mathbb{D} := [A_1, A_4]$

c) l is strictly monotonous decreasing in $[A_1, A_2]$

d) l is constant and takes its minimal value in $[A_2, A_3]$

e) l is strictly monotonous increasing in $[A_3, A_4]$

f) (Touching point of l) For all q in $[A_1, A_2]$ there is a real number $x(q)$—strictly positive for $q \in [A_1, A_2]$ and strictly negative for $q \in [A_3, A_4]$—and a sequence $(x_n)_{n \in \mathbb{N}}$, such that

$$ x_n \to x(q) \quad t(x_n) \to l(q) + qx(q) \quad (n \to \infty). $$

Moreover, if l is differentiable at q, then $x(q) = -l'(q)$ is the only touching point.

1.3. The Legendre Transform of the Spectrum

Proof

i) If there is a q with $l(q) = -\infty$, then t must be identically $-\infty$ and hence l as well.

ii) Let us assume that $q_1 < q_2$ are such that $l(q_1)$ and $l(q_2)$ are real numbers. Then, t is bounded from above by the two linear functions $s_k(q) := l(q_1) + q_2 - q_1 q_2/k$ ($k \geq 1$). These two meet at $\alpha = (l(q_1) - l(q_2))/q_1q_2^2$. The function with slope q_2 in $[q_1, q_2]$ which passes through the intersection point $s_2(\alpha, s_1(\alpha_2))$ bounds t as well and hence $l(q_2)$ must be a real number too. From this a) and the first part of b) result.

iii) Continuity as well as c), d) and e) follow directly from convexity. To prove the latter the existence of $x(q)$ is required first. Let $q_1 \in [q_1, q_2]$ as above. By definition there is a sequence $(x_n)_{n \in \mathbb{N}}$ such that $t(x_n) - q_2x_n \to l(q_2)$. Since s_1 and s_2 bound t, the accumulation points of $(x_n)_{n \in \mathbb{N}}$ must all lie between α_2 and α_2. Choose a converging subsequence and call it again x_n. Since x_n converges say to $x(q_2)$, $l(x_n) \to r$ must converge to $r := s_1(x(q_2))$. The explicit formula of α_2 now gives f), as soon as c) - e) are proven, and g) follows from f).

iv) Next, the convexity of l is shown using only the existence of $x(q)$. First, $l(q_1) = r - q_2x(q_2)$ by definition of r. Letting $n \to \infty$, $l(q_2) \geq t(x_n) - q_2x_n$ gives $l(q_2) \geq r - q_2x(q_2)$ for all q. Hence l is convex at q_2.

![The Legendre transform](image)
It remains to show (b). Take \(q_0 \in \{A_1, A_2\} \). There is still a sequence \(x_n \) as above which may be assumed to converge to \(x(q_0) \in \mathbb{R} \). If \(x(q_0) \) is finite the considered continuity follows from convexity. If \(x_n \to \infty \), then for any \(\varepsilon > 0 \) and \(q \in \mathbb{R} \) there is \(n_0 \in \mathbb{N} \) with \(l(q) \geq l(x_n) - qx_n \geq l(q_0) - \varepsilon + (q_0 - q)x_n \) for \(n \geq n_0 \). For \(q < q_0 \) one concludes \(l(q) = \infty \), hence \(q_0 = A_1 \). Letting \(q \to q_0 \) yields \(l(q) \geq l(x_n) - \varepsilon \). On the other hand, \(l(q) \geq l(q_0) \) since by (iv) \(l \) is even with domain \([A_1, A_2] \) convex at any \(q \in [A_1, A_2] \). This proves the claim. The case \(x_n \to \infty \) can be treated in a similar manner.

Next, the Legendre transforms of the semispectra are calculated, which turn out to equal \(T \) in the essential parts. Since \(F^+ \) is increasing and \(F^- \) decreasing, one may only expect \(T \) to equal the Legendre transform of \(F^+ \) for \(q > 0 \) and the one of \(F^- \) for \(q < 0 \). Moreover, there is an inherent lack of information about \(T(0) \). So it is useful to express \(T \) as the transform of one single function for all \(q \). To this we end we set

Definition 1.14

\[F^m(\alpha) := \min\{F^+(\alpha +), F^-(\alpha -)\} \quad \text{and} \quad \alpha^* := \sup\{\alpha \in \mathbb{R} : F^+(\alpha) < F^-(\alpha)\}. \]

Proposition 1.15

\[T(q) = \sup_{\alpha \in \mathbb{R}} \{F^+(\alpha) - q\alpha\} = \sup_{\alpha \in \mathbb{R}} \{F^m(\alpha) - q\alpha\} \quad \forall q > 0, \]

and

\[T(q) = \sup_{\alpha \in \mathbb{R}} \{F^-(\alpha) - q\alpha\} = \sup_{\alpha \in \mathbb{R}} \{F^m(\alpha) - q\alpha\} \quad \forall q < 0. \]

Moreover, if \(\alpha^* < \infty \), then

\[T(0) = \sup_{\alpha \in \mathbb{R}} F^m(\alpha) = \sup_{\alpha \in \mathbb{R}} F^+(\alpha). \]

Example 2.14 provides a multifractal with \(\alpha^* = \infty \) and \(T(0) = \sup_{\alpha \in \mathbb{R}} F^+(\alpha) \).

Remark The proposition could as well be proven with \(F^m \) replacing \(F^+ \). However, as theorem 1.1 shows, this gives no further information in our context.

Proof The idea of the first part is borrowed from J. K. Falconer. We will constantly make use of the boundedness and the monotonicity of the semispectra (Prop. 1.9).

Write \(l(q) = \sup_{\alpha \in \mathbb{R}} \{F^m(\alpha) - q\alpha\} \) and \(L(q) = \sup_{\alpha \in \mathbb{R}} \{F^+(\alpha) - q\alpha\} \) for short.

o) As a consequence of the proposition to prove, \(F^+ \) cannot be identically \(-\infty\) due to \(T(1) = 0 \). However, for this conclusion to hold the claim of the proposition has to be verified also for this case. So let us first treat the degenerate cases. First, consider \(\alpha \) satisfying \(F^+(\alpha) = -\infty \). Then, \(\mu(B_j) < \delta^\alpha \) for all \(B \in G_\delta \) provided \(\delta \) is small enough, and

\[S_\delta(1) \leq \#G_\delta \cdot \delta^\alpha \leq c \cdot \delta^{-\alpha - \delta^\alpha}, \]

where \(c = (\text{diam}(K) + 2)^2 \) is a constant and \(d \) is the dimension of \(\mathbb{R}^d \). From this \(0 = T(1) \leq d - \alpha \). In particular

\[\alpha > d \quad \Rightarrow \quad F^+(\alpha) \geq 0, \quad (1.19) \]

and \(F^+ \equiv -\infty \) is impossible.

The second degenerate case is: \(F^-(\alpha) \geq 0 \) for all \(\alpha \). Fix \(q < 0 \) and take \(\alpha \) satisfying \(F^- (\alpha) \geq 0 \). Then, there are arbitrarily small \(\delta > 0 \) such that \(M_\delta(\alpha) \geq 1 \). Thus, for \(\delta \) there is a box \(B^* \in G_\delta \) with \(\mu(B^*) \geq \delta^\alpha \) and

\[S_\delta(q) \geq \mu(B^*) \delta^\alpha. \]

From this \(T(q) \geq -\alpha \). By (1.19), the following implication holds:

\[F^-(\alpha) \geq 0 \quad \forall \alpha \quad \Rightarrow \quad T(q) = -\infty = L^-(q) = l(q) \quad (q < 0). \quad (1.20) \]

Having treated the degenerate cases \(T \) shall now be estimated from below by \(l \) and \(L^+ \).

i) Fix \(q \geq 0 \) and take \(\alpha \) with \(F^+(\alpha) > -\infty \). Of course \(\alpha \geq 0 \). For any \(q < F(\alpha) \) there are arbitrarily small \(\delta > 0 \) such that \(\delta^\alpha \leq M_\delta(\alpha) \). For such values \(\delta \)

\[S_\delta(q) \geq \sum_{B \in G_\delta} \mu(B)^q \geq \sum_{B \in G_\delta} \mu(B)^q \geq N_\delta(\alpha)^{\delta^\alpha} \geq \delta^\alpha \]

and hence

\[T(q) = \lim_{\delta \to 0} \sup_{\delta, \alpha} \frac{\log S_\delta(q)}{-\log \delta} \geq \gamma - \alpha. \]

Since \(\gamma \) is arbitrary, \(T(q) \geq F^+(\alpha) - \alpha \). This is trivial if \(F^+(\alpha) = -\infty \). Thus \(T(q) \geq L^+(q) \). To establish \(T(q) \geq l(q) \) just take the limit \(\alpha \downarrow \alpha \) and obtain \(T(q) \geq F^+(\alpha) - \alpha \geq F^-(\alpha) - q \alpha \) for all \(\alpha \).

Note: assuming the existence of \(\lim_{\delta \to 0} (-\log N_\delta(\alpha)/\log \delta) \) one may even conclude \(T(q) \geq F^-(\alpha) - q \alpha \).

ii) Fix \(q \leq 0 \). A similar argument as in i) yields \(T(q) \geq F^+(\alpha) - \alpha \). This is trivial if \(F^+(\alpha) = -\infty \). Thus \(T(q) \geq L^+(q) \). To establish \(T(q) \geq l(q) \) just take the limit \(\alpha \downarrow \alpha \) and obtain \(T(q) \geq F^+(\alpha) - \alpha \geq F^+(\alpha) - q \alpha \) for all \(\alpha \).

Hence \(T(q) \geq L^+(q) \) and \(T(q) \geq l(q) \).

Note: assuming the existence of \(\lim_{\delta \to 0} (-\log N_\delta(\alpha)/\log \delta) \) one may even conclude \(T(q) \geq F^-(\alpha) - q \alpha \).

Now, if \(T \) is nonnegative, \(T \geq 0 \) and \(G_\delta \) into sets of boxes with \(\delta^\alpha \leq \mu(B_j) \leq \delta^{\alpha - \delta^\alpha} \). For convenience denote these sets by \(G_\delta \). Their cardinality is bounded by \(N_\delta(\alpha) \) as well as by \(M_\delta(n-1) \). The appropriate bound will have to be carefully chosen, depending on whether \(F^+ \) or \(F^- \) is estimated and whether \(\delta \) is greater than \(\alpha^* \) or not.
iii) \(T \leq L^+ \) for \(q > 0 \): Fix \(q > 0 \) and take \(\varepsilon > 0 \). Note that by (1.18) \(L^+(q) \in \mathbb{R} \). Choose \(m \in \mathbb{N} \) large enough to insure \(L^+(q) + q m \geq \delta \). Then
\[
S_q(\delta) = \left(\sum_{k=0}^{m} \sum_{l \in \Omega(k)} + \sum_{\theta \in \Omega} \mu(l(B)) \right) \delta^k \leq \sum_{k=0}^{m} N_q(\delta^k) \delta^{k+1} + \#(G_q) \cdot \delta^m.
\]
Choose \(\delta_0 \) such that
\[
N_q(\delta^k) \leq \delta^{-1} \delta^{(k)+\varepsilon + 1} \quad (k = 0 \ldots m)
\]
for all \(0 < \delta < \delta_0 \). Then
\[
S_q(\delta) \leq \sum_{k=0}^{m} \delta^{-1} \delta^{k+1} = (m + 1) \delta^{m+1}
\]
for \(\delta < \delta_0 \), and hence \(T(q) \leq L^+(q) + q \varepsilon + \varepsilon \). Thereby \(\varepsilon > 0 \) is arbitrary.

iv) \(T \leq l \) for \(q > 0 \): If \(\alpha^* = \infty \) then \(F^+ = F^m \) and by iii) \(l = T \) for \(q > 0 \). Otherwise, fix \(q > 0 \) and assume without loss of generality \(l(q) \neq \infty \). Take \(\varepsilon > 0 \) and choose \(m \in \mathbb{N} \) such that \(me < \alpha^* \leq (m + 1) \varepsilon \). Then, for \(\alpha > me \),
\[
S_q(\delta) = \left(\sum_{k=0}^{m} \sum_{l \in \Omega(k)} + \sum_{\theta \in \Omega} \mu(l(B)) \right) \delta^k \leq \sum_{k=0}^{m} N_q(\delta^k) \delta^{k+1} + N_q(\delta) \delta^{m+1} + M_4(\delta) \delta^m.
\]
First to the case \(F^+(\alpha^*) \leq F^-(\alpha^*) \). Choose \(\alpha > \alpha^* \) such that \(F^+(\alpha) \leq F^-(\alpha^*) + \varepsilon \). Then
\[
F^+(\alpha) \leq F^m(\alpha^*) + \varepsilon \leq l(q) + \varepsilon, \quad F^-(\alpha) \leq F^m(\alpha) \leq l(q) + \varepsilon, \quad F^m(\alpha) \leq l(q) + \varepsilon.
\]
If \(l \) and \(F^m \) were identically \(\infty \) then by (1.21) \(S_q(\delta) = 0 \) for small enough \(\delta \). This is impossible, thus \(l(q) \in \mathbb{R} \). Now there is \(\delta_0 \) such that
\[
N_q(\delta^k) \leq \delta^{-1} \delta^{k+1} \quad (k = 0 \ldots m)
\]
and
\[
N_q(\delta) \leq \delta^{-1} \delta^{k+1} + M_4(\delta) \delta^m
\]
for all \(0 < \delta < \delta_0 \). Hence
\[
S_q(\delta) \leq (m + 1) \delta^{k+1} + \delta^{-1} \delta^{k+1} + \delta^{-1} \delta^{k+1}
\]
and \(T(q) \leq l(q) \). Now, to treat the case \(F^+(\alpha^*) > F^-(\alpha^*) \), choose \(\alpha \in \left(\alpha^*, \alpha^* \right) \) such that \(F^+(\alpha) \leq F^-(\alpha^*) + \varepsilon \). This time \(F^+(\alpha) \leq F^m(\alpha) \leq l(q) + \varepsilon \). The rest goes along similar lines.

1.3. The Legendre Transform of the Spectrum

v) \(T \leq L^+ \) for \(q < 0 \), which is treated in (1.20), one may assume the existence of a \(\beta \) with \(F^-(\beta) = -\infty \). Fix \(q < 0 \) and take \(\varepsilon > 0 \). Choose \(m \in \mathbb{N} \) satisfying \(me > \beta \). Then \(M_4(me) = 0 \) and, as similar as in iii),
\[
S_q(\delta) \leq \sum_{k=0}^{m} M_4(\delta) \delta^{k+1} \leq (m + 1) \delta^{m+1}
\]
for small enough \(\delta \), thus \(T(q) \leq L^+(q) \).

vi) \(T \leq l \) for \(q < 0 \): as above one may assume \(F^-(\beta) = -\infty \). Fix \(q < 0 \) and take \(\varepsilon > 0 \). Since \(\alpha^* < \beta < \infty \) there are integers \(n \) and \(m \) such that \(ne > \beta \) and \(me > \alpha^* \geq (m - 1) \varepsilon \). Then \(M_4(me) = 0 \) for small enough \(\delta \) and, provided \(\alpha < me \),
\[
S_q(\delta) \leq \sum_{k=0}^{m} M_4(\delta) \delta^{k+1} + \sum_{k=0}^{m} M_4(\delta) \delta^{k+1}
\]
Choosing \(\alpha \in (\alpha^* - \varepsilon, \alpha^*) \) such that \(F^+(\alpha) \leq F^-(\alpha^*) + \varepsilon \) in the case \(F^+(\alpha) \leq F^+(\alpha^*) + \varepsilon \) resp. \(\alpha \in (\alpha^*, \alpha^*) \) such that \(F^+(\alpha) \leq F^+(\alpha^*) + \varepsilon \) in the case \(F^+(\alpha) > F^+(\alpha^*) \), a similar argumentation as in iv) yields \(T(q) \leq l(q) \).

vii) For \(q \neq 0 \) the assertions are proved. Provided \(\alpha^* < \infty \) \(iv \) holds for \(q = 0 \) giving with i): \(T(0) = 0 \) = sup_{\alpha \in \mathbb{R}} \alpha \leq F^+(\alpha) \leq T(0) \).

The notes in step i) and ii) of the proof above imply:

Lemma 1.16 The grid-regularity of \(T(q) \) is a consequence of the existence of
\[
\lim_{\delta \to 0} \log N_q(\delta) \quad (j/q > 0) \quad \text{or} \quad \lim_{\delta \to 0} \log M_4(\delta) \quad (j/q < 0),
\]
where \(\alpha = T(q) \) and continuity of \(F^+ \) resp. \(F^- \) at \(\alpha \) is assumed.

Moreover, proposition 1.15 implies that \(T \) is convex:

Lemma 1.17 \(T \) is certainly continuous, non-increasing and convex on \(\mathbb{R}^+ \). Moreover, either these properties hold on all of \(\mathbb{R} \), or \(T(\alpha) \) is infinite for all \(\alpha < 0 \).

Proof: The monotonicity of \(S_q(\delta) \) with respect to \(q \) carries over to \(T \). Continuity and convexity follow from general properties of Legendre transforms. Furthermore, either \(F^+(\alpha) \geq 0 \) for all \(\alpha \) and \(T(\alpha) = \infty \) for all negative \(q \) by (1.20). Or \(F^+(\alpha) = \infty \) for \(\alpha \) large enough; then \(T(q) \) is real-valued for all \(q \) and \(\alpha^* \) \(\infty \) by (1.19).
Example 2.14 provides a multifractal with grid-regular $T(q)$, which is not even semi-continuous at 0. Consequently for this multifractal $T(q) = \infty$ for all $q > 0$. Now it shall be investigated under which conditions the singularity exponents τ determine the semispectra and hence the spectrum itself. Since there are no regularity conditions imposed on the semispectra, some assumptions must be made on the singularity exponents.

Theorem 1.1 a) If T is differentiable at some $q \neq 0$ and if $\alpha = -T'(q)$, then

$$F(\alpha) = F^m(\alpha) = T(q) + qT'(q).$$ \hspace{1cm} (1.22)

In particular, $F(\alpha)$ shares the properties of $F^m(\alpha \pm)$ stated in proposition 1.8.

b) Assume that T is continuously differentiable in an open interval U and let $V = -T'(U)$. Then, (1.22) holds for all $q \in U$ (including 0) and F restricted to V is strictly concave in the interior of V.

If, in addition, U contains 0, T is continuous in $U \cup \{0\}$ and T' is bounded in U, then the equality $F = F^m$ and the continuity of F extend to U.

If, in addition to this, U contains an interval of the form $[0, \epsilon]$, then $\alpha < \infty$.

c) Provided that T is twice-continuously differentiable in an open interval U and nonvanishing second derivative, then F is differentiable with respect to α at $\alpha = -T''(q)$ with derivative q.

For measures with a situation as described in b) see examples 2.14, 3.6 and [MEH].

Proof Again we often use max(F^+, F^-) $\leq T(0)$ without pointing to it.

i) Fix $q > 0$. Apply lemma 1.13 f) to $t = F^+$. Note that $A_1 = 0$ and $A_2(\alpha) = \infty$ due to $F^+(\alpha) \geq 0$ for all $\alpha > 0$ and $F^+(\alpha) = -\infty$ for $\alpha < 0$. Set $\alpha := x(q) := \lim_{\alpha \to 0} F^m(x_\alpha) = T(q) + q\alpha$. On the other hand, $F^+(\alpha) \leq T(q) + q\alpha$ for all α, which leads to

$$F^+(\alpha) \leq T(q) + q\alpha \quad (\alpha \in \mathbb{R}, \ q > 0).$$ \hspace{1cm} (1.23)

Consequently, $F^+(\alpha) \leq T(q) + q\alpha < T(q) + q\alpha = F^+(\alpha) \leq F^+(\alpha) + F^-(\alpha)$ for $\alpha < \alpha < \alpha < \alpha$. Thus, F^+ is quasi increasing at α. Proposition 1.10 yields

$$F(\alpha) = F^+(\alpha) + F^-(\alpha) = T(q) + q\alpha.$$ \hspace{1cm} (1.24)

To show that $F^+(\alpha) \leq F^+(\alpha)$, assume that there is a $\eta > 0$ such that $F^+(\alpha) > F^+(\alpha) + 2\eta$. Note that $F^+(\alpha) = F(\alpha)$ is real. By lemma 1.13 (with $t = F^m$) there is a sequence $x_\alpha \to \alpha$ with $F^m(x_\alpha) \to T(q) + q\alpha = F^+(\alpha)$ for $\alpha > \infty$. By monotonicity of F^+ there is $n_\alpha \in \mathbb{N}$ such that $F^+(x_\alpha) \leq F^+(x_\alpha) + \eta$ for all $n > n_\alpha$, implying $F^m(x_\alpha) \leq F^+(x_\alpha) \leq F^+(\alpha) + \eta = \lim_{\alpha \to \alpha} F^m(x_\alpha) + \eta$. This is a contradiction. If $q < 0$ is such that T is real-valued in a neighbourhood, then $\alpha = x(q)$ is

real and by similar arguments as above $F^-(\alpha) > F^+(\alpha)$ implies $T(q) + q\alpha > T(q) + q\alpha = F^-(\alpha) + F^+(\alpha)$ for $\alpha < \alpha < \alpha$. Thus

$$F(\alpha) = F^+(\alpha) + F^-(\alpha) = T(q) + q\alpha,$$ \hspace{1cm} (1.25)

which proves (1.22).

Now assume that T is continuously differentiable in U. Set $U_1 := U \cup \{0\}$, $U_2 := U \cup \{0\}$ and $V := -T'(U_i)$, $i = 1, 2$. Note that V_1 is an interval, not necessarily open.

ii) First, take x_0 from U_i and set $\alpha = \alpha(x_0) := -T'(q_0)$. By (1.23) and (1.24)

$$F(\alpha) = F^+(\alpha) = \min_{q \in \mathbb{R}^+} \{T(q) + q\alpha\} = \sup_{q \in \mathbb{R}^+} -T(q) - q\alpha).$$ \hspace{1cm} (1.26)

By lemma 1.13 b) and h) with $t(q) = -T(q)$, $q > 0$, $t(q) = -\infty$ ($q \leq 0$) F restricted to V_1 is continuous. This is trivial if V_1 is a singleton. Suppose F were linear in a neighbourhood of $\alpha = -T'(q_0)$, contained in V_1. Then, again by lemma 1.13 f) and g), it wouldn’t be differentiable at the unique touching point $x(0) = F(\alpha)$. By (1.24) this point is x_0, giving a contradiction. Hence F must be strictly concave and strictly increasing in int(V_1).

iii) More can be said. Since F^+ is strictly increasing in int(V_1), it is still quasi increasing at the boundary of V_1 and hence $F(\alpha)$ equals $F^+(\alpha)$ in all of V_1. In case that int(V_1) is empty, this is trivial by (1.24). In particular, F is rightcontinuous at the left boundary point of V_1.

iv) The same argumentation applies to F^-, showing that F is continuous and equal to $F^-(\alpha) = F^m(\alpha \pm)$ in V_2 and that it is strictly concave and strictly decreasing in int(V_2). Moreover, it still equals $F^-(\alpha)$ at the boundary of V_2 and is leftcontinuous at the right boundary of V_2.

v) The case $q = 0$ needs a special treatment, since the Legendre connection is in general not established for $q = 0$ and since the loss of the strict monotonicity inhibits the argumentation of i). However, it is enough to know that $q = 0$ corresponds to the maximum of F. The only assumptions are: $0 \in \mathbb{U}$, continuity of T in $U \cup \{0\}$ and boundedness of its derivative for $q > 0$ in U. This is certainly satisfied when E contains 0.

Assume first $U \neq 0$. By convexity $\beta = -T'(q) > 0$, since $q \neq 0$. Of course $x_0 \in \mathbb{U}$. If $0 \in U$, then $x_0 = -T'(0)$. From (1.24)

$$F^-(\alpha \pm) \geq \lim_{\alpha \to \alpha} F^+(\alpha \pm) = T(0),$$

thus actually equality. By ii) $T(0) = F^+(\alpha \pm) = F(\alpha)$, which in fact proves $\alpha \leq x_0 < \alpha$ and establishes (1.22) also for $q = 0$ (provided $U \neq 0$). Moreover, if $V_2 \neq (0)$ then it was just proven that $F^+(\alpha \pm)$ is left-continuous at x_0.

1.3. THE LEGENDRE TRANSFORM OF THE SPECTRUM
Thus, \(F^+(x_0+) \leq F^-(x_0-) \), since \(F^+(x_0+) \leq F^-(x_0-) \) in \(V \). Consequently, \(F^+(x_0+) = F^-(x_0-) = T(0) \). \(\text{(1.27)} \)

Similar \(F(x_0) = F^+(x_0-) = T(0) \) for \(x = \lim_{q \to 0} (\frac{T'(q) - q}{T(0) - q}) \), provided that \(U_2 \neq 0 \). Thus, \((1.22) \) is established also for \(q = 0 \), since \(U_1 \) and \(U_2 \) are not both empty.

Moreover, by the strict monotonicity of \(F \) in \(V \) and \(U \), the spectrum is also in \(\mathbb{Q} \) strictly concave and attains there its maximal value. Finally, to prove \(F(x_0) = F^+(x_0-) \), proceed as follows. If \(V \neq \{x_0\} \) then \(\mathbb{Q} \) \(T'(q) \) for all \(q \in V \) and the claim follows from \(\text{ii}) \) or \(\text{iv}) \). Otherwise, \(V \) and \(U \) cannot both equal \(\{x_0\} \). The assumption \(V \neq \{x_0\} \) can be used to prove \((1.27) \) similar as it is carried out with \(V \). Hence \((1.27) \) is valid, implying what we claimed.

\[\text{v) Step ii), iv) and v) give the continuity of } F \text{ and the equality } F = F^* \text{ at the boundary of } V \text{ under the assumptions stated in b)}. \text{ An application of the inverse function theorem to } -T' \text{ completes the proof}. \]

Due to theorem 1.1 the spectrum is pretty well determined by \(T \), unless the latter is piecewise linear. In this case only the values at some "wedge"-points can be obtained. However, in the degenerate case this turns out to be enough:

Proposition 1.18 If \(T \) is everywhere linear, i.e. \(T(q) = T(0) + q \alpha \), then

\[
F(\alpha) = \begin{cases} T(0) & \text{if } \alpha = \alpha_0 \\ -\infty & \text{otherwise}. \end{cases}
\]

This comes to its extreme with \(T(q) = 0 \) for a Dirac measure \(\mu \).

Proof By \((1.23) \) \(F^+ (\alpha) \leq T'(q) - q \alpha = T(0) + q(\alpha - \alpha_0) \) for any \(\alpha \) and any positive \(q \). This allows to conclude with proposition 1.10 \(F(\alpha) = F^+ (\alpha) = -\infty \) for \(\alpha < \alpha_0 \) and \(F(\alpha) = F^+ (\alpha) = -\infty \) for \(\alpha > \alpha_0 \) Theorem 1.1 gives \(F(x_0) = T(0) \). \(\diamond \)

Besides concavity there is a further property of \(F \) one will typically meet and which arises from the Legendre connection of \(T \) and \(F \).

Proposition 1.19 a) \(D_\alpha \) is positive and nonincreasing for \(q > 0 \), moreover, it is except maybe at \(1 \) (continuous. Provided \(\alpha < \infty \), these properties hold in the whole interval in which \(D_\alpha \) is real-valued, in particular at 0.

b) The existence of \(\lim_{q \to 0} D_\alpha \) is equivalent with the differentiability of \(T \) at 1 and implies the following three facts: \(T \) touches the inner bisector of the axes at \(D_1 = F(D_1) \)

\[
\lim_{q \to 0} D_\alpha = D_1 = d_1 = T'(1)
\]

and \(D_1 \) does not depend on the choice \(\alpha = 1 \) in the definition 1.11.

1.3. **The Legendre Transform of the Spectrum**

Since the range of \(D_\alpha \) is of interest, we let \(D_\alpha \) denote the infimum and \(D_\alpha \) the supremum of \(D_\alpha \) over all real \(q \). In the case \(\alpha < \infty \) one finds

\[
D_{\alpha} := \inf_{q \to 0} D_\alpha = \lim_{q \to 0} D_\alpha \quad \text{and} \quad D_{\alpha} := \sup_{q \to 0} D_\alpha = \lim_{q \to 0} D_\alpha
\]

where the value \(D_{\alpha} = \infty \) is allowed.

Proof From \(T(1) = T(1) = 1 \)

\[
D_\alpha = \frac{T(q) - T(1)}{q - 1} \quad \text{for } q \neq 1.
\]

By lemma 1.17 \(D_\alpha \) is real-valued for \(q \geq 0 \) \(q \neq 1 \). Since it equals the negative slope of the line intersecting the graph of \(T \) at 1 and where it cannot increase is positive. Now let \(0 < q_1 < q_2 \). Fix \(\delta > 0 \) and set

\[
h(q) := \log \left(\sum_{B \in G_q} \mu(B) f_B \right) = \log(S_q(q, \delta))
\]

supplementing \((1.1) \) with \((B)_0 = B \). Since \(G_q \) is finite, \(h \) is smooth and—by elementary calculus convex. The mean value theorem of calculus gives

\[
\frac{h(q_2 - h(1)}{q_2 - 1} = \frac{h(q_2 - h(1)}{q_2 - 1}
\]

Dividing by \(\log \delta \) and letting \(\delta \to 0 \) gives

\[
D_\alpha \geq \lim_{q \to 0} \sup_{B \in G_q} \frac{1}{\log \delta} \sum_{B \in G_q} \mu(B) \log \mu(B)
\]

Thereby proposition 1.15 and \(T(1) = 1 \) was used. So, monotonicity of \(D_\alpha \) holds throughout \(q < 1 \) and the proof of a) is complete. \(\text{Trivially } \lim_{q \to 0} D_\alpha = \lim_{q \to 0} T(0) \). Let us assume that this line exists. It must by \((1.28) \) the value \(D_1 \), which does not depend on \(\alpha \) at 0. With \(\alpha = 0 \) \((1.28) \) gives \(D_1 = d_1 \). Furthermore,

\[
F(D_1) = T(1) - T(1) = D_1
\]

by theorem 1.1. Observing \(N_1(\alpha - \delta) = 0 \) and applying \((1.23) \) with \(q = 1 \) shows \(F(\alpha) \leq F^+(\alpha) \leq \alpha \) for all \(\alpha \) and the proof is complete.

\[
\text{Comparing the definition of } D_\alpha \text{ with the one of } D_1, \text{ one might suggest that the latter provides a different and specific information about the multifractal } \mu \text{. Indeed, } D_1 \text{ is considered to be the most interesting among all } D_1 \text{. GP2). Apart from proposition 1.19 there are further facts which support the peculiarity of } D_1. \text{ They are listed without intention to be rigorous:}

- \(D_1 \) is the only} D_\alpha \text{ which remains invariant under a greater family of coordinate transformations} [\text{OWY, Kohl}].
The measure \(\mu \) is concentrated on a set of dimension \(D_I \) [Falct, GHJ]. In this context, it should be referred to subsection 2.4.4, in particular to the examples 2.10, 2.11 and 2.13 therein.

Closely related to the latter is the fact, that \(D_I \) often equals the Hausdorff dimension of \(\mu \). In addition, the Hausdorff dimension of certain self-similar and of some self-affine sets can be obtained as the maximal information dimension \(D_I \) of the canonical invariant measure. Compare example 2.6 on page 53 and (2.36) on page 104.

Amazing too is the fact that for the family of self-affine multifractals in chapter three the differentiability of \(T \) can be proved a priori only if \(q = 1 \).

Finally, some remarks on the grid-regularity of \(T(q) \) and \(F(\alpha) \) are added. First, remember proposition 1.10 and lemma 1.16. To conclude in the opposite direction one can use the theorem below. It gives the grid-regularity of \(F(\alpha) \) and even generalizes (1.23). But it has the disadvantage of not allowing piecewise differentiable functions \(T \), which may appear with self-affine multifractals.

Theorem 1.2 \(H/T \) is grid-regular and differentiable on all of \(\mathbb{R} \), if

\[
\lim_{\alpha \to \infty} \frac{\log(N_\delta(\alpha + \epsilon) - N_\delta(\alpha - \epsilon))}{-\log \delta} = F(\alpha) = \lim_{\alpha \to \infty} \frac{\log(N_\delta(\alpha + \epsilon) - N_\delta(\alpha - \epsilon))}{-\log \delta} = \lim_{\alpha \to \infty} \frac{\log(N_\delta(\alpha + \epsilon) - N_\delta(\alpha - \epsilon))}{-\log \delta} = F(\alpha)
\]

\(\forall \alpha \in \mathbb{R} \).

In particular \(F(\alpha) \) is grid-regular for all \(\alpha \). Moreover, \(F \) is real-valued exactly in \([D_{a_0}, D_{a_\infty}] \) and continuous there. Thereby, the formula

\[
D_{a_\infty} = \lim_{\alpha \to \infty} -T(\alpha)
\]

is valid.

Proof Write \(l(\alpha) = -\inf_{q \in \mathbb{R}} (T(q) + q\alpha) = \sup_{q \in \mathbb{R}} (-T(q) - q\alpha) \) for short.

\(T \) is convex for \(q > 0 \) and for \(q < 0 \). Since it is differentiable at 0, it has to be convex there as well.

\(t \) \(T \) is convex for \(q > 0 \) and for \(q < 0 \). Since it is differentiable at 0, it has to be convex there as well.

Now take any sequence \((\delta_n)_{n \in \mathbb{N}} \) of positive numbers, tending to zero, and fix it. In order to apply Ellis’ theorem II.2 [El, page 3] supply \(G_\delta \) with the uniform distribution denoted by \(P_\delta \). Define the random variable \(Y_\delta(\beta) = \log(\mu(\beta)) \)

on \(G_\delta \) and calculate its moment generating function:

\[
E_n \log e^Y = \frac{1}{#G_\delta} \sum_{\beta \in G_\delta} \mu((\beta)) \phi = \frac{1}{#G_\delta} S_\delta(0)
\]

Next define \(a_\delta := -\log(\delta) \) and

\[
c_n(\alpha) = \frac{\log E_n \log e^Y}{\log(\delta)} = \frac{\log S_\delta(\alpha)}{-\log(\delta)} - \frac{\log S_\delta(0)}{-\log(\delta)}.
\]

The hypothesis of the theorem to be proven and \(T \) imply, that

\[
c(q) = \lim_{n \to \infty} c_n(q) = T(q) - T(0)
\]

exists and is a convex function, differentiable on all of \(\mathbb{R} \). Thus, the hypotheses of Ellis’ theorem are satisfied.

iii Define now

\[
I(\alpha) = \sup_{q \in \mathbb{R}} (T(q) - q\alpha) = \inf_{q \in \mathbb{R}} (T(q) - q\alpha) = (T(0) + q\alpha)
\]

and set \(H := [-\infty, \infty], G := (0, \infty) \) for a fixed, but arbitrary \(\alpha \). Then

\[
P_n \log N_{\alpha}(\beta) \in G \leq P_n \log N_{\alpha}(\beta) \in H = P_n \log N_{\alpha}(\beta) \geq \log \delta_{an} = \frac{1}{\log(\delta_{an})} \log N_{\alpha}(\beta) = \frac{1}{\log(\delta_{an})} \log N_{\alpha}(\beta).
\]

Ellis’ theorem II.2 now reads as

\[
-\inf[I(\alpha) : \alpha \in H] = \limsup_{n \to \infty} \frac{\log P_n \log N_{\alpha}(\beta) \in H] = \limsup_{n \to \infty} \frac{\log N_{\alpha}(\beta) - T(0)}{-\log(\delta_{an})}
\]

\[
-\inf[I(\alpha) : \alpha \in G] \leq \liminf_{n \to \infty} \frac{\log P_n \log N_{\alpha}(\beta) \in G] \leq \frac{\log N_{\alpha}(\beta) - T(0)}{-\log(\delta_{an})}
\]

iv Applying lemma 1.13 to the function \(t = -T \) gives \(A_1, \ldots, A_4 \) with the obvious properties. Thereby, \(A_2 \) and \(A_3 \) coincide because \(t \) is differentiable at 0. Furthermore, since \(T \) is differentiable and convex, it must be continuously differentiable. The expressions for \(D_{a_0} \) and \(D_{a_\infty} \) follow now from their definitions, and the explicit formula for the Legendre transform \(I(T(\alpha)) = I(t(\alpha), q(\alpha)) \) gives \(A_1 = D_{a_0}, A_2 = D_{a_\infty} \). Even \(F = -l \) is now established in \([D_{a_0}, D_{a_\infty}] \), but not yet the grid-regularity. By continuity of \(t \)

\[
\inf[I(\alpha) : \alpha \in H] = \sup[I(\alpha) : \alpha \in G] = \begin{cases}
\infty & \text{if } \alpha < A_1; \\
T(0) + l(\alpha) & \text{if } A_1 < \alpha < A_2; \\
T(0) + l(A_2) & \text{if } \alpha > A_2.
\end{cases}
\]

The value \(\alpha = A_1 \) has to be omitted to guarantee the first equality.

v Since the sequence \(\delta_n \) was arbitrary, \(ii \) and \(iv \) imply

\[
F^*(\alpha) = \lim_{\delta \to 0} \frac{\log N_{\alpha}(\beta)}{-\log(\delta)} = \begin{cases}
l(\alpha) & \text{if } \alpha \leq A_2, \alpha \neq A_1; \\
-l(\alpha) & \text{if } \alpha > A_2.
\end{cases}
\]

Moreover, this function is strictly monotonous increasing in \([A_1, A_2]\). Thus, the additional preconditions of proposition 1.10 a) is satisfied for any \(\alpha \in [-\infty, A_2] \), giving the grid-regularity of \(F(\alpha) \) and its value

\[
F(\alpha) = F^*(\alpha) = \begin{cases}
-l(\alpha) & \text{if } \alpha < A_2; \\
-l(\alpha) & \text{if } \alpha = A_2.
\end{cases}
\]

Note that also the special value \(\alpha = A_1 \) (lemma 1.13 h) and the special case \(A_1 = A_2 \) are covered.
vi) Changing only the definitions of H and G to $H := [-\infty, -\alpha]$ and $G := [-\infty, -\alpha]$ results in

$$P_n \left[\frac{1}{a_n} Y_n \in H \right] \geq P_n \left[\frac{1}{a_n} Y_n \in G \right] = P_n \left[Y_n < \log \delta_n^\alpha \right] = \frac{1}{S_0} \cdot M_{\alpha}(1).$$

Ellis’ theorem gives

$$-\inf \{ I(z) : z \in H \} \geq \lim_{n \to \infty} \frac{1}{a_n} \log P_n \left[\frac{Y_n}{a_n} \in H \right] \geq \lim_{n \to \infty} \frac{\log M_\alpha(1)}{-\log \delta_n} - T(0)$$

and

$$-\inf \{ I(z) : z \in G \} \leq \lim_{n \to \infty} \frac{1}{a_n} \log P_n \left[\frac{Y_n}{a_n} \in G \right] = \lim_{n \to \infty} \frac{\log M_\alpha(1)}{-\log \delta_n} - T(0).$$

Since $A_2 = A_3$, one finds

$$\inf \{ I(z) : z \in H \} = \inf \{ I(z) : z \in G \} = \left\{ \begin{array}{ll} T(0) + I(A_2) & \text{if } \alpha < A_2, \\ T(0) + I(1) & \text{if } A_2 \leq \alpha < A_3, \\ I(1) & \text{if } A_3 < \alpha. \end{array} \right.$$
the empty word \(n \) nil, and to define \(n k := k \) and \(V_n := V \). The sets \(V_k \) may overlap, but
\[
\max \{ \text{diam}(V_k) : k \in I_n \} \to 0 \quad (n \to \infty)
\]
is required. Then define
\[
K_n := \bigcup_{k \in I_n} V_k \quad \text{and} \quad K := \bigcap_{n \in \mathbb{N}} K_n. \tag{2.1}
\]
The sequence \(K_n \) is sometimes addressed as a cascade. Since it is a decreasing sequence of compact sets, \(K \) is compact too and not empty. It is often a fractal—in the sense of \(\dim_{\text{top}}(K) \neq K \)—and carries a rich geometrical structure.

The decreasing diameters of the sets \(V_k \) enable one to codify the points of \(K \). Call
\[
I_n := \{ \underline{z}_n = i_0 i_1 \ldots i_n : i_k \in \{1, \ldots, r\}, k \in \mathbb{N} \} = \{1, \ldots, r\}^\mathbb{N}
\]
the code space and set
\[
(\underline{z}_n : i_n) := i_0 \ldots i_n \in I_n.
\]
For fixed \(\underline{z}_n \), the sets \(V_{(\underline{z}_n : i_n)} (n \in \mathbb{N}) \) build a decreasing sequence of compact sets. Thus their intersection will not be empty. Since their diameter decreases to zero, this intersection is a singleton, say \(x_{\underline{z}_n} \), and the coordinate map
\[
\pi : I_n \to K \quad \underline{z}_n \mapsto x_{\underline{z}_n}
\]
is continuous and surjective (\(I_n \) carries the product topology of the discrete spaces \(\{1, \ldots, r\} \)). Moreover, if the sets \(V_k (k \in I_n) \) are mutually disjoint for \(n \) large enough, then \(\pi \) provides a homeomorphism of the topological spaces \(I_n \) and \(K \).

Now a measure \(\mu \) is introduced which is supported by \(K \) and which carries information about the construction of \(K \). Let \((p_1, \ldots, p_r) \) be a probability vector, i.e. \(p_j > 0 \) and \(p_1 + \ldots + p_r = 1 \), and let \(P \) be the product measure on \(I_n \) induced by the measure \(\{ j \} \to p_j \) on the factors \(\{1, \ldots, r\} \), i.e.
\[
P(\underline{z}_n \in I_n : i_m = j_m, m = 1 \ldots n) = p_{i_1} \ldots p_{i_n} := p_{\underline{z}_n}
\]
for all \(n \in \mathbb{N} \), all words \(\underline{z}_n \) of length \(n \) and all integers \(k_1 < \ldots < k_m \). This measure \(P \) exists due to Kolmogorov’s consistency theorem [Ph, p. 144]. It is Borel and \(P[I_n] = 1 \). Thus the measure \(\mu := \pi_* P \) (i.e. \(\mu([A]) = \mu([\pi^{-1}[A]]) \)) has total mass \(\mu([\mathbb{R}^d]) = 1 \) and at least the Borel sets of \([\mathbb{R}^d] \) are measurable. Moreover,
\[
\mu(V_k) = P(\underline{z}_n \in I_n : \pi(\underline{z}_n) \in V_k) \geq P(\underline{z}_n \in I_n : (\underline{z}_n : i_n) = \underline{z}) = p_{\underline{z}}
\tag{2.2}
\]
with equality holding certainly if \(V_k \) does not intersect any \(V_{\underline{z}_n} \) with \(|\underline{z}| = \ell \). For later use note, that if equality does hold in (2.2) for all finite words \(\underline{z} \) of sufficiently large length, then any singleton is a null set.

From (2.2) it is easy to see, that \(\mu \) is supported by \(K \). For if \(x \) would lie in \(K \) but not in \(\text{supp}(\mu) \), there would be a neighbourhood \(W \) of \(x \) which would not meet \(\text{supp}(\mu) \). But since there is also a set \(V_k \) contained in \(W \) and \(\mu(V_k) \geq p_k \neq 0 \) this is not possible.

Thus \(\mu \) is a multifractal, uniquely determined by the coordinate map and the probability vector. To express this we introduce the following notation:
\[
\mu = (\pi; p_1, \ldots, p_r). \tag{2.3}
\]

Definition 2.1 A multifractal \(\mu = (\pi; p_1, \ldots, p_r) \) constructed as above will be called Cantor Multifractal, for short CMF. Its support is \(K = \pi(I_n) \).

It is also common to say that \(\mu \) is constructed by a multiplicative cascade, referring to the product structure of \(P \) as well as to the construction of \(K \).

At this point we would like to stop for a moment and explain what is meant by a multifractal formalism ‘tailored to multiplicative cascades’. This simply means that in the definitions 1.4 and 1.7 of \(S_q(q), N_q(c) \) and \(M_q(c) \) coverings by \(\delta \)-boxes are replaced by coverings consisting of the cylindrical sets \(V_k \) with \(|\underline{z}| = n \).

By definition, this multifractal formalism does not distinguish between \(\mu \) on \(\mathbb{R}^d \) and \(P \) on \(I_n \). On the one hand, this allows the use of symbolic dynamics, which is most effective [BR, CM]. On the other hand, it lacks geometrical relevance since \(\pi \) is not involved.

This relevance is provided by the approach proposed in this thesis. Compare the proofs of our main theorems 2.3 and 3.3 and also example 2.10.

All CMFs have some regularity properties in common. A first one is the following:

Lemma 2.2 Given any measure \(\mu \), substituting the condition ‘\(\mu(B) \neq 0 \)’ in the definition of \(S_q, N_q \) and \(M_q \) (see definitions 1.4 and 1.7) by the condition ‘\(B \cap K \neq \emptyset \)’ will not affect the values of \(T(q), T(q), F^+(cq) \) and \(F^{-}(cq) \).

This might be important in numerical simulations. In particular for \(q = 0 \):

Corollary 2.1 The box dimension of the support of any measure \(\mu \) equals
\[
\overline{\dim}_{\text{box}}(K) = T(0) = D_0
\]
and \(\overline{\dim}_{\text{box}}(K) \) exists exactly when \(T(0) \) is grid-regular.

Proof Let \(B \) denote a \(\delta \)-box. Then, since \(B \cap K \neq \emptyset \) is a stronger requirement than \(\mu(B) \neq 0 \),
\[
S_q(q) \leq \sum_{B: \mu(B) > 0} \mu((B)) q^p
\]
\[
N_q(c) \leq \# \{ B : B \cap K \neq \emptyset, \mu((B)) \geq c \}
\]
\[
M_q(c) \leq \# \{ B : B \cap K \neq \emptyset, \mu((B)) < c \}
\]

On the other hand, if \(B \cap K \neq \emptyset \) holds, then by the very definition of the support of a measure
\[
\mu((B)) \neq 0.
\]
Thus, there exists \(C_B \in G_{\delta 2} \) and \(D_B \in G_{\delta 3} \), i.e. with nonvanishing measure, both meeting \((B)_1^{1/2} \). Since

\[
(C_B)_i \subset (B)_j \quad \text{and} \quad (D_B)_n \supset (B)_j,
\]

and at most \(3^l \) resp. \(3^l \delta \)-boxes \(B \) can share the same fixed \(C \) from \(G_{\delta 2} \) as \(C_B \) resp. the same fixed \(D \) from \(G_{\delta 3} \) as \(D_B \), the argument of the proof of propositions 1.2 and 1.8 applies. \(\diamond \)

Often there exist \(r \) numbers \(\lambda_i \in [0, 1] \) (\(i = 1, \ldots, r \)) such that:

\[
diam V_{\lambda_i} \leq \lambda_i = \lambda_i ; \ldots \lambda_n,
\]

for all words \(\hat{i} = i_1, \ldots, i_r \in I \). If this is the case, the Cantor set and any resulting CMF will be called contractive with \(\lambda_1, \ldots, \lambda_r \). A sufficient, but not necessary condition is

\[
\sup_{\hat{i}} \frac{diam V_{\lambda_i}}{diam V_{\lambda_j}} =: \lambda_j < 1 \quad (j = 1, \ldots, r),
\]

where the supremum is taken over all finite words \(\hat{i} \).

Lemma 2.3 If the CMF \(\mu = (\pi, p_1, \ldots, p_r) \) is contractive with \(\lambda_1, \ldots, \lambda_r \) then

\[
F_{\infty}(\alpha) = -\infty \quad \forall \alpha > \beta := \max_{\pi \leq \lambda_j} \frac{\log p_i}{\log \lambda_j}.
\]

For the proof as well as for later use certain sets \(J_0 \) are needed. Assume that numbers \(\lambda_i \in [0, 1] \) (\(i = 1, \ldots, r \)) are given. Roughly speaking, \(J_0 \) is the set of all words \(\hat{i} \) with \(\lambda_i \approx \delta \). It will be constructed recursively. Fix \(\delta > 0 \) and start with \(J(1) = \{I_1 \}. \) Suppose \(J(m) \) has been constructed and consider an arbitrary word \(\hat{i} = i_1 \cdots i_m \) from \(J(m) \). If \(\lambda_i \leq \delta \) then let \(\hat{i} \) be a member of \(J(m+1) \), otherwise let \(\hat{i} = kL \) (\(k, L \) being \(m \)-words) belong to \(J(m+1) \). Do so for all words of \(J(m) \) and add no further words to \(J(m+1) \). This defines \(J(m+1) \) uniquely. Since all \(\lambda_i < 1, J(m) = J(m_0) \) for large enough \(m_0 \) and all \(m \geq m_0 \). This set of words is the desired \(J_0 \). Due to its construction it has the following property: provided \(\delta < \min(\lambda_1, \ldots, \lambda_r) \),

\[
J_0 = J(m_0) = \{ \hat{i} = i_1 \cdots i_m \in I : \lambda_i \leq \delta < \lambda_i \cdots \lambda_m \}.
\]

Moreover, \(J_0 \) is tight [Hut], i.e. if \(\hat{i} \) is contained in \(J_0 \) then no word of the form \((\hat{i} + kL) \) \((k \neq 0)\) will belong to \(J_0 \) or to say it positively:

\[
\hat{i} \neq \hat{j} \in J_0 \quad \Rightarrow \quad \exists k \leq \min(|\hat{i} - \hat{j}|) : \hat{i} \neq \hat{j}.
\]

The latter will be abbreviated by \(\hat{i} \# \hat{j} \). Also of importance is that \(J_0 \) is secure, i.e.

\[
K \subset \bigcup_{\hat{i} \in J_0} V_{\lambda_i}.
\]

2.1. **CANTOR SET AND CODESPACE**

Equivalently, 'secure' means for any \(\hat{i}_n \in I_n \) there is \(n \in \mathbb{N} \) and \(\hat{i} \in J_0 \) with \(\hat{i} = (\hat{i}_n \hat{i}) \). Note that \(n \) and \(\hat{i} \) are unique because \(J_0 \) is tight.

Proof of Lemma 2.3 For simplicity assume \(diam(V) = 1 \) [Prop. 1.5]. Let \(\alpha > \beta \) and set \(\delta = \min(\lambda_1, \ldots, \lambda_r) \). Fix \(\varepsilon > 0 \) such that \(\alpha - \varepsilon > \beta \). Take \(\delta \in [0, 1] \) and \(B \in G_{\delta} \). By (2.6) there is \(\hat{i} \in J_0 \) s.t. \(V_{\hat{i}} \) and \(B \) meet. Since \(diam V_{\hat{i}} \leq \lambda_2 \leq \delta, V_{\hat{i}} \) is contained in \((B)_j \). So, observing (2.2) and (2.4),

\[
\mu(B) \geq p_2 \geq \lambda_2^{\alpha - \varepsilon} \geq (2\delta)^{\alpha - \varepsilon} \geq \delta^\alpha
\]

and \(M_0(\alpha) = 0 \). This holds for small enough \(\delta \), leading to \(F_{\infty}(\alpha) = -\infty \). The proof is complete, but let us draw some further consequences. First, \(\alpha^* \leq \beta < \infty \), which calls for an application of lemma 1.17. Moreover, since \(\mu(B) \geq \delta^\alpha \) for all \(B \),

\[
S_d(q) \leq \#G_d - \delta^\alpha = S_0(0) - \delta^\alpha
\]

for \(q < 0 \) and

\[
T(q) \leq \lim_{\delta \to 0} \sup_{\delta, \alpha} \frac{\log S_0(0) + q \log \delta}{\log \delta} = T(0) - \infty.
\]

Since \(T(0) \leq d \), \(T(q) \) must be real. By proposition 1.19 \(D_q \) increases as \(q \) decreases to \(-\infty \), and because \(\alpha > \beta \) is arbitrary, the generalized dimensions are bounded by

\[
D_{-\infty} = \lim_{\alpha \to -\infty} D_{\alpha} = \lim_{\alpha \to -\infty} \frac{T(q)}{1-\alpha} \leq \lim_{\alpha \to -\infty} \frac{T(0) - q\beta}{1-\alpha} = \beta.
\]

This is summarized in the following corollary.

Corollary 2.2 If the CMF \(\mu = (\pi, p_1, \ldots, p_r) \) is contractive with \(\lambda_1, \ldots, \lambda_r \), then \(T \) is the Legendre transform of \(F_{\infty} \), real-valued, convex and continuous on all of \(\mathbb{R} \). Moreover,

\[
0 \leq D_{-\infty} \leq D_{\infty} \leq \beta
\]

with \(\beta \) from lemma 2.3.

Considering corollary 2.7 these bounds cannot be improved within this generality. To relate this result about our fractal formalism with the one presented in section 1.1, it should be referred back to the example 1.1: the former singularity exponents \(\tau \) are infinite for negative \(q \), even for contractive CMFs. So these infinite exponents do not reflect a geometrical property of the measure \(\mu \), such as the occurrence of arbitrary large local Hölder exponents, but a defect in the method of measurement. Below a CMF will be constructed for which also the former spectrum \(f(\alpha) \) does not provide the intended kind of information.
Example 2.1 (Old Spectrum \(f(\alpha) \) versus New Spectrum \(F(\alpha) \))

Given \(r \geq 2, (p_1, \ldots, p_r) \) and \(\lambda \in [0, (r+2)^{-3}] \), a CMF on \([0,1]\) will be constructed with

\[
T(q) = \frac{\log (\sum \log p_i)}{-\log \lambda} \quad \forall q \in \mathbb{R}
\]

for this CMF (Theorem 2.3). This agrees with the geometrical intuition involved in the construction of the multifractal to be carried out below. Theorem 2.6 then establishes the grid-regular \(F \) as the Legendre transform of \(T \) (see also Fig. 2.1).

Figure 2.1: New and old spectrum for a CMF constructed in example 2.1 with \(r = 4, \ p_1 = 2/3, p_2 = 1/8, p_3 = 1/8, p_4 = 1/12, \lambda = 1/10 \).

Start with \(V_{1,0} = [0, 1] \). In each step of the construction the disjoint, closed subintervals \(V_{k,n+1} \) of \(V_k \) will be chosen, each of length \(\lambda^{n+1} \) and carefully positioned. Assume that \(V_k \) has been constructed. Write \(n \) for \(\lfloor k \rfloor \). Set \(V_{k,0} \) to be the closed interval of length \(\lambda^{n+1} \) which has its left boundary point in common with \(V_k \) (see Fig. 2.2). Since this choice remains the same through all stages of the construction, the interval with left boundary point in common with \(V_k \) and length \(\lambda^{n+1} \) is \(V_{k,0} \) where \(k \) equals \(k \) followed by \(0 \) letters 1. Thus, the construction finished, \(V_k \) will be disjointness satisfy exactly the measure \(p_k \cdot \lambda^{n+1} \). This is very useful to know: since the other subintervals \(V_{k,1}, \ldots, V_{k,2^n-1} \) are arranged without a common rule, it is impossible to predict where exactly in \(V_k \) one will find points of the support \(K \) of \(\mu \). To define the remaining \(r-1 \) subintervals choose first \(r-2 \) disjoint closed subintervals \(V_{k,0}, \ldots, V_{k,r-2} \) of \(V_k \). Since \(\lambda(r-1) < 1 - 4\lambda \) it is possible to arrange them in a way to leave a subinterval of \(V_k \) of length greater than \(3 \cdot \lambda^{n+1} \) at one's disposal, which intersects none of the so far constructed \(V_{k,m} (m \neq 0) \) (see Fig. 2.2). Thus there is \(k \in \mathbb{N} \) such that \(k \not\equiv 1 \mod r \) and \(k+1 \not\equiv 1 \mod r \). Define

\[
V_{k,2} := \lambda^{n+1} - \lambda^{n+1+k}, (k+1) \lambda^{n+1} - \lambda^{n+1+k}.
\]
This kind of construction is called an Iterated Function System, for short IFS. It is essential to regard the IFS from the point of view of the contraction theorem [Hut, Bar, BEH]. The family \(K \) of all nonempty compact subsets of \(\mathbb{R}^d \) becomes a complete [Fal] metric space when supplied with the Hausdorff metric (i.e. \(\rho(A,B) = \sup \{ \text{dist}(a,B), \text{dist}(b,A) : a \in A, b \in B \} \), where \(\text{dist}(x,A) := \inf \{ \| x - a \| : a \in A \} \). The set mapping

\[
W : A \mapsto \bigcup_{i=1}^r w_i(A)
\]

is contractive since \(\rho(W(A), W(B)) \leq \max \{ \lambda_1, \ldots, \lambda_r \} \rho(A, B) \) [BEH, p 12]. Hence \(W \) possesses a unique fixedpoint in \(K \) and for any choice of a compact set \(A \) the sequence \(W^n(A) \) converges in Hausdorff metric to this fixedpoint. If one chooses \(A \) to be \(\Omega \), then \(W^n(\Omega) = K_n \supseteq K \) (see (2.1)) and hence

\[
\rho(K, W^n(A)) \leq \max \{ \text{diam} V_i : i \in I_n \} \leq (\max \{ \lambda_1, \ldots, \lambda_r \})^n \cdot \text{diam}(V_a) \to 0.
\]

Thus the fixedpoint of \(W \) is just \(K \). Moreover, the completeness of \(K \) is actually not needed, since the fixedpoint can be explicitly constructed [see also [Fal, p 114]]. However,

\[
K = \bigcup_{i=1}^r w_i(K)
\]

and \(K \) only depends on \((w_1, \ldots, w_r) \) and not on the choice of \(O \). This is expressed by using the notation

\[
K = (w_1, \ldots, w_r) \quad \mu = (w_1, \ldots, w_r; p_1, \ldots, p_r).
\]

The above construction by \(K_n = W^n(\Omega) \) gives an approximation of \(K \) ‘from above’, which can be realized on a computer screen. There are other ways to get a picture of \(K \): choose \(i \in \{ 1, \ldots, r \} \) arbitrarily and consider \(A = \{ a_i \} \), where \(a_i \) is the fixedpoint of \(w_i \). Obviously \(a_i \) is contained in \(W^n(A) \) for all \(n \). Hence it lies in the closure of \(K \), which is \(K \) itself. By (2.8) the sets \(W^n(A) \) form an increasing sequence of subsets of \(K \). Since they converge to \(K \) in the Hausdorff metric, their union must be dense in \(K \). This gives a deterministic algorithm for ‘drawing’ \(K \). For applications Barnsley [Bar] is a good reference.

To get a random algorithm choose an arbitrary probability vector \((p_1, \ldots, p_r) \) and supplement the IFS \(K \) to a CMF. Then pick \(\xi_n = i_1 i_2 \ldots i_n \in I_n \) at random according to the distribution \(P \), i.e. \(P[i_n = i] = p_i \) for all \(i \). Finally take any \(x \in \mathbb{R}^d \) and define

\[
x_n := w_{i_1} \circ \ldots \circ w_{i_n}(x).
\]

By the Ergodic theorem (see [BEH, p 6]) the average visiting time of a box \(B \) [i.e. \(1/n \cdot \# \{ x_n \in B : 1 \leq k \leq n \} \) then approximates \(\mu(B) \) for every choice of \(x \) and \(P \)-almost every \(\xi_n \). As a consequence \(x_n \) tends to \(K \) (i.e. \(\text{dist}(x_n, K) \to 0 \) and \(K \) is contained in the closure of the union of all \(x_n \). From this it is easy to derive a random algorithm.

Note that in contrary to \(x_n \), the sequence

\[
y_n := w_{i_1} \circ \ldots \circ w_{i_n}(y)
\]

converges to \(\pi(\xi) \) (since \(y_n \in V_{\xi_n} \)) for any choice of \(y \in \Omega \) and any \(\xi_n \). An illuminating way to see the difference between the forward and the backward orbits is to translate the corresponding iteration into a dynamical system on the codespace. For the choice \(x = y = \pi(\xi) \in K \) the sequence of infinite words

\[
(i_1 j_1 \ldots i_2 j_2 \ldots)_{n \geq 0}
\]

is by \(\pi \) mapped onto the sequence \((x_n)_{n \geq 0} \), while

\[
(i_1 j_1 \ldots i_2 j_2 \ldots)_{n \geq 0}
\]

is mapped onto \(\gamma_{n \geq 0} \). The first one has almost surely fluctuating initial segments, while the second one obviously converges to \(x_\xi \) in the product topology.

More can be said about the approximation of \(\mu \). The space of all probability measures with compact support can be supplied with a metric which induces exactly the weak topology [Hut, p 732]. The CDF \(\mu = (\mu_1, \ldots, \mu_2; p_1, \ldots, p_r) \) is the unique fixedpoint of the contraction map

\[
M : \nu \mapsto \sum_{i=1}^r p_i \cdot w_i \cdot \nu
\]

on this space [Hut, theorem 4.4. (4)]. Thus starting with any probability measure \(\mu_0 \) with compact support, the sequence \(\mu_n := M^n(\mu_0) \) converges weakly to \(\mu \), i.e. \(\mu_n(E) \to \mu(E) \) for all Borel sets \(E \). Moreover,

\[
\mu = \sum_{i=1}^r p_i \cdot \mu_i
\]

which is the only fact concerning \(M \) which will actually be used later. For a final remark consider the deterministic algorithm presented above and choose \(\mu_0 = \delta_{\{x\}} \) (Dirac measure at \(x \)). This results in \(\mu_n = \sum_{i=1}^r p_i \cdot \delta_{\{w_i(x)\}} \), provided that the contractions \(w_1, \ldots, w_r \) are injective. If in addition the sets \(w_i(O) \) are mutually disjoint and the maps \(w_i \) are open, then for any word \(\xi \)

\[
\mu(V_\xi) = p_\xi.
\]

For a proof choose \(x \in O \) and take a word \(\xi \) with \(|\xi| \leq |

\xi| \). If \(\xi = \xi_0 \cdot \xi_1 \) then \(w_{\xi_0}(O) \) and \(w_{\xi_1}(O) \) are disjoint open sets and hence \(w_{\xi_0}(O) \) is not contained in \(V_{\xi_1} \). If, on the other hand, \(\xi = \xi_0 \cdot \bar{\xi}_1 \) for some word \(\bar{\xi}_1 \) then \(\bar{\xi}_1(O) \) is a subset of \(w_{\xi_0}(O) \) and \(w_{\xi_0}(x) \) lies in \(V_{\xi_1} \). For \(\mu_n = M^n(\delta_{\{x\}}) \) and \(n \geq |\xi| \) one obtains \(\mu_n(V_\xi) = p_\xi \).
2.3 Spectrum of Self-Similar Multifractals

In many publications the geometric and multifractal properties of self-similar sets are studied. They are of interest for their own as well as for applications. See [Falc, Bar, Mor, Hut, Bed2, CM, HJKPS, HP, GI1, V1, TV]. There is a simple formula for the singularity exponents of the corresponding CMF, which is already well known. But as far as we are aware of, a rigorous proof still awaits to be written down. Thus this section is considered an important contribution in this field. It provides a proof of the mentioned formula under slightly more general conditions and an application to self-similar measures.

Let \((w_1, \ldots, w_n)\) be a set of contracting similarities of \(\mathbb{R}^d\) with ratios \(\lambda_1, \ldots, \lambda_n\), i.e. \(\lambda_i \in (0,1]\) and \(|w_i(x) - w_i(y)| = \lambda_i \|x - y\| \forall x, y \in \mathbb{R}^d\) \((i = 1, \ldots, r)\). Assume further the existence of a nonempty open bounded set \(O\) such that
\[
w_i(O) \subset O \quad (i = 1, \ldots, r)\]
and \(w_i(O) \cap w_j(O) = \emptyset \quad (i \neq j)\). (2.12)
This property was termed open set condition, or OSC for short. \(O\) will be called a basic open set. Any \(r\)-adic Cantor set \(K\) constructed using an IFS as above is said to be self-similar [Hut]. Moran [Mor] was able to give the box dimension as well as the Hausdorff dimension (see page 52 for a definition) of self-similar sets: they both equal the unique \(D\), which solves the equation
\[
\sum_{i=1}^{n} \lambda_i^p = 1. \tag{2.13}
\]
To obtain this result one has to use the construction of \(K\) provided by (2.7): due to the OSC the sets \(V_i\) with fixed \(\delta_i\) have the same shape and cannot overlap. This property will also be used in the calculation of the singularity exponents.

Definition 2.4 Let \((w_1, \ldots, w_n)\) be similarities of \(\mathbb{R}^d\) with ratios \(\lambda_1, \ldots, \lambda_n\) and such that the OSC holds. Let \((p_1, \ldots, p_n)\) be a probability vector. Then the CMF \(\mu = (w_1, \ldots, w_n; p_1, \ldots, p_n)\) is called a Self-similar Multiafactal (for short: SMF) with ratios \(\lambda_1, \ldots, \lambda_n\) and probability vector \((p_1, \ldots, p_n)\). It makes sense to use the abbreviation
\[
\mu = (\lambda_1, \ldots, \lambda_n; p_1, \ldots, p_n)
\]
since the spectrum of \(\mu\) is determined by these numbers.

Note that the distribution of a SMF \(\mu\) is under excellent control since (2.11) holds. To compute the spectrum of a SMF one could deduce a recursive law for \(S_\delta(q)\) from the invariance of \(\mu\) (2.10), similar as it is done to obtain the box dimension of \(K\) [Bed3, BEH, BEHM, Ma2, Ma1]. The intuitive argument is the following [HP]:

The sets \(G_a\) are split into \(G_a(i) := \{B \in G_a : B \subset V_i\} (i = 1, \ldots, r)\). The invariance of \(\mu\) then supports the approximation
\[
S_\delta(q) \approx \sum_{B \in G_a(i)} \mu(B)^q \approx \sum_{B \in G_a(i)} \mu(\delta B)^q \approx \sum_{i=1}^{r} \lambda_i^q S_\delta(\lambda_i^q). \tag{2.15}
\]

2.3. SPECTRUM OF SELF-SIMILAR MULTIFRACTALS

The boundedness \(c^{-1} \leq S_\delta(q)^\beta \leq c\) for \(\delta \in [\delta, 1]\) (2.18) extends to \([\delta^*, 1]\) by
\[
S_\delta(q)^\beta \geq \sum_{i=1}^{r} \lambda_i^q S_\delta(\lambda_i^q)^\beta,
\]
and inductively to \([0, 1]\), provided \(\gamma\) is chosen such that
\[
\sum_{i=1}^{r} \lambda_i^q = 1. \tag{2.14}
\]
Thus \(T(q)\) must equal the unique solution of (2.14). By corollary 2.1 this formula is a generalization of (2.13).

The calculation above is certainly valid when the similarities \(w_i\) respect some mesh (i.e. when \(\delta_i\)-boxes are mapped onto \(\delta_{\lambda_i}\)-boxes for all \(\lambda_i\) of an admissible sequence). This is indeed true for the middle third Cantor set. But in general, serious difficulties seem to arise when one is obliged to estimate not only \(S_\delta(0)\) (a simple counting task leading to \(\delta_{\lambda_i}(K)\) but to treat \(S_\delta(q)\) for \(q \neq 0\). In particular it is troublesome to establish rigorously the recursion sketched above. It seems that this was not recognized in [HP].

However, we prefer a different approach: We compare the covering by boxes \(B\) with the covering by cylindrical sets \(V_i\) with \(\delta_i\) from \(\delta_i\)—with the approximation
\[
S_\delta(q)^\beta = \sum_{B \in G_a(i)} \mu(B)^q \delta^\beta = \sum_{i=1}^{r} \lambda_i^q S_\delta(\lambda_i^q)^\beta \approx \sum_{i=1}^{r} \lambda_i^q S_\delta(\lambda_i^q)^\beta
\]
in mind. When \(\gamma\) is chosen according to (2.14) the last sum equals exactly 1 for all \(\delta_i\) and the value of \(T(q)\) is determined. This procedure has the advantage of not using the maps \(w_i\). Only some control about the shape of \(V_i\) and about the possible extent of overlapping is needed. Thus the obtained result is valid for multifractals arising from a more general construction than SMFs, such as example 2.1. As a further condition the intersection of \(V_j\) and \(K\) must not be unnaturally small. This is necessary for the same reason which brought us to work with \(\mu(\delta B)\) of boxes with \(\mu(\delta B) \neq 0\). Consequently, it is only needed in order to deal with negative \(q\).

Denoting the open ball with center \(c\) and radius \(r\) by \(U(c, r)\) this reads as follows:

Theorem 2.3 Let \(\mu = (\lambda_1, \ldots, \lambda_n)\) be a CMF, let \(\rho_2 > \rho_1 > 0\) and let \(\lambda_1, \ldots, \lambda_n\) be numbers from \([0, 1]\) such that for every \(q \in [0, 1]\) there is a point \(x_i \in V_i\) with
\[
U(x_i, 2\rho_1\lambda_i) \subset V_i \subset U(x_i, \rho_2\lambda_i), \tag{2.15}
\]
\[
U(x_i, 2\rho_1\lambda_i) \cap V_j = \emptyset \quad \text{for all } j \neq i \text{ with } |i| \leq |j| \tag{2.16}
\]
and
\[
\mu(U(x_i, \rho_2\lambda_i)) \neq 0. \tag{2.17}
\]
Then \(T(q)\) is grid-regular for all \(q \in \mathbb{R}\) and equals the unique solution \(\gamma\) of (2.14).
Proof

i) The functions \(x \mapsto p_i^a x^a \) are strictly monotonic decreasing with range \(\mathbb{R}^+ \). Thus (2.14) has exactly one solution, which will be denoted by \(\gamma \). Also for later use set

\[
\hat{\gamma} := \min\{\gamma_1, \ldots, \gamma_n\} \quad \bar{\gamma} := \max\{\gamma_1, \ldots, \gamma_n\}. \tag{2.18}
\]

Note two properties of \(J_{\bar{\gamma}} \) which follow immediately from its construction. From (2.5) and (2.6):

\[
\sum_{\varrho \in \mathcal{A}} q_{\varrho}^n \gamma^a_i = 1. \tag{2.19}
\]

From (2.16) and \(V_{\varrho} \subseteq V_{\varrho - 2a} \): \(\{ \varrho \mid \frac{1}{2} \} = 0 \):

\[
U(x(2) \varrho_i \gamma) \cap U(x(2) \varrho_i \gamma) = \emptyset \quad \text{for all } \varrho \neq \hat{\varrho}.
\]

(2.20)

in particular for all \(\varrho \neq \hat{\varrho} \) from \(J_{\bar{\gamma}} \) by (2.5).

Throughout the proof the assumption \(\delta \in [0, \hat{\gamma}] \) is made. First let \(q \geq 0 \).

ii) Take \(B \in G_0 \). For the sake of shortness write \(J_{\bar{\gamma}}(E) := \{ \varrho \in J_{\bar{\gamma}} : V_{\varrho} \cap E \neq \emptyset \} \). It is an important fact that \(\# J_{\bar{\gamma}}((B)) \) is bounded by a number which depends neither on \(\varrho \) nor on \(B \). To establish this bound it is enough to choose numbers \(\rho_1 > \rho_0 > 0 \) such that the intersecting sets \(V_{\varrho} \) have diameters bounded by \(\rho_0 \cdot \text{diam}(B) \) and contain mutually disjoint balls with radius greater than \(\rho_1 \cdot \text{diam}(B) \), just remark that

\[
\# J_{\bar{\gamma}}((B)) \leq b_1 := \frac{\text{Vol}(U(0, 1 + \rho_0))}{\text{Vol}(U(0, \rho_0))}.
\]

(2.21)

But, due to (2.15), (2.20) and (2.4), one may choose \(\rho_1 = 2\rho_0(3\sqrt{d})^{-1} \) and \(\rho_0 = 4\rho_0(3\sqrt{d})^{-1} \). Now let us proceed to the estimation of \(S_{\varrho}(q) \) from above. Since \(J_{\bar{\gamma}} \) is secure (2.6):

\[
\mu((B)) q \leq \left(\sum_{\varrho \in \mathcal{A}} \mu(V_{\varrho}) \right) q \leq (b_1 \cdot \max_{\varrho \in \mathcal{A}} \mu(V_{\varrho})) q \leq b_1 b_2 \sum_{\varrho \in \mathcal{A}} \mu(V_{\varrho}).
\]

Taking the sum over all \(B \in G_0 \) yields:

\[
S_{\varrho}(q) = \sum_{B \in G_0} \mu((B)) q \leq b_1 b_2 \sum_{\varrho \in \mathcal{A}} \mu(V_{\varrho}) \leq b_1 b_2 \sum_{\varrho \in \mathcal{A}} \mu(V_{\varrho}).
\]

Here the constant \(b_2 \) is obtained from (2.21) by interchanging the roles of \((B) \) and \(V_{\varrho} \) and by setting \(\rho_1 = 3\sqrt{d}(4\rho_0)^{-1} \) and \(\rho_0 = (2\rho_0)^{-1} \), yielding for every word \(\varrho \in J_{\bar{\gamma}} ^3

\[
\# \{ B \in G_0 : V_{\varrho} \cap (B) \neq \emptyset \} = \# \{ B \in G_0 : \varrho \in J_{\bar{\gamma}}((B)) \} \leq b_2.
\]

2.3. SPECTRUM OF SELF-SIMILAR MULTIFRACTALS

Finally \(\mu(V_{\varrho}) \) must be compared with \(p_\varrho \). This is trivial for SMFs, but in general these two numbers are not equal. Take \(\varrho \in J_{\bar{\gamma}} \). First \(\pi^{-1}(V_{\varrho}) \) is estimated: assume \(\pi(b_{\varrho}) \in V_{\varrho} \). Since \(J_{\bar{\gamma}} \) is secure (2.6) there is an integer \(n \) and a word \(\varrho \in J_{\bar{\gamma}} \) with \(\varrho \in J_{\bar{\gamma}}(b_{n \varrho}) \). Hence \(\pi(b_{\varrho}) \in V_{\varrho} \cap V_{\varrho} \):

\[
\pi^{-1}(V_{\varrho}) \in \{ \varrho \in J_{\bar{\gamma}} \} \quad {\text{where}} \quad \mu(V_{\varrho}) = P_{\varrho}(\pi^{-1}(V_{\varrho})) \leq \sum_{\varrho \in J_{\bar{\gamma}}(b_{\varrho})} p_{\varrho}.
\]

By replacing \((B) \), with \(V_{\varrho} \) and by setting \(p_{\varrho} = \rho_2(2\rho_0)^{-1} \), \(\rho_0 = (2\rho_0)^{-1} \), (2.21) provides a constant \(b_{\varrho} \) with

\[
\# \{ J_{\bar{\gamma}}(b_{\varrho}) \} \leq b_{\varrho}.
\]

Consequently

\[
\mu(V_{\varrho}) \leq (b_1 \cdot \max_{\varrho \in \mathcal{A}} p_\varrho)^q \leq b_1 b_2 \sum_{\varrho \in \mathcal{A}} p_\varrho q.
\]

Similar as above one obtains

\[
\sum_{\varrho \in \mathcal{A}} \mu(V_{\varrho}) q \leq b_1 b_2 \sum_{\varrho \in \mathcal{A}} p_\varrho q \leq b_1 b_2 \sum_{\varrho \in \mathcal{A}} p_\varrho q.
\]

Summarizing,

\[
S_{\varrho}(q) q \geq b_1 b_2 \sum_{\varrho \in \mathcal{A}} p_\varrho q \geq b_1 b_2 \sum_{\varrho \in \mathcal{A}} p_\varrho q.
\]

Note that \(b_1, b_2, c_1, c_2 = \max_{\varrho \in \mathcal{A}} (1, \Delta^{-1}) \) do not depend on \(\varrho \).

iii) From i) and ii) follows immediately

\[
\gamma + \frac{\log c_2 b_1 q_{\varrho}}{-\log \delta} \leq \frac{\log S_{\varrho}(q)}{-\log \delta} \leq \gamma + \frac{\log b_1 b_2 q_{\varrho - 1}}{-\log \delta}
\]

for all sufficiently small \(\delta \), i.e. \(T(q) \) is grid-regular and equals \(\gamma \).
Now let $q < 0$.

iv) Again let us give first an upper bound of $S_d(q)$. Take $B \in G_\delta$. Set $\delta' = (3\delta_0)^{-1}\delta$. To the contrary with $i)$ a V_i has to be found with smaller measure than $\{B\}_1$. This is indeed the easier task since $\mu(B) \neq 0$ due to our definition of $T(q)$. By (2.6) there is $\bar{z} \in J_0$ such that $V_{\bar{z}} \cap B$. As in ii) $V_{\bar{z}}$ is a subset of $\{B\}_1$ and thus $0 \neq \bar{p}_2 \leq \mu(\{B\}_1)$. So

\[S_d(q) = \sum_{B \in \{B\}_1} \mu(\{B\}_1)^q \leq b_2 \sum_{B \in \{B\}_1} \bar{p}_2^q \]

since any fixed $V_{\bar{z}} (\bar{z} \in J_0)$ meets the at most some constant number b_0 (2.21) of boxes from G_δ. With $c_2 = (3\delta_0)^{-1} \max \{1, \lambda_1^{-q} \}$

\[S_d(q)^c \leq b_2 c_2 \sum_{B \in \{B\}_1} \bar{p}_2^q \lambda_1^{-q} = b_0 c_2. \]

v) Take $\bar{z} \in J_0$ with $\delta' = 3\sqrt{\delta_0} \lambda_1^{-1}\delta$. Only here the precondition (2.17) is used, which implies the existence of a box $B(\bar{z}) \in G_\delta$ which meets $U(x_2, \rho_2 \lambda_1)$. Since $\text{diam}(B(\bar{z})) = \rho_1 \lambda_1^{-q} \leq \rho \lambda_1$ by (2.4),

\[B(\bar{z}) \in U(x_2, 2 \rho \lambda_1) \subset V_{\bar{z}}. \]

The first idea now is to continue with $\mu(B(\bar{z}))^q \geq \mu(V_{\bar{z}})^q$. But here the method of i) cannot be applied to compare $\mu(V_{\bar{z}})$ with \bar{p}_2 in the average c', $\mu(B(\bar{z}))^{-1}$ does not have to be bounded by just some \bar{p}_2 but with \bar{p}_2 itself. However, this is possible since

\[\pi^{-1}[U(x_2, 2 \rho \lambda_1)] \subset \{B \in I_\infty \mid |B| = \bar{z}\} \]

by (2.16), leading to

\[0 \leq \mu(\{B\}_1) \leq \mu(U(x_2, 2 \rho \lambda_1)) \leq \bar{p}_2. \]

This time (2.20) is used instead of (2.21) to conclude that $B(\bar{z}) \neq B(\bar{z})$ for $\# \neq \bar{z}$. From this

\[\sum_{\bar{z} \in J_0} \bar{p}_2^q \leq \sum_{B \in \{B\}_1} \mu(\{B\}_1)^q = S_d(q) \]

and

\[S_d(q)^c \geq c_2 \sum_{\bar{z} \in J_0} \bar{p}_2^q \lambda_1^{-q} = c_4. \]

vi) From iv) and v) follows the assertion of the theorem for negative q. ◇

A first and almost immediate application of theorem 2.3 is the one to CMFs on the real axis \mathbb{R}:

\[\text{Corollary 2.4} \]

Let μ be a CMF on \mathbb{R} such that for all $n \in \mathbb{N}$ the cylindrical sets $V_n(\xi) \in I_n$ are intervals with mutually disjoint interiors, and such that

\[\text{diam}(V_n) = \lambda_1 \cdot \text{diam}(V_{n-1}) \]

for all words ξ. Then $T(q)$ is grid-regular for all $q \in \mathbb{R}$ and equals the unique solution γ of (2.14).

\[\text{Proof} \]

Set $c := \text{diam}(V_1)$ and $\lambda_1 = \frac{c}{c}$ according to (2.18). Take an arbitrary word \bar{z}. Among $V_{\bar{z}}, V_{\bar{z}1}, \ldots$ there is at least one—say $V_{\bar{z}1}$—with distance at least $2^{\lambda_1} c$ from the boundary of $V_\bar{z}$. Choose m large enough to ensure $\lambda_1 < 1/2 \cdot \lambda_1^2$ and set $\bar{z} = \bar{z}^m \cdot \bar{z}_1$, $\bar{z}_1 \in \bar{I}_m$. Then $V_{\bar{z}1} \cap V_{\bar{z}1}$ and $\text{diam}(V_{\bar{z}1}) \leq \frac{c}{c} \lambda_1 < 1/2 \cdot \lambda_1^2$. Thus it is enough to choose $x_1 \in V_{\bar{z}1}$ and $\rho = c, \rho = c/2 \cdot \lambda_1^2$, since $V_{\bar{z}1} \subset U(x_1, \rho \lambda_1)$, $\rho_2 = 0$ and $\text{dist}(x_1, \partial V_{\bar{z}1}) \geq 2 \rho \lambda_1$.

With the necessary cof theorem 2.3 provides the singularity exponents of self-similar measures: The first two preconditions are obviously satisfied due to the OSC. Moreover, also the third one can be verified provided that there is a basic open set O with $O \cap K \neq \emptyset$. This condition was termed strong OSC, for short SOS Osc [BG].

\[\text{Lemma 2.5} \]

Let $\mu = \langle (\lambda_1, \ldots, \lambda_r, \rho_1, \ldots, \rho_r) \rangle$ be any SMF. Then the conclusion of theorem 2.3 holds for $q > 0$. If, in addition, the SOS Osc holds, then this is even true for $q \in \mathbb{R}$.

\[\text{Remark} \]

A simple calculation even shows that the SOS Osc implies $\mu(O) = 1$ and $\mu(O) = 0$. But still K need not be a subset of O.

\[\text{Proof} \]

The proof of theorem 2.3 reveals that precondition (2.17) is only needed for negative q. So it only remains to verify (2.15)-(2.17) under the assumption $K \cap O \neq \emptyset$. Take $x = x_{\bar{z}}(\xi)$ lying in O. Since O is open and bounded there is $\rho_2 > 0$ such that $U(x, 2 \rho_2) \subset O \subset U(x, \rho_2)$ and an integer n such that $\lambda_1 = \text{diam}(O) \leq \rho_2$. For $\bar{z} = (\xi_{\bar{z}}(\xi))$ the set $V_{\bar{z}}$ contains x, has diameter $\lambda_1 = \text{diam}(O)$ and is thus a subset of $U(x, \rho_2)$. Letting $x_2 := w_k(x)$ for all finite words k one finds

\[V_{\bar{z}2} \supseteq U(x_2, \rho_2 \lambda_1) \subset V_{\bar{z}2} \supseteq U(x_2, \rho_2 \lambda_1) \]

for all $\# \neq \bar{z}$. Using (2.16) for the choice of x_2, (2.15) is evident.

Two simple examples of SMFs with the SOS Osc are the following:

\[\text{Example 2.2} \]

(A Class of Totally Disconnected SMFs) Take a self-similar set $K = \{x_1, \ldots, x_r\}$ and assume that the sets $w_i(K)$ $(i = 1, \ldots, r)$ are mutually disjoint. Then K is totally disconnected. Moreover, the union O of all $U(x, \varepsilon)$ with center x in K satisfies the OSC for $\varepsilon < 1/3 \cdot \inf \{\text{dist}(w_i(K), w_j(K)) : i \neq j\}$, due to the invariance (2.8) of K; O even contains K. ◇
Example 2.3 (SMFs on the Real Axis) For SMFs on the real axis \((d = 1)\) the situation is even trivial: \(K\) is uncountable provided \(r \geq 2\) and since the boundary of any open subset of \(\mathbb{R}\) is countable, \(K\) must intersect \(O\). Note that there are SMFs on \(\mathbb{R}\) with infinitely connected basic open set. Corollary 2.4 cannot be applied then.

At the time when this thesis was submitted, it was not clear whether the OSC implies the SOSC in general. The state of knowledge was the comparison of the two conditions by [BG]. Therefore it was opportune to present a geometrical situation in which the OSC does imply the SOSC. Two examples shall illuminate the problem first.

Example 2.4 (K Lying on the Fractal Boundary of \(O\)) Let \(r = 4\) and
\[
\omega_j(x) := 1/3 \cdot (x - a_j) + a_j
\]
with \(a_1 = (0, 0), a_2 = (1, 0), a_3 = (1, 1)\) and \(a_4 = (0, 1)\). Set \(O := \{0, 1\}^n\), \(K\) where \(K = \{w_1, \ldots, w_4\}\) as usual. \(O\) is of course open and bounded and \(K\) lies on its boundary. As will be shown it is even a basic open set for \(\{w_1, \ldots, w_4\}\).

Take \(j \in \{1, \ldots, 4\}\) and assume there is a point \(x \in O\) such that \(w_j(x) \in K\). Of course \(w_j(x) \in w_j(O)\). Since \(w_j(K) \subset w_j(O)\), which are mutually disjoint in this example, \(w_j(x)\) must by (2.8) be contained in \(w_j(K)\). The bijectivity of \(w_j\) now implies \(x \in K\), which is a contradiction to \(x \in O\). Thus \(w_j(O)\) is a union of \(0, 1\)-dimensional linear subspaces. Indeed, \(w_j(O)\) is a basic open set for \(\{w_1, \ldots, w_4\}\).

Example 2.5 (K Lying on the Smooth Boundary of \(O\)) Take \(d \geq 2\), \(r = 2\) and
\[
\omega_1(x) := 1/3 \cdot x, \quad \omega_2(x) := 1/3 \cdot x + (2/3, 0, \ldots, 0).
\]
Let \(C\) denote the middle third Cantor set on \(\mathbb{R}\) (see Ex. 1.1). Then \(K = \{w_1, w_2\} = \{(x, 0, \ldots, 0) : x \in C\}\), since this set is compact and invariant. Obviously, \(K\) lies on the boundary of the basic open set \(O := \{0, 1\}^d\).

This is quite possible that \(K\) has no point in common with a particular basic open set \(O\). But the above examples support the intuition that when this happens, either \(O\) has a highly irregular boundary, or the dimension of the embedding space \(\mathbb{R}^d\) has been chosen too large. Moreover, a better chosen \(O\) satisfies the SOSC. In applications it is often possible to find a basic open set \(O \subset \mathbb{R}^d\) with quite regular boundary: \(O\) is the union of a finite set of polyhedra, i.e. its boundary \(\partial O\) lies on a finite union of \((d - 1)\)-dimensional hyperplanes. We shall say then that \(\partial O\) is piecewise linear. Our aim is to prove that such a basic open set implies the SOSC and is thus sufficient for the determination of \(T\).

2.3. Spectrum of Self-Similar Multifractals

Lemma 2.6 Let \(\{w_1, \ldots, w_r\}\) be a set of contracting similarities with basic open set \(O\), the boundary \(\partial O\) of which is piecewise linear. Then the SOSC holds with some set \(O\).

Proof The case \(r = 1\) is trivial, thus assume \(r \geq 2\).

i) Let \(H\) be the linear subspace spanned by \(K\) and denote its dimension by \(d'\). Due to its minimality \(K'\) is invariant under \(w_j\), which span \(H\). By the invariance of \(K\) \((2.8)\) their images under \(w_j\) must again be contained in \(K\) which is a subset of \(H\). They span a hyperplane of dimension \(d\). Thus \(w_j(H) = H\) \((i = 1, \ldots, r)\).

ii) Now it will be proved that the SOSC holds for \(K\) as a subset of \(H\). Denote the interior of \(H \cap O\) with respect to \(H\) by \(O'\). Note that \(K\) is contained in the closure \(\overline{O'}\) of \(O'\) with respect to \(H\), since \(K \subset O\) and since \(O'\) is perfect. We claim that \(O'\) and \(K\) have a point in common. Assume the contrary. As a subset of \(\partial O'\), \(K\) must be contained in a finite union of linear subspaces \(E_k\) \((k = 1, \ldots, N)\) of dimension \(d' = d' - 1\). As it will be shown, \(K\) lies then in a linear subspace of dimension less or equal to \(d' < d'\), in contradiction to the definition of \(H\).

Assume first a \(j\) and a point \(x\) of \(K\) such that \(x \in E_k\), but in no \(E_k\) with \(k \neq j\). Since \(x\) has positive distance to \(E_k\) \((k \neq j)\), there is a finite word \(\xi\) such that \(V_{\xi}^+\) contains \(x\) but meets no \(E_k\) \((k \neq j)\). From
\[
\omega_j(K) \subset V_{\xi}^+ \cap K \subset E_j
\]
follows that \(K\) lies in \(E_j\), a \(d'-\)dimensional linear subspace. Otherwise, i.e. if there is no such \(x\), \(K\) must be a subset of the union of all \(E_k\), where multiply occurring sets have been removed. Inductively the same argument as just given can be applied or \(K\) can be found to be contained in \(E_k\). This is a finite union of points, in contradiction to \(r \geq 2\).

iii) The desired basic open set \(O'\), which intersects \(K\), is now readily constructed. Denoting the component of \(y \in \mathbb{R}^d\) in \(H\) by \(h\) and the one perpendicular to \(H\) by \(h^\perp\), set
\[
O' := \{y \in \mathbb{R}^d : h \neq 0 \text{ and } |h| < 1\}.
\]
(Compare Ex. 2.5.) Certainly \(O'\) is bounded and open, and \(K \cap O' = K \cap O' \neq \emptyset\). Due to the shape of \(O\) and due to the invariance of \(H\) the OSC of \(O\) carries over to \(O'\) as a subset of \(H\). Since \(H^\perp\) is invariant as well this establishes \(O'\) as a basic open set.

Summarizing, the author was able to give three conditions, each sufficient to imply the SOSC: \(d = 1\), the sets \(w_j(K)\) are mutually disjoint, or \(\partial O\) is piecewise linear. However, after this thesis was submitted the author's attention was brought to [S], due to which the SOSC holds for any SMF.
Corollary 2.5 Let \(\mu = (\lambda_i, \ldots, \lambda_j; p_i, \ldots, p_j) \) be a SMF in \(\mathbb{R}^q \). Then \(T(q) \) is grid-regular for all \(q \in \mathbb{R} \) and uniquely determined by the equation

\[
\sum_{i=1}^{r} q_i \lambda_i^q = 1.
\]

(2.22)

[Image]

Figure 2.3: The typical feature of the generalized dimensions \(D_q \) of a SMF, plotted as a function of \(q \). Here \(r = 4, \lambda_1 = \ldots = \lambda_4 = 1/6, p_1 = p_2 = 1/10, p_3 = 1/5 \) and \(p_4 = 3/5 \).

Formulas related to (2.22) have been found previously, but with less generality. In [HJKPS] differentiability of the spectrum \(f \) is assumed. In [HP] the formula is derived only for positive \(q \) and the argumentation is only valid when the similarities respect some mesh (compare page 40).

From (2.22) the spectrum \(F \) follows immediately by an application of theorem 1.2. To give as much information as possible we set:

\[
\alpha_\text{min} := \min_{i=1, \ldots, r} \frac{\log p_i}{\log \lambda_i}, \quad \alpha_1 := \frac{\sum_{i=1}^{r} p_i \log p_i}{\sum_{i=1}^{r} p_i \log \lambda_i}, \quad \alpha_0 := \frac{\sum_{i=1}^{r} \lambda_i^D \log p_i}{\sum_{i=1}^{r} \lambda_i^D \log \lambda_i}, \quad \alpha_\text{max} := \max_{i=1, \ldots, r} \frac{\log p_i}{\log \lambda_i},
\]

where \(D \) is the box dimension of \(K = \text{supp}(\mu) \) and satisfies (2.13). Thereby the various values of \(\alpha \) have interpretations as particular local Hölder exponents: \(\alpha_\text{min} \) and \(\alpha_\text{max} \) as the Hölder of the most probable and the most rarefied points, respectively, and \(\alpha_0 \) and \(\alpha_1 \) as the Hölder occurring most probably with respect to the underlying measure \(\mu \) and the \(D \)-dimensional Hausdorff measure, respectively. While the first two interpretations follow from the theorem below, see (2.25) or [EM] for the other two.

Furthermore, we denote by \(\gamma_1 \) and \(\gamma_2 \) the unique solutions of the equations

\[
\sum_{i=\alpha_\text{min}}^{\alpha_0} \lambda_i^1 = 1 \quad \text{resp.} \quad \sum_{i=\alpha_0}^{\alpha_\text{max}} \lambda_i^1 = 1,
\]

where the sums are taken over all numbers \(i \in \{1, \ldots, r\} \) which satisfy the indicated condition.

2.3. SPECTRUM OF SELF-SIMILAR MULTIFRACTALS

Theorem 2.6 (Spectrum of SMFs) Let \(\mu \) be a CMF, for which (2.22) holds for all real \(q \). Then

\[
F(\alpha) = \inf_{q \in \mathbb{R}} (T(q) + q\alpha) = \begin{cases} -\infty & \alpha < \alpha_\text{min} \\ \gamma_1 & \alpha = \alpha_\text{min} \\ T(q) - qT'(q) & \alpha = T(q) \in (\alpha_\text{min}, \alpha_\text{max}] \\ \gamma_2 & \alpha = \alpha_\text{max} \\ -\infty & \alpha > \alpha_\text{max}, \end{cases}
\]

and \(F \) is grid-regular everywhere provided \(T \) is. Moreover, \(F(\alpha) \) is continuous and strictly concave in \([\alpha_\text{min}, \alpha_\text{max}] \) and \(C^\infty \) in \(\{\alpha_\text{min}, \alpha_\text{max}\} \). Its graph touches the internal bisector of the axes at \(\alpha_0 \) and attains the maximal value \(D \) at \(\alpha_0 \). Furthermore, the \(2 \times 2 \) equation system

\[
\begin{bmatrix}
\sum_{i=1}^{r} \left(\frac{\lambda_i}{\lambda_0} \right)^\alpha \cdot \lambda_i & 1 \\
\sum_{i=1}^{r} \left(\frac{\lambda_i}{\lambda_0} \right)^\alpha \cdot \lambda_i & 0
\end{bmatrix} = 0
\]

is for every \(\alpha \in [\alpha_\text{min}, \alpha_\text{max}] \) uniquely solved by \(\gamma = F(\alpha), \ q = F'(\alpha) \).

[Image]

Figure 2.4: The typical feature of the spectrum \(F(\alpha) \) of a SMF. Here \(r = 4, \lambda_1 = \ldots = \lambda_4 = 1/6, p_1 = p_2 = 1/10, p_3 = 1/5 \) and \(p_4 = 3/5 \) as in figure 2.3.

See figure 2.4 for the feature of a typical spectrum. For an intuitive explanation of the back ground of (2.23) it must be referred to the remark on page 86, where the involved notation is at hand.

Corollary 2.7 Let \(\mu \) be a CMF, for which (2.22) holds for all real \(q \). Then \(D_0 = D = \partial_{\text{supp}}(K), \ D_1 = \alpha_0 \) and

\[
D_\text{min} = \lim_{q \to 0^+} D_q = \alpha_\text{min} \leq D_0 \leq \alpha_\text{max} = \lim_{q \to 0^-} D_q = D_\text{max}.
\]

Moreover, \(D_0 \) is either constant or strictly decreasing and continuously differentiable.

Proof Write \(c_i = c_i(\alpha) = \log(p_i) - \alpha \log(\lambda_i) \) for \(i = 1, \ldots, r \). The \(c_i \) are strictly increasing functions of \(\alpha \) with zeros \(\log(p_i)/\log(\lambda_i) \) for short. The \(c_i \) are
First the trivial case. When all zeros of the c_i coincide, then $p_i = \lambda_i^0$, where D is the common zero. Necessarily $D = T(0) = \alpha_m(k)$ from (2.22) and corollary 2.1. From (2.22) follows $T(q) = (1-q)D$ and $\alpha_m = \alpha = \alpha_m = \gamma = \gamma = D$. Theorem 1.1 gives $F(\alpha) = T(q) - qT(q) = D$ for $T = T(q) = (1-q)^2$ (2.23) is trivial and $D = D$ for all q. The grid-regularity as well as $F(\alpha) = \alpha_m$ and (2) follow as in (iv) below. In this case there is nothing more to prove.

From now on the case $q = 1$ is excluded. Equivalently $\alpha_m < \alpha_m$ may be assumed.

i) First it will be shown that (2.23) is solvable exactly if α_m lies in the range of $|T'|$. That it determines F and F'. Assume first that $(q, 0)$ solves the system for some fixed α, and rewrite it as:

$$
\sum_{i=1}^{r} A_{\alpha}^{(a)} + \sum_{i=1}^{r} B_{\alpha}^{(a)} log \lambda_i = 1
$$

Consequently $T(q_0) = \gamma_0 - \alpha_0, \alpha = -T'(q_0)$ and with theorem 1.1 $F(\alpha) = T(q_0) - qT(q_0) = \gamma_0$ and $F'(\alpha) = q_0$ is obtained. Thus the solution is even unique. On the other hand, it is now easy to see that, if $\alpha = -T'(q_0)$, then $(T(q)_0 - qT(q_0))$ provides a solution.

ii) Now let us determine the range of $-T'$. Instead of using the implicit formulas arising from (2.22), which is troublesome to handle, it will be shown that (2.23) is solvable exactly for $\alpha \in \alpha_m, \alpha_m$. Consider the second equation (2.23b). For fixed τ the function $q \rightarrow \sum c_i e^{\alpha \lambda_i^0}$ is strictly increasing. For $\alpha \leq \alpha_m$, however, it is strictly positive (positive, since case a) is excluded. Hence (2.23b) has then no solution. From now on $\alpha \in \alpha_m, \alpha_m$. Then $c_i \leq 0 < c_j$ for some i and j, and a unique solution $q(\tau)$ of (2.23b) exists. By the implicit function theorem $q(\tau)$ depends continuously on γ since $\sum c_i e^{\alpha \lambda_i^0} \neq 0$. Now turn to (2.23a) and consider the strictly positive function $h(\gamma) = \sum e^{\alpha \lambda_i^0} \lambda_i$. Its derivative satisfies

$$
h(\gamma) = \sum e^{\alpha \lambda_i^0} \log \lambda_i \leq \log \lambda_i \cdot h(\gamma) < 0,$$

since the second term vanishes by definition of $q(\tau)$. So, h is strictly decreasing and the mean value theorem of calculus implies for $\gamma < D$:

$$
h(\gamma) = h(D) = (D - \gamma) h'(x) \geq \log(1/\lambda_i)(D - \gamma) h(D),$$

Thus $h(\gamma) \rightarrow \infty (\gamma \rightarrow -\infty)$. On the other hand,

$$
h(D) = \sum e^{\alpha \lambda_i^0} \lambda_i = \sum e^{\alpha \lambda_i^0} \lambda_i = 1$$

because $q(\gamma)$ minimizes by its definition the strictly convex function $q \rightarrow \sum e^{\alpha \lambda_i^0} \gamma$ fixed. Summarizing there is a unique γ with $h(\gamma) = 1$ and existence and uniqueness of the solution of (2.23) is established. Moreover, $\gamma \leq D$, hence $F(\alpha) \leq D$.

2.3. SPECTRUM OF SELF-SIMILAR MULTIFRACTALS

iii) As a consequence of i) and ii) the range of $-T'$ is exactly $[\alpha_m, \alpha_m]$. By implicit differentiation of (2.23) it is easy to deduce the strict convexity of T. As a consequence D_p is strictly decreasing, which is a generalization of the same result for positive q in [HP]. Furthermore,

$$
\lim_{q \rightarrow \infty} D_p = \lim_{q \rightarrow \infty} T(q) = \alpha_m.
$$

Concerning differentiability of D_p at $q = 1$: Proposition 1.19 applies and $D_p = -T'(1) = T(0)$, for $q \neq 1$, and

$$
\frac{d}{dq} D_p = \frac{(1-q)T'(q) + T(q)}{(1-q)^2} = (1-q)^2 F(\alpha - \alpha) \leq D_p(q)
$$

corrections to $T'(1)/2$ as $q \rightarrow 1$. Since D_p is continuous at 1, it is hence also continuously differentiable there. The last equation reveals in addition that the touching of F and the inner bisector of the axis is of order two, provided q is taken as the curve parameter.

iv) Turning to the spectrum proposition 1.15 and iii) show that $F(\alpha) \leq F'(\alpha) \leq \inf T(q) = \infty$ for α outside $[\alpha_m, \alpha_m]$. The concavity and differentiability follow from theorem 1.1 and the implicit function theorem. The grid-regularity is a consequence of theorem 1.2. Regarding i) the maximum of F is discovered by noting that $(\gamma, q) = (D, 0)$ solves (2.23) for $q = \alpha_0$.

v) So, it remains only to compute the values $F(\alpha_m)$. But by theorem 1.1 $F(\alpha)$ is continuous in $[\alpha_m, \alpha_m]$. So the behaviour of the solutions (2.23) has to be studied near α_m. For an easy presentation of the proof assume without loss of generality that

$$
\alpha_m = \log \frac{p_i}{\log \lambda_i} \Leftrightarrow i \in \{1, \ldots, t\}
$$

for some $t < r$. We will consider arbitrarily $\alpha \in [\alpha_m, \alpha_m + \varepsilon]$ where $\varepsilon > 0$ is chosen small enough to guarantee the existence of $T' > 0$ such that $T' \leq c_i(\alpha) \leq \varepsilon^\alpha (t = 1, \ldots, r)$ and $c_i(\alpha) \geq 0 (k = 1, \ldots, t)$. Denote the solution of (2.23) by $(F(q), q(\alpha))$. Since $F(\alpha) \geq 0 (2.23)$ implies

$$
\sum_{i=1}^{r} F'(q_i) c_i(\alpha) e^{\alpha \lambda_i^0} < \sum_{i=1}^{r} F'(q_i) c_i(\alpha) e^{\alpha \lambda_i^0} \leq \alpha e^{\alpha \lambda_i^0}
$$

The terms in the first sum are all positive, $F(\alpha) \leq D$, and $q(\alpha) \rightarrow \infty (\alpha \rightarrow \alpha_m)$ by iii). Thus

$$
0 \leq c_i(\alpha) e^{\alpha \lambda_i^0} = \alpha e^{\alpha \lambda_i^0} e^{-\alpha \lambda_i^0} \rightarrow 0 (\alpha \rightarrow \alpha_m) (k = 1, \ldots, t).
$$

On the other hand, $c_i(\alpha) \rightarrow \infty (\alpha \rightarrow \alpha_m) (i = 1, \ldots, r)$ is trivial. Moreover, for reasons of continuity, $F(\alpha) \rightarrow F(\alpha_m)$ and with (2.23a)

$$
1 = \sum q_i(\alpha) e^{\alpha \lambda_i^0} \rightarrow \sum q_i(\alpha) e^{\alpha \lambda_i^0} \rightarrow \sum q_i(\alpha_m)
$$

From this $F(\alpha_m) = \gamma_1$. A similar argument shows $F(\alpha_m) = \gamma_2$.

\diamondsuit
2.4 Examples and Counterexamples

The title of this section speaks for itself. Among other things we treat some easy cases and contribute to the interpretation of $F(\alpha)$ as the dimension of subsets of $K = \text{supp}(\mu)$ with 'local Hölder exponent α'. The counterexamples prove the necessity of the preconditions of some of our theorems and show that the spectrum F need not be concave.

2.4.1 Homogeneous Multifractals

In this subsection only SMFs $\mu = \mu(p) = (\{\lambda_1, \ldots, \lambda_n; p_1, \ldots, p_n\})$ are considered, where the involved similarities w_1 are regarded as fixed and $p = (p_1, \ldots, p_n)$ as variable.

If $\mu(p) = \mu(p')$ and $p \neq p'$ then μ is called homogeneous or uniform [HP, HJKPS]. The choice of probabilities $p = p'$ may be considered to be inappropriate since $\mu(p')$ reveals no structure of K. But homogeneous multifractals possess some extremal properties and are, therefore, of theoretical interest. To state the mentioned properties of $\mu(p')$ and also for further use in this chapter the following definitions are needed: the capacity of a multifractal μ [Y, page 119]:

$$d_c(\mu) := \inf_{\delta > 0} \{ d_m(\mu) : E \subset K, \mu(E) \geq 1 - \delta \},$$

the α-dimensional Hausdorff measure m^α (for details see [Fal4, Roy]):

$$m^\alpha(\mu) := \inf \left\{ \sum_{i=1}^{\infty} (\text{diam}(S_i))^\alpha : E \subset \bigcup_{i=1}^{\infty} S_i, \text{diam}(S_i) \leq \varepsilon \forall i \in \mathbb{N} \right\},$$

the Hausdorff dimension $d_{HD}(\mu)$ of a set E:

$$d_{HD}(\mu) := \inf \left\{ \alpha > 0 : m^\alpha(E) = 0 \right\} = \sup \left\{ \alpha > 0 : m^\alpha(E) = \infty \right\},$$

and finally the Hausdorff dimension of a multifractal [Y, page 113]:

$$d_{HD}(\mu) := \inf \{ d_{HD}(\mu) : E \subset K, \mu(E) = 1 \}.$$

Note that $d_{HD}(E)$ exists, since $m^\alpha(E) \leq \varepsilon^{\alpha-\beta} m^\beta(E)$ whenever $\alpha > \beta$, and thus $m^\alpha(E) < \infty \Rightarrow m^\beta(E) = 0$ and $m^\beta(E) > 0 \Rightarrow m^\alpha(E) = \infty$.

Example 2.6 (Maximality of the Hausdorff Dimension of $\mu(p^*)$) A result of Genoni et al. [GH1, page 92] reads in our situation as follows: Assume that μ is a SMF and that $w_i(K) \cap w_j(K) = \emptyset$ for all $i \neq j$. Then

$$d_{HD}(\mu(p)) = d_c(\mu(p)) = D_i := \frac{\sum p_i \log_2 p_i}{\sum p_i \log_2 \lambda_i}.$$ (2.24)

The geometric properties of F (Theorem 2.6) imply $D_i \leq D_0$ with equality if and only if $p = p^*$. As a consequence $d_{HD}(\mu(p^*))$ is maximal for $p = p^*$.

Example 2.7 (Maximality of the Lyapunov Dimension of $\mu(p^*)$) Masopust [Ma1, pages 7 and 27] proves that p^* maximizes the Lyapunov dimension $\Phi(\mu)$ of the canonical dynamical system Φ associated with μ [Y]: $\Phi : K \times [0,1] \rightarrow K \times [0,1]$ where

$$\Phi(x,y) := (w_i(x) \frac{y - y_{i-1}}{y_i} \mod 1) \quad \text{for } y \in [y_{i-1}, y_i]$$

with $y_0 := 0$ and $y_i = p_1 + \ldots + p_i$ [see also [GH1]]. Masopust obtains

$$\lambda(\mu(p^*)) = 1 + d_m(K).$$

Finally note that

$$\mu(p^*) = c \cdot m^0_{\infty} |_K$$

for some normalization constant c. To see this, just check the invariance (2.10) of m^0_{∞} using $m^0_{\infty}(w_i(K) \cap w_j(K)) = 0$ ($i \neq j$) [Y, page 737] and note that $m^0_{\infty}(K) \in \mathbb{R}^\infty$.

In the context of this subsection we would like to mention another special choice of probabilities p_k, which works for any IFS with affine maps w_i:

$$\pi_j := \frac{\det(w_i)}{\sum_{i=1}^{n} \det(w_i)}.$$

The associated multifractal is sometimes called geometrical multifractal [Tel]. Growing structures with an underlying self-similar process [TV] may serve us as a first example: using only the number of particles in the various stages of the growth, one may determine 'mass-indices' α and corresponding 'fractal dimensions' $f(\alpha)$. This function equals exactly the multifractal spectrum F of the underlying SMF endowed with 'geometrical' probabilities π_j. The important aspect is the fact, that there is no measure needed to find f. Thus, this function characterizes the pure geometry of the system. As a second example let us consider the case of an IFS, for which the invariant set $K = \{w_1, \ldots, w_n\}$ has positive d-dimensional Lebesgue measure (e.g., a triangle in the plane \mathbb{R}^2 [GH2, page 11]). Choosing 'geometrical' probabilities π_j leaves one with μ equal to the normalized Lebesgue measure restricted to K.

2.4. EXAMPLES AND COUNTEREXAMPLES
2.4.2 Explicit Formulas

Most easily an explicit formula for \(T(q) \) arises from (2.22) provided that all ratio numbers are equal, i.e. \(\lambda_i = \lambda \) \((i = 1, \ldots, r)\). By simple calculation

\[
T(q) = - \frac{1}{\log \lambda} \log \left(\sum_{i=1}^{r} p_i^q \right) \quad \alpha(q) = - \frac{1}{\log \lambda} \log \left(\sum_{i=1}^{r} r_i \right)
\]

\[
F(\alpha(q)) = - \frac{1}{\log \lambda} \log \left(\log \left(\sum_{i=1}^{r} p_i^q \right) + q \frac{1}{\log \lambda} \log \left(\sum_{i=1}^{r} p_i \right) \right)
\]

Thus, the shape of the spectrum is independent of \(\lambda \). Multifractals of this kind are widely used as simple examples ([HJKPS, HP, Falc]) or as models of phenomena in nature [Vl].

An explicit formula for \(F(\alpha) \) can be extracted from the equation system (2.23), provided \(r = 2 \). Considering the variables \(x_1 = p_1 \alpha \log \lambda \) and setting \(c_1 = \log p_1 - \alpha \log \lambda \), one finds

\[
x_1 = \frac{c_2}{c_2 - c_1} \quad \text{and} \quad x_2 = \frac{c_1}{c_1 - c_2}.
\]

By taking logarithms

\[
F(\alpha) = \frac{c_2 \log(-c_2) + (c_1 - c_2) \log(c_1) + c_2 \log(c_1)}{\log(\lambda_1 \log p_1 - \log \lambda_2 \log p_1)}
\]

for \(\alpha \in [\alpha_{\min}, \alpha_{\max}] \), where \(c_{\min} = \log p_1 / \log \lambda_1 < \log p_2 / \log \lambda_2 = c_{\max} \) without loss of generality.

Formulas free from the parameter \(q \) have been presented until now only for special cases [EM, TV].

2.4.3 Atomic Multifractals

In this subsection degenerate probability- or ratio-numbers are considered, i.e. \(p_i = 0 \) or \(\lambda_i = 0 \).

Example 2.8 (Vanishing Probabilities) Let

\[
K = \bigcap_{n \in \mathbb{N}} \bigcup_{|I_n| \leq k} V_I
\]

be an \(r \)-adic Cantor set (2.1) and take \(t < r \) and \((p_1, \ldots, p_t) \) such that

\[
\sum_{i=1}^{t} p_i = 1, \quad p_i > 0 \quad (i = 1, \ldots, t) \quad \text{and} \quad p_i = 0 \quad (i = t + 1, \ldots, r).
\]

Then the product measure on \(I_n = \{1, \ldots, r\}^\mathbb{N} \) associated with \((p_1, \ldots, p_t) \) has no longer all of \(I_n \) as its support, but \(I_n' = \{1, \ldots, t\}^\mathbb{N} \)---considered as a subset of \(I_n \).

Thus

\[
\text{supp}(\mu) = K' = \bigcap_{n \in \mathbb{N}} \bigcup_{|I_n| \leq k} V_I
\]

which is in general a proper subset of \(K \). Moreover, \(\mu = \pi' / \mu \), where \(\pi' \) is the product measure on \(I_n' \), associated with \((p_1, \ldots, p_t) \) and \(\pi \) is the restriction of \(\pi \) to \(I_n \). Note that with the convention \(0^0 := 0 \) theorem 2.3 remains valid.

Thus, allowing degenerated probability vectors just means to extinguish certain sets in the construction (2.1) of \(K \). In particular if \(p_1 = 1 \), then \(\mu \) is the Dirac measure at the point \(1/11/1/ \ldots \) and hence atomic.

On the other hand, the following condition is sufficient to guarantee that a CMF is nonatomic, i.e. has no atoms:

Lemma 2.7 Assume that \(\mu \) is an \(r \)-adic CMF, where vanishing probability numbers are expressively allowed here. Assume, on the other hand, that none of them equals one. Assume, furthermore, that the first two preconditions (2.15) and (2.16) of theorem 2.3 hold. Then \(\mu \) is nonatomic.

Remark As a consequence, SMFs with \(r \geq 2 \) are nonatomic.

Proof It is well known that the atoms of Radon measures must be singletons. As we will see, the preconditions of this lemma imply that singletons are nullsets. Thus the proof is complete. However, we give the full argument.

i) Assume there is an atom \(A \), i.e. \(A \) is measurable, \(0 < \mu(A) < \infty \) and for any measurable subset \(E \) of \(A \) either \(\mu(E) = 0 \) or \(\mu(E) = \mu(A) \). An application of Zorn’s lemma to the set \(\{ E \subset A : E \text{ measurable and } \mu(E) = \mu(A) \} \) endowed with the inclusion as an ordering yields a minimal measurable subset \(B \) of \(A \) with the same measure as \(A \). By its minimality and the properties of \(A \) every measurable subset \(E \) of \(B \) must be a null set.

ii) Every singleton \(\{x\} \) is a Borel set and hence measurable. Moreover, it is a \(\mu \)-nullset. To see this note first that \(\pi^{-1}(\{x\}) \) is a finite set: Take \(b_i \) from (2.21) and assume that \(\pi^{-1}(\{x\}) \) contains more than \(b_i \) infinite words, say \(\omega^{(i)} \) \((k = 0, \ldots, b_i)\). For sufficiently large \(m \) the initial segments \(\omega^{(i)}[0,m] \) are distinct. Now take \(\delta \) small enough to guarantee \(\|x\| \geq m \) for all \(x \in J_k \). Since \(J_k \) is secure and tight, there is for every \(k = 0, \ldots, b_i \) a (unique) number \(n_k \) s.t. \(\omega^{(i)}[0,m] \) lies in \(J_{n_k} \). But the corresponding \(b_i + 1 \) sets \(V_{n_k} \) contain \(x \), i.e. intersect the \(\delta \)-box containing \(x \), in contradiction to (2.21). Thus \(\pi^{-1}(\{x\}) \) is indeed finite and hence a \(\mu \)-nullset due to \(p_i < 1 \) for all \(i \).

iii) Finally, the fact that every singleton \(\{x\} \) is a null set contradicts the minimality of \(B \): taking away a point from \(B \) yields a smaller, measurable set with the same measure. Thus there is no atom. \(\Diamond \)
CHAPTER 2. SELF-SIMILAR MULTIFRACTALS

Less trivial is the case where one allows vanishing ratio numbers. Generalizations of the short example below are immediate.

Example 2.9 (Vanishing Ratios) Consider the IFS \(w_1(x) = x/2, w_2(x) \equiv 1 \) and an arbitrary probability vector \((p_1, p_2) \). The support of the resulting CMF \(\mu \) is

\[K = \{ 0 \} \cup \{ 2^{-n} : n \in \mathbb{N}_0 \}, \]

and \(\mu \) itself is a linear combination of Dirac measures concentrated at the points \(2^{-n} \):

\[\mu = \sum_{n=0}^{\infty} p_2^n \cdot \delta_{2^{-n}}. \]

So, this is another atomic measure arising from an IFS.

To calculate \(T(q) \) it is convenient to use the admissible sequence \(\delta_n = 2^{-n} \). By direct computation of the measures \(\mu(B_j) \)

\[S_k(q) = \frac{1}{k^m} \left(1 + k^{-m} \right) \sum_{n=0}^{\infty} \left(q_p \right) ^n + \sum_{k=0}^{n-1} \left(q_p \right) ^k \]

with some \(c \geq 1 \), and

\[T(q) = \begin{cases} q \log \log 2 / \log q & \text{if } q < 0, \\ 0 & \text{otherwise}. \end{cases} \]

In this example the formula (2.22) holds exactly for \(q \leq 0 \). Thus, \(\lambda_\mu \neq 0 \) is a necessary precondition in corollary 2.5, since \(O = \{ 0 \} \) is a basic open set for the above IFS. Note that theorem 2.3 does not apply since (2.15) and (2.17) cannot be satisfied. But still \(K \) may be constructed starting with \(V_0 = [0, 1] \) and using the IFS as usual. Thus \(\mu \) is contractive with \(\lambda_\mu = 1/2 \) arbitrary, and corollaries 2.1 and 2.2 apply. Indeed \(T(0) = 0 \) is the box dimension of \(K, T \) is continuous and \(D_\mu \) is bounded by \(-\log p_1 / \log 2\).

For later use we note that \(F \) equals the Legendre transform of \(T \), i.e.

\[F(\alpha) = F^{\prime\prime}(\alpha) = \begin{cases} 0 & \text{if } 0 \leq \alpha \leq -\log p_1 / \log 2, \\ -\infty & \text{otherwise}. \end{cases} \]

Proof: due to proposition 1.15 \(F^{\prime\prime}(\alpha) \) and \(F^{\prime}(\alpha) \) only take the values \(-\infty \) and \(0 \) with the discontinuities at \(D_\mu = 0 \) resp. \(D_\mu = -\log p_1 / \log 2 \). Since \(F \leq F^{\prime\prime} \), it remains only to show that \(F(\alpha) \geq 0 \) for \(\alpha \in [D_\mu, D_\mu] \). Fix such an \(\alpha \) and take an arbitrary \(\kappa > 0 \). Choose the sequence \(\delta_n = (p_2 \kappa)^n / \alpha \) and take \(n \) large enough to ensure \(\delta_n < 3(1+\kappa)^{-2^{-n}} \) (note that \(p_1 < 2^{-m} \)). Now there is a unique box \(B_n \) in \(G_n \) which contains the point \(2^{-m} \). By the choice of \(n \), \(\delta_n \) does not contain any other point of the form \(2^{-m} \). Thus \(\mu(B_n) = p_2 \kappa^n = \delta_n \), which proves the claim.

2.4. EXAMPLES AND COUNTEREXAMPLES

2.4.4 Subsets of Given Local Hölder Exponent

The definition of the spectrum \(F \) gives credit to the intuition that \(F(\alpha) \) is the dimension of a certain subset \(K_\alpha \) of \(K \). This set is roughly described by the property that the measure of a ball with center in \(K_\alpha \) and diameter \(\delta \frac{1}{\alpha} \) for \(\delta \geq 0 \).

So far we are not aware of either a general proof justifying this intuition nor of a counterexample. But since this view helps to understand what kind of information about \(K \) is provided by the spectrum \(F \), we feel obliged to report on a few cases where the above interpretation is valid.

A first, almost trivial example is the following subset of the support \(K \) of a SMF \(\mu \):

\[C_\mu := \{ w_1, \ldots, w_t \}, \]

where the similarities \(w_i \) are ordered in a way to assure \(\log p_i / \log \lambda_1 = \ldots = \log p_i / \log \lambda_1 < \log p_i / \log \lambda_1 \) for all \(i \geq t + 1 \). \(C_\mu \) is the set of the 'most probable' points (see [Teu, HJKPS]). It is self-similar and has by (2.13) and theorem 2.6 the dimension

\[d_{\mu \mu}(C_\mu) = d_{\mu \mu}(C_\mu) = F(D_\mu). \]

Note that this interpretation of \(F(D_\mu) \) is less immediate for self-affine multifractals (see Ex. 3.3). The two trivial cases are \(t = 1 \) (\(C_\mu \) is a singleton) and \(t = \emptyset \) (\(C_\mu \) is homogeneous). In a similar fashion, the set of the 'most rared' points \(C_\mu \) can be defined. Provided (2.22) holds for negative \(q \), the dimension of \(C_\mu \) is \(F(D_\mu) \).

Example 2.10 (Subsets of Local Hölder Exponent \(\alpha \), Disjoint Case.) Reporting shortly on [CM] we define for a given SMF \(\mu = \langle \lambda_1, \ldots, \lambda_1, \lambda_1, \ldots, \lambda_1 \rangle \)

\[K_\alpha := \{ \alpha \in \mathbb{R} : \lim_{\mu \to \infty} \log p_i / \log \lambda_\mu(\alpha) = \alpha \} \]

Defining \(\beta(\alpha) \) as the unique solution \(\gamma \) of (2.14) for each \(\alpha \), the authors of [CM] are able to prove that

\[d_{\mu \mu}(K_{\alpha, \beta}) = \beta(q) + \alpha(q) \]

for all \(q \), where \(\alpha(q) = -\beta(q) \). This result is a convincing example for the power of an approach 'tailored to multiplicative cascades' and the use of symbolic dynamics. For a geometric relevance, however, the following characterization of \(K_\alpha \) in terms of the local behaviour of the measure \(\mu \) is essential. Provided the sets \(w_i(K) \) are pairwise disjoint

\[K_\alpha := \{ x \in K : \lim_{\delta \to 0} \log p_i(U(x, \delta)) / \log \delta = \alpha \}. \]

(This is an almost immediate consequence of the fact that the \(\varepsilon \)-neighbourhood of \(K \) satisfies the OSC for sufficiently small \(\varepsilon \). However, a proof of course also mentioned in [CM]). Consequently \(K_\alpha \) is just the set of all points with local Hölder exponent \(\alpha \) [EM]. With corollary 2.5 this can be summarized as follows:
Proposition 2.8 (Cawley-Mauldin) Let \(\mu \) be a SMF. Provided the sets \(w_i(K) \) are mutually disjoint,
\[
\lim_{\delta \to 0} \frac{\log \mu(U(x, \delta))}{\log \delta} = \alpha_i \Rightarrow F_\alpha(x) = \delta^\alpha \quad \text{for } i = 1, \ldots, k
\]
for all \(\alpha \neq \alpha_0 \) from \([0, D] \). Moreover, \(\mu(K) = 1 \) ([CM, p. 210, remark 2.12]).

The next example shows that disjointness is not necessary to achieve similar results.

Example 2.11 (Subsets of Local Hölder Exponent \(\alpha \). One Dimensional Case.) A result of Collet et al [CLP] will be adopted to fit our purpose. Take a self-similar set \(K = \{w_1, \ldots, w_n\} \) on \(\mathbb{R} \) with the following two properties:

a) an interval \(O \) satisfying the OSC, and

b) the map
\[
g : x \mapsto w_i(x) \quad \text{for } x \in w_i(O) = V_i
\]
is continuous on \(K = \bigcup_{i=1}^n w_i(O) \).
As an example take \(w_i(x) = x/3 \), \(w_2(x) = -x/3 + 2/3 \) and \(w_3(x) = x/3 + 2/3 \) with \(K = [0, 1] \). Now supplement \(K \) to a SMF \(\mu = (w_1, \ldots, w_2, \ldots, w_n) \) with arbitrary probability vector. It is easy verified that \(\mu \) satisfies the hypothesis of [CLP].

Trying to avoid the difficulties arising in the calculation of the singularity exponents \(E(q) \) for negative \(q \), the authors of [CLP] introduce certain partition sums \(Z_q(q) \) related to the 2-\(\times \)-grid. A closer look at the sophisticated construction reveals inequalities between \(Z_\nu(q) \) and \(S_\nu(q) \), which are of the same kind as used in the proof of proposition 1.5. Consequently, \(T(q) = \lim_{\nu \to \infty} \log Z_\nu(q)/\log 2^\nu \). So, [CLP, theorem 3.1] and our corollary 2.4 yield:

Proposition 2.9 (Collet et al.) Let \(\mu \) be as above. Then
\[
\lim_{\nu \to \infty} \frac{\log \mu(E)}{\log |E|} = \alpha \quad \text{for } \alpha \neq \alpha_0 \text{ from } [0, D].
\]
Thereby \(|E| \) denotes the length of the interval \(E \).

For reasons of completeness we point to further results in this field obtained by Lopes [Lop] for Julia sets of hyperbolic rational maps in the plane, by Schmeling et Siegmund-Schultze [S] for self-affine measures and by Rand [R] for certain CME. There is more to say about the measures \(\mu \) occurring in examples 2.10 and 2.11. Since SMFs are nonatomic [lemma 2.7], a famous theorem of Young [Y, p. 112] allows the following reasoning: taking any \(\mu \) as in example 2.10 and any \(\alpha \) with

\[
\mu(K_\alpha) = 0, \quad |Y| \implies d_{H\alpha}(K_\alpha) = \alpha \quad \text{and hence } F(\alpha) = \alpha = \alpha_1 = D_1.
\]
On the other hand, \(d_{H\alpha}(K_\alpha) = F(\alpha) < D_\alpha \) for all \(\alpha \neq \alpha_0 \).

Thus
\[
\mu(K_\alpha) = 0 \quad (\alpha \neq \alpha_0), \quad m^{H\alpha}(K_\alpha) = 0 \quad (\alpha \neq \alpha_0).
\]

The same holds for \(\mu \) as in example 2.11. From (2.25) the difference between the invariant measure and the \(D_\alpha \)-dimensional Hausdorff measure (restricted to \(K \) and normalized) becomes apparent. Moreover, considering these measures as probability measures on the embedding space, the local Hölder exponent takes the value \(\alpha_1 \), respectively \(\alpha_0 \) with probability one. The first equation in (2.25) supports the impression that the measure \(\mu \) concentrates in the \(\delta \)-boxes with \(\mu(B) \approx \delta^D \). Compare also page 28, (2.24) and proposition 2.8.

Example 2.12 (Concentration of \(\mu \)) Assume that \(\mu \) is a multifractal and \(\alpha \geq 0 \) such that for any \(h > 0 \) there is an \(\eta > 0 \) with \(F^+(\alpha) \leq \alpha - \eta \) for all \(\alpha \neq \alpha_0 = 0 \) and \(\alpha = \alpha_0 \). Take e.g. a SMF \(\mu \) and choose \(\alpha = D_1 \).

Then the calculation of Falconer [Fal, p. 300] is valid, since \(F(\alpha) \leq F^+(\alpha) = F^+(\alpha) \). It shows that for \(G_h(h) := \{B \in G_h : \delta^{D_h} \leq \mu(B) \leq \delta^{D_h+\epsilon}\} \),

\[
\mu \left(\bigcup_{B \in G_h(h)} B \right) \to 1 \quad (\delta \downarrow 0)
\]
for any \(h > 0 \). Thus \(\mu \) is concentrated in the boxes with \(\mu(B) \approx \delta^D \). But note that these boxes do not necessarily form a decreasing sequence of compact sets as \(\delta \downarrow 0 \).

Finally we give the example of a SMF \(\mu \) and a subset \(E \) of its support \(K \) with \(d_{H\alpha}(E) = D_1 \) and draw the connection to (2.24) and to the examples 2.10 and 2.12.

Example 2.13 (Subset of Exact Dimension \(D_1 \)) The following result is due to Eggleton [Egg]:

Let \(\{y_1, \ldots, y_n\} \) be a probability vector and denote by \(N(x, n, k) \) the number of times, the digit \(k \) occurs amongst the first \(n \) digits of the \(\nu \)-adic decimal expansion of \(x \in [0, 1] \). Then the Hausdorff dimension of

\[
E = \{x \in [0, 1] : \lim_{n \to \infty} \frac{1}{n} N(x, n, i) = y_i, i = 0, \ldots, \nu - 1\}
\]
satisfies

\[
d_{H\alpha}(E) = \frac{\sum_{i=0}^{\nu-1} y_i \log p_i}{-\log \gamma}.
\]
(Note that only countable many points \(x \) have more than one decimal representation. Concerning matters of dimension greater than zero, enumerable sets are negligible.)
Eggleston’s result may be regarded from the point of view of multifractal formalism: Choose \(\mu = (w_1, ..., w_r; [u_1, ..., u_r]) \) with \(w_i(x) = |x + i|/r \). Of course \(K = [0, 1] \) and \(E \) is a subset of \(K \). Since countable sets are \(P \)-null sets,

\[
\pi(\ell_n) \in E \iff \forall k = 0, ..., r - 1 \lim_{n \to \infty} \frac{1}{n} \# \{ i \leq n : i = k \} = p_k,
\]

for \(P \)-almost every infinite word \(\ell_n \). By the Strong Law of Large Numbers the last condition holds \(P \)-almost sure. Thus \(\mu(E) = 1 \). By corollary 2.4 and by Eggleston’s result \(d_{\mu}(E) = D \), which by (2.21) may be expected to equal \(d_{\mu}(\mu) \).

Finally, \(E \) can be related to the examples above. For \(p \)-almost every \(x \in E \) there is exactly one \(\ell_n \in \pi^{-1}(\{x\}) \). Then, letting \(\delta_n = r^{n} \), there is a unique \(B_n \subset G_n \) which contains \(x \). Moreover, the closure of \(B_n \) is \(V_{x, \ell_n}^p \) and

\[
\mu(B_n) = p_{\ell_n} = \prod_{j=0}^{r-1} p_k^{N(x,n,i)}
\]

leading to

\[
\frac{\log \mu(B_n)}{\log \delta_n} = \frac{\frac{1}{n} \sum_{i=0}^{n-1} N(x,n,i) \log p_i}{\frac{1}{n} \sum_{i=0}^{n-1} \log p_i} = D.
\]

as \(n \to \infty \). The connection to example 2.12 is immediate. Furthermore, \(E = K_{D/2} \) up to a \(\mu \)-nullset. But there is no rigorous argument showing that \(E \) is the set of local Hölder exponent \(D/2 \).

See also example 3.3 for a self-affine fractal and an explicit subset \(K' \) of ‘strict local Hölder exponent’ \(D/2 \).

2.4.5 Counterexamples

This subsection provides four multifractals with unusual sprectrum:

- A so-called dual spectrum [MEH], which means that \(T(q) = \infty \) for all negative \(q \). Consequently \(\alpha^* = \infty \) and hence even \(T(0) \neq \sup F^+(\alpha) \). For further examples of this kind see [MEH, ME, CJVP].

- Nonconcave spectra.

- Non grid-regular singularity exponents and spectrum.

Example 2.14 (A Multifractal \(\mu \) with \(F^+(\alpha) \equiv d_{\mu}(K) \)).

In contrast with example 2.1 the extraordinary behaviour of \(F^+ \) does not arise from an inherent inability of the multifractal formalism but reflects the strong inhomogeneity of the measure \(\mu \) and the existence of arbitrarily large local Hölder exponents.

Let \(K \) be the middle third Cantor set as constructed in example 1.1. Unlike the construction of CMFs the product measure \(\mu \) on its codimension \(\mathbb{R}^\infty \) is chosen according to the more and more one-sided measures

\[
\{1\} \mapsto p_1^{(n)} = 3^{-n} \quad \{2\} \mapsto p_2^{(n)} = 1 - 3^{-n}
\]

on the \(n \)-th factor \([1,2] \). This is not a multiplicative cascade any more. Let \(\mu = \pi_{P, K} \). The calculation of \(F^+ \) is carried out using the admissible sequence \(\delta_n = 3^{-n} \). Singletons are \(\mu \)-nullsets. So for any \(\delta = \text{box} B \)

\[
\mu(B) = \begin{cases} p_1^{(n)}, \ldots, p_r^{(n)} = \mu((B)_i) & \text{if } B = V_i \text{ and } i \in I_n \\ 0 & \text{otherwise}. \end{cases}
\]

Note first that \(p_1^{(n)} \leq p_2^{(n)} = \delta_{n}^* \) for all \(i \in I_n \), with \(i_n = 1 \). Now fix \(\alpha \). For any integer \(n > \alpha \)

\[
2^n = \# I_n \geq M_{\alpha}(\alpha) \geq \# \{ i \in I_n : i_n = 1 \} = 2^{n-1}.
\]

Together with (2.13):

\[
F^+(\alpha) = \lim_{n \to \infty} \frac{\log M_{\alpha}(\alpha)}{-\log \delta_n} = \frac{\log 2}{\log 3} = d_{\mu}(K),
\]

as was claimed. In addition

\[
S_{\alpha}(q) = \prod_{k=1}^{n} \left(3^{-k^q} + (1 - 3^{-k^q}) \right) = c(n_1) \prod_{k=n_1}^{n} \left(3^{-k^q} + (1 - 3^{-k^q}) \right).
\]

For \(q > 0 \) and \(\epsilon > 0 \) choose \(n_1 \) large enough to ensure

\[
3^{-k^q} \leq \epsilon(1 - 3^{-k^q})^q \quad \text{and} \quad -2 \leq 3^q \log(1 - 3^{-k^q}) \leq -\frac{1}{2} \quad \text{for } k \geq n_1.
\]

Straightforward estimates give

\[
\frac{-2\epsilon}{3^q}(n - n_1 + 1) \leq \log S_{\alpha}(q) - \log(c(n_1)) \leq (n - n_1)(\log(1 + \epsilon) - \frac{q}{2 \cdot 3^q}).
\]

Dividing first by \(-\log \delta_n \) and letting then \(n \to \infty \), then \(n_1 \to \infty \) and finally \(\epsilon \to 0 \) shows that \(T(q) \) vanishes and is grid-regular. For \(q = 0 \) direct computation yields \(S_{\alpha}(0) = 2^n \) and \(T(0) = d_{\mu}(K) \). For \(q < 0 \), proposition 1.15 and lemma 1.16 yield the grid-regular value \(T(q) = \infty \).

Finally, \(F^+(\alpha) \leq 0 \) for all positive \(\alpha \) due to \(F^+(\alpha) \leq T(q) + q \alpha \). On the other hand theorem 1.1 and (1.24) give \(\beta(0) = F^+(0+) = 0 \). A straightforward calculation yields even \(F^+(\alpha) \geq 0 \) for all \(\alpha > 0 \). By monotonicity \(F^+(\alpha) = 0 \) for all strictly positive \(\alpha \). So it has the looks of the positive semispectrum of a Dirac measure. This reflects the fact that the measure \(\mu \) is concentrated at the point 1. Only \(F^+ \) and \(T \) reveal some more information about \(\mu \).

Summarizing, this multifractal exhibits the following features:
- The singularity exponents are not even semi-continuous at zero.

\[
T(q) = \begin{cases}
\infty & \text{if } q < 0 \\
\log 2 / \log 3 & \text{if } q = 0 \\
\text{otherwise.} & \text{if } q > 0
\end{cases}
\]

- The multifractal is left-sided, hence \(\alpha^* = \infty \). Moreover,

\[
F(\alpha) = F^+(\alpha) = 0 \quad (\alpha > 0) \quad \text{and} \quad F^-(\alpha) = d_{\text{min}}(K) \quad (\alpha \in \mathbb{R}).
\]

- \(T(0) > \sup T(\alpha) = \sup F^+(\alpha) = 0 \).

\[\square\]

Lemma 2.10 Let \(\mu_1, \ldots, \mu_t \) be multifractals with mutually disjoint supports and let \((c_1, \ldots, c_t) \) be a probability vector. Then

\[
\mu = \sum_{i=1}^t c_i \mu_i
\]

is again a multifractal. Moreover, using a self-explanatory notation,

\[
F(\alpha) = \max_{\mu_i} \{ F_i(\alpha) \} \quad F^+(\alpha \pm \varepsilon) = \max_{\mu_i} \{ F^+_i(\alpha \pm \varepsilon) \}
\]

\[
T(q) = \max_{\mu_i} \{ T_i(q) \} \quad \overline{T}(q) = \max_{\mu_i} \{ \overline{T}_i(q) \}.
\]

and grid-regularity of the maximal \(F_i(\alpha) \) resp. \(T_i(q) \) carries over to \(F(\alpha) \) resp. \(T(q) \).

Remark Example 2.9 shows that the conclusions are wrong for infinite sums of multifractals. (All Dirac measures possess the same trivial function \(T(q) \equiv 0 \). An infinite linear combination of them, however, may not.)

Proof Throughout the proof it will be assumed that \(0 < 3 \sqrt{6} \delta < \text{dist}(K_i, K_j) \) for all distinct \(i \) and \(j \). Thus, if \(B \in G_{\varepsilon} \), there is a unique \(i \) such that \(\mu_i(B) = c_i \mu_i(B) \).

First the proof is given for \(F(\alpha) \). Fix \(\alpha \) and take \(\varepsilon > 0 \) arbitrarily. Choose \(\delta_0 > 0 \) such that \(\delta_0^{-1} < c_i \) for \(i = 1, \ldots, t \). With a self-explanatory notation it follows that

\[
N_{\delta}(\alpha + \varepsilon) - N_{\delta}(\alpha - \varepsilon) \leq \sum_{i=1}^t N_{\delta}^{(i)}(\alpha + 2\varepsilon) - N_{\delta}^{(i)}(\alpha - 2\varepsilon) \leq N_{\delta}(\alpha + 3\varepsilon) - N_{\delta}(\alpha - 3\varepsilon)
\]

whenever \(0 < \delta < \delta_0 \). This implies immediately the claim. The assertion for the semispectra follows similarly from

\[
N_{\delta}(\alpha + \varepsilon) \leq \sum_{i=1}^t N_{\delta}^{(i)}(\alpha + 2\varepsilon) \leq N_{\delta}(\alpha + 3\varepsilon).
\]

To treat \(T(q) \) and \(\overline{T}(q) \) note that \(\min(c_i)^{-1} \cdot S_i^{(q)}(\alpha) \leq \overline{T}(q) \leq \max(c_i)^{-1} \cdot S_i^{(q)}(\alpha) \).

\[\square\]

2.4. Examples and Counterexamples

Example 2.15 (Nonconcave Spectrum) Take

\[
w_1(x) = \frac{x}{3} \quad w_2(x) = \frac{2 + x}{3} \quad t_1(x) = \frac{4 + x}{3} \quad t_2(x) = \frac{6 + x}{3}
\]

and set \(\mu = (w_1, w_2; 2/3, 1/3), \mu_2 = (t_1, t_2; 9/4, 1/9) \) and \(\mu = 1/2(\mu_1 + \mu_2) \).

Since \(\mu_1 \) and \(\mu_2 \) are symmetric biadic SMFs (i.e. \(r = 2 \) and \(\text{Lip}(w_i) = \text{Lip}(w_j) \)), their spectra are symmetric with respect to the corresponding extrema, say \(\alpha^*_i \) and \(\alpha^*_j \). Moreover, their extremal values are both equal to \(\log 2 / \log 3 = d_{\text{min}}(K_1) = d_{\text{min}}(K_2) \).

By lemma 2.10 \(\mu \) has the spectrum shown in figure 2.5. Note that \(F \) is grid-regular and that it equals \(F^m \) exactly for \(\alpha \) outside \(\{c_1, c_2\} \).

\[\square\]

Figure 2.5: The nonconcave spectrum of \(\mu = 1/2(\mu_1 + \mu_2) \) as given in example 2.15. The dashed parts show the internal bisector of the axes and the spectra of \(\mu_1 \) and \(\mu_2 \).

Example 2.16 (Another Nonconcave Spectrum) Take

\[
w_3(x) = \frac{x}{3} \quad w_2(x) = \frac{2 + x}{3} \quad t_1(x) = \frac{16 + x}{9} \quad t_2(x) = \frac{24 + x}{9}
\]

and set \(\mu_1 = (w_1, w_2; 2/3, 1/3), \mu_2 = (t_1, t_2; 9/4, 1/9) \) and \(\mu = 1/2(\mu_1 + \mu_2) \). By lemma 2.10 the spectrum of \(\mu \) is as shown in figure 2.6. Moreover, it is grid-regular and equals \(F^m \) in the union of two disjoint intervals.

\[\square\]

Figure 2.6: The nonconcave spectrum (on the left) of another multifractal \(\mu = 1/2(\mu_1 + \mu_2) \) and its positive semispectrum \(F^+ \). See Ex. 2.16. The dashed parts show the internal bisector of the axes and the spectra of \(\mu_1 \) and \(\mu_2 \).

The last two examples allow several conclusions.
• First of all, a spectrum \(F \) is not necessarily concave. Moreover, it is not necessarily differentiable.
• Secondly, neither \(F \) nor \(F^* \) must everywhere equal the Legendre transform of \(T \). This violates the duality between \(F \) and \(T \); the latter equals always the transform of \(F^* \) (except maybe at 0) and is hence convex. This asymmetry is also reflected in the fact that taking the maximum of functions preserves convexity but not concavity. To say it in a different way: \(T \) is more regular than \(F \) since it depends on the values \(\mu((B_j)) \) through a sum or average. On the other hand, \(T \) provides a closer way of measuring the singularities of \(\mu \) and carries less information than \(F \).
• As a third point consider lemma 1.10: \(F \) may well be strictly monotonic in an open interval and nevertheless equal neither \(F^* \) nor \(F^* \). Thus a dual version of the mentioned lemma does not hold. Furthermore, \(F^*(t) < F^*(t) \) is not enough to imply \(F(t) = F^*(t) \).
• Finally, the touching point of \(F \) with the internal bisector of the axes is not necessarily unique, and \(T \) is not necessarily differentiable at \(q = 1 \). Consequently, the \(\lim_{\alpha \to 1} D_\alpha \) may not exist.

Example 2.17 (Non-Grid-Regular Exponents) A basic CMF on \(\mathbb{R} \) with \(\mathbb{L}(q) < T(q) \) (\(q \not= 1 \)) will be constructed. Choose two strictly increasing sequences of integers \(\{n_k\}_{k \in \mathbb{N}} \) and \(\{m_k\}_{k \in \mathbb{N}} \) such that

\[
\frac{n_k}{n_k + m_{k+1}} \to 1 \quad \frac{n_k}{n_k + m_k} \to 0 \quad (k \to \infty).
\]

Let \(l(n) \) denote the number of members of \(\{n_k\}_{k \in \mathbb{N}} \) less or equal to \(n \). The sets \(V_x \) involved in the construction are of the form

\[
V_x = [a_03^{-M}, (a_1 + 1)3^{-M}]
\]

for some integer \(a_1 \), where \(M = M(n) := n + m_{|n|} \) and \(n = |n| \). To be more precise, set \(V_0 = [0, 1] \) and \(m_0 := 0 \). Assuming that \(V_x \) is constructed and of the form as above, let \(a_{k+1} \) and \(a_{k+2} \) be defined through

\[
\begin{align*}
 a_{k+1} \cdot 3^{-M(n+1)} &= a_k \cdot 3^{-M(n)} \\
 a_{k+2} \cdot 3^{-M(n+1)} &= a_k \cdot 3^{-M(n)} + 2 \cdot 3^{-M(n+1)} + 1.
\end{align*}
\]

Since the function \(n \mapsto M(n) \) increases by \(n_k - m_{k+1} + 1 \) when \(n = n_k \) and by 1 otherwise, this choice of \(V_x \) actually means the following: the well known construction of the middle third Cantor set is carried out until a stage number \(n = n_k \) is reached. Then the left boundary points \(a_k \) of the \(V_x \) are chosen as usual, but the length extremely small relative to the length of the preceding intervals. It is immediate that the \(V_{x+} \) are subsets of \(V_x \).

Thus the construction of \(K \) is complete. Let \(\mu = (\pi; p_1, p_2) \) where \(\pi \) is the coordinate map of \(K \) and \((p_1, p_2) \) an arbitrary probability vector. For the sake of definiteness assume \(p_1 \geq p_2 \).

Take an arbitrary integer \(t \) and set \(\delta_t = 3^{-t} \). There is a unique integer \(t \leq N(t) \) defined by

\[
M(N-1) + 1 < t < M(N).
\]

Every set \(V_x \) with \(|x| = N-1 \) belongs to the \(3^{M(N-2)} \)-grid and its middle third interval with length \(3^{M(N-2)} \) separates its two daughter intervals \(V_x \) and \(V_y \).

By induction each set \(V_x \) with \(|x| = N \) is contained in a \(3^{N-1} \)-box, just because \(3^{M(N-1)} \leq 3^{-t} \); furthermore, since \(3^{-t} < 3^{M(N-1)} \), every two distinct \(V_x \) are separated by a \(3^{N-1} \)-box which does not meet \(K \). Consequently, for any \(\delta \)-box \(B \) either \(\mu(B) = 0 \) or \(\mu(B) = \mu(V) = p \) for the unique \(\delta \in I_N \) for which \(V_x \) is contained in \(B \). This yields

\[
\log S_{\delta_{t}}(q) = \log \left(\frac{\sum_{|y| = N(t)} p_y}{t \log 3} \right) = N(t) \log \left(\frac{p + p_2}{q} \right).
\]

Taking first \(t_k = n_k + m_{|n|} \), results in \(N(t_k) = n_k \) and \(N(t_k)/t_k \to 1 \) (\(k \to \infty \)).

Taking \(t_k' = n_k + m_k \) implies again \(N(t_k') = n_k \), but \(N(t_k')/t_k' \to 0 \) (\(k \to \infty \)). Since \(0 \leq N(t)/t \leq 1 \) for all integers \(t \), this results in

\[
T(q) = \max \left(\log \left(\frac{p + p_2}{p_1} \right), 0 \right) \quad \tilde{T}(q) = \min \left(\log \left(\frac{p + p_2}{p_1} \right), 0 \right).
\]

Figure 2.7: A CMF with \(\mathbb{L}(q) < T(q) \) (\(q \not= 1 \)) (Ex. 2.17 with \(p_1 = 0.85, p_2 = 0.15 \)).

Finally, applying the arguments given in the proof of theorem 1.2 to the sequences \(\{n_k\}_{k \in \mathbb{N}} \) and \(\{m_k\}_{k \in \mathbb{N}} \) shows that

\[
F^*(t) > \lim_{\delta \to 0} \log M_{\delta(t)}(\alpha) - \log \delta = -\infty \quad \text{for } 0 < \alpha < -\log p_2/\log 3
\]

\[
F^*(t) > \lim_{\delta \to 0} \log N_{\delta}(\alpha) - \log \delta = 0 \quad \text{for } \alpha > -\log p_2/\log 3
\]

\[
F^*(t) > \lim_{\delta \to 0} \log M_{\delta(t)}(\alpha) - \log \delta = -\infty \quad \text{for } 0 < \alpha < -\log p_2/\log 3.
\]
Chapter 3
Self-Affine Multifractals

Having treated the self-similar case, one way to go further is to consider affinities. In fact an intensive study of self-affine sets has led to important results [Falc3, Falc5, K, U, Z, GL] and applications, the latter mostly in the field of fractal interpolation [BEHM, GH2, Ma2, Bedt]. It is therefore, natural to consider self-affine measures. In doing so we will restrict our investigation to a particular kind of affinities and denote the obtained self-affine multifractals by SAMF. It is almost evident that the characteristic values of the involved affinities will partly determine the singularity exponents $T(q)$, like in the self-similar case. Carrying the analogy even further, one may expect implicit equations to hold for $T(q)$, from which the box dimension is recovered for $q = 0$. This indeed turns out to be the case. However, a completely new feature appears: the singularity exponents $T(q)$ of a SAMF are obtained as the maximum of the solutions of two equations. This is a consequence of the fact that the affine maps under consideration stretch with different ratios in two fixed invariant subspaces.

In the first section the definition of SAMFs is given and it is shown how the asymptotic behaviour of $S_q(q)$—and thus $T(q)$—is governed by the probability numbers and the characteristic values of the involved maps. Section two is devoted to limit theorems needed in section three, where the singularity exponents $T(q)$ are computed and grid-regularity and differentiability are discussed. Falconer gave the ‘almost sure’ dimension of self-affine sets. Section four provides this value in the context of this chapter and compares it with the actual box dimension $D_0 = T(0)$. In section five examples are developed and relations are drawn to recent publications.

3.1 Geometric Properties

In the first half of this section the particular geometrical situation of the self-affine measures under consideration is introduced. Then, after drawing first consequences, an intuitive understanding of the asymptotic behaviour of $S_q(q)$ is provided on
page 72. In the second half of the section this intuitive argument is made rigorous step by step.

For \(i = 1, \ldots, r \) let \(w_i \) be a diagonal affine contraction of \(\mathbb{R}^2 \), i.e.,
\[
 w_i : (x^0, x^0) \mapsto (\theta_i x^0 + u_i, \zeta_i x^0 + v_i)
\]
where \(\theta_i \) and \(\zeta_i \) are from \(\{-1, +1\} \), \(u_i \) and \(v_i \) from \(\mathbb{R} \), and where
\[
 \lambda := \max\{\lambda_1, \ldots, \lambda_r, \nu_1, \ldots, \nu_t\} < 1, \\
 \nu := \min\{\lambda_1, \ldots, \lambda_r, \nu_1, \ldots, \nu_t\} > 0.
\]

Similarly as for SFs it is required to have a nonempty, bounded, connected open set \(O \) such that
\[
 w_i(O) \cap O \quad (i = 1, \ldots, r) \quad \text{and} \quad w_i(O) \cap w_j(O) = \emptyset \quad (i \neq j).
\]

In order to treat affinities rather than similarities one more regularity condition is needed: denote by \(R \) the smallest closed rectangle with sides parallel to the axes, which contains \(O \). For the sake of simplicity \(R = [0,1]^2 \) will be assumed. This choice is not really a restriction as far as multifractal formalism is concerned: any rectangle can be transformed to \([0,1]^2 \) by a diagonal affine map \(\Phi \). Moreover, \(\Phi(K) \) is invariant under \(\Phi \circ w_i \circ \Phi^{-1} \), which possess the same characteristic values as \(w_i \).

The additional hypothesis on \(O \) is; there is a \(g > 0 \) and \(x_2, y_2, y_2 \) from \([0,1] \) such that
\[
 (x_1, t), \quad (x_2, 1-t), \quad (y, y_2) \quad \text{and} \quad (1-t, y_2)
\]
belong to \(O \) for all \(t \in [0, g] \). Loosely speaking, \(O \) touches each boundary part of \(R \) ‘perpendicularly’. Any set \(O \) with the above properties is called round open set.

Definition 3.1 Let \((p_1, \ldots, p_r) \) be a probability vector and let \((w_1, \ldots, w_r) \) be a set of diagonal affine contractions with a round open set. Then
\[
 \mu := (w_1, \ldots, w_r; p_1, \ldots, p_r)
\]
is called Self-affine Multifractal, for short SAMF. The characteristic values of \(w_i \) will always be denoted by \(\lambda_i \) and \(\nu_i \).

In order to compare \(G_\lambda \) with a suitable system of sets \(V_\lambda \) the definition of \(J_\delta \) (2.4) given in section 2.1 has to be modified: For any finite word \(\bar{i} = i_1 \ldots i_n \) let
\[
 \lambda_{\bar{i}} := \lambda_{i_1} \ldots \lambda_{i_n}, \quad \nu_{\bar{i}} := \nu_{i_1} \ldots \nu_{i_n},
\]
as usually and define
\[
 \kappa(\bar{i}) := \min(\lambda_{\bar{i}}, \nu_{\bar{i}}) \geq \kappa(i_1, \ldots, i_n). \quad \kappa(i) \geq \kappa(i_1, \ldots, i_n).
\]
Since \(\kappa \) is only sub-multiplicative we prefer the slightly different notation and will not write \(\kappa_{\bar{i}} \).

Trivially \(\kappa(\bar{i}) \leq \kappa(i_1, \ldots, i_n) \), thus \(\kappa(\bar{i}) \geq 0 \) \((\| \bar{i} \| \to \infty)\) and the construction (2.4) of \(J_\delta \) on page 34 works with \(\kappa(\bar{i}) \), replacing \(\lambda_i \). For \(0 < \delta < \nu \), the set \(J_\delta \) is thus uniquely determined by
\[
 J_\delta := \{ \bar{i} = i_1 \ldots i_n \in I : \kappa(\bar{i}) \leq \delta < \kappa(i_1, \ldots, i_n) \},
\]

Moreover, \(J_\delta \) is tight and secure (see (2.3) and (2.6)) and
\[
 \nu \delta \leq \kappa(\bar{i}) \leq \delta \quad \text{for all} \quad \bar{i} \in J_\delta.
\]

Note that this definition of \(J_\delta \) coincides with the one of section 2.1 when \(\lambda_i = \nu_i \) \((i = 1, \ldots, r)\).

The aim of this section is now to prove that it is enough to consider \(V_\lambda \) \((\bar{i} \in J_\delta)\) in order to determine \(T(\bar{q}) \). This is the essential step towards ‘symbolic dynamics’.

Lemma 3.2 Given two numbers \(\rho_2 > \rho_1 > 0 \), there is a number \(b \) depending only on the affinities \(w_1, \ldots, w_r \) such that
\[
 \# J_\delta (B) := \# \{ \bar{i} \in J_\delta : V_\bar{i} \cap (B) \neq \emptyset \} \leq b
\]
for all \(\delta > 0 \) and \(\delta > 0 \) with \(\rho_2 > \delta > \rho_1 \) and for all \(B \in \mathcal{G}_\delta \).

For reasons of simplicity the Cartesian product of two intervals of length \(u \) and \(v \) will be called a \((u,v) \)-rectangle. It is not important whether a rectangle contains some parts of its boundary or not.

Proof Take \(\bar{i} \in J_\delta (B) \). The \(\lambda_{\bar{i}} \lambda_{\bar{i}} \)-rectangle \(R_{\bar{i}} := w_\bar{i}(B) \) contains \(V_{\bar{i}} \) thus it must meet \((B)\).

i) Assume first that \(\lambda_{\bar{i}} \leq \nu_{\bar{i}} \). Since \(O \) is connected and bounded, there is a path within \(O \) joining \((0, y_2)\) with \((1, y_2)\), which consists of finite straight line segments \(g_1, \ldots, g_N \), each one parallel to one of the axes. Choose \(g > 0 \) such that \(U(g, Q) \) is contained in \(O \) for all endpoints \(Q \) of the \(g_i \), except \((0, y_2)\) and \((1, y_2)\). The path \(g_1, \ldots, g_N \) is by \(w_\bar{i} \) mapped onto a path which crosses \(R_{\bar{i}} \) parallel to the axes and which joins \(w_\bar{i}(0, y_2) \) with \(w_\bar{i}(1, y_2) \).

Since \(\nu_{\bar{i}} = \kappa(\bar{i}) \leq \delta < \delta \rho_2 \) and since \((B)\) meets the \(\lambda_{\bar{i}} \lambda_{\bar{i}} \)-rectangle \(R_{\bar{i}} \), there is a \(t \) such that \(B := (B) \cap \mathbb{R}^2 \) intersects a part \(h_\bar{i} := w_\bar{i}(Q) \), which is parallel to the \(x^{0} \)-axis (see Fig. 3.1). By the roundness of \(O \) at least one endpoint of \(h_{\bar{i}} \) must lie in \(w_\bar{i}(O) \), the interior of \(V_{\bar{i}} \). This point is denoted by \(Q_\bar{i} \).

ii) Assume first that \(Q_\bar{i} \) lies in \(B \) (see the set \(R_{\bar{i}} \) in figure 3.1). Then at least one quarter of the ball \(U(g_\bar{i}, Q_\bar{i}) \) is contained in \(B \). Moreover, this ball is a subset of the ellipse \(w_\bar{i}(U(g_\bar{i}, Q)) \) and hence contained in \(w_\bar{i}(O) \). Now the question is, how many such words exist. Since \(w_\bar{i}(O) \) and \(w_\bar{i}(O) \) do
Corollary 3.1 SAMFs are nonatomic.
for any finite set J of finite words, where

$$J^* := \{ \mathbf{i} \in J : \lambda_\mathbf{i} > \nu \}$$

This sum σ will approximate $S_\delta(q) \cdot \delta$ for $J = J_\delta$, $a = T^{(1)}(q)$ and $b = T^{(2)}(q)$ intuitively in the following way: consider

$$S^{(3)}(q) = \sum_{k} \mu([kq, (k+1)q]) \phi_k = \sum_{k} \mu([kq, (k+1)q] \times [0,1]) \phi_k \approx \epsilon^{-T^{(3)}(q)}.$$ \hfill (3.8)

For $\mathbf{i} \in J_\delta^+$ and $\epsilon = \nu_\mathbf{i}/\lambda_\mathbf{i} \leq 1$, the strips $[kq, (k+1)q] \times [0,1]$ are by $u_{\mathbf{i}}$ transformed into squares of side $\epsilon_\mathbf{i} \approx \delta$, covering $V_{\mathbf{i}}$. The measure of such a square is roughly $p_\mathbf{i} \cdot \mu^{(3)}([kq, (k+1)q])$. Doing similarly for $\mathbf{i} \notin J_\delta^*$ and considering the obtained squares as an approximation of the δ-boxes forming $G_\delta(q)$, \hfill (3.8) leads to

$$S_\delta(q) \approx \sum_{\mathbf{i} \notin J_\delta^+} \sum_{k} \left(p_\mathbf{i} \cdot \mu^{(3)}([kq, (k+1)q]) \right)^q \sum_{\mathbf{i} \in J_\delta^*} \left(p_\mathbf{i} \cdot \mu^{(3)}([kq, (k+1)q]) \right)^q = \sum_{\mathbf{i} \notin J_\delta^+} \sum_{k} p_\mathbf{i}^q \phi_k S^{(3)}(q) \sum_{\mathbf{i} \in J_\delta^*} \sum_{k} p_\mathbf{i}^q \phi_k S^{(3)}(q) = \sum_{\mathbf{i} \notin J_\delta^+} \sum_{k} p_\mathbf{i}^q \phi_k \epsilon^{-T^{(1)}(q)} \sum_{\mathbf{i} \in J_\delta^*} \sum_{k} p_\mathbf{i}^q \phi_k \epsilon^{-T^{(1)}(q)}.$$ \hfill (3.9)

This partition sum will tend to zero for $q > 1$ and to infinity for $q < 1$. To detect the power rate with respect to δ it is convenient to investigate

$$S_\delta(q) \cdot \delta \approx \sum_{\mathbf{i} \notin J_\delta^+} \sum_{k} p_\mathbf{i}^q \phi_k \epsilon^{-T^{(1)}(q)} \mu^{(3)}(\mathbf{i}) \lambda_\mathbf{i} \sum_{\mathbf{i} \in J_\delta^*} \sum_{k} p_\mathbf{i}^q \phi_k \epsilon^{-T^{(1)}(q)} \mu^{(3)}(\mathbf{i}) \lambda_\mathbf{i} = \sigma(q, T^{(1)}(q), T^{(2)}(q), \gamma, J_\delta).$$

Step by step the above approximation will be made rigorous. The asymptotic behaviour of σ is investigated in section 3.2.

Lemma 3.4 For any $q \in \mathbb{R}$, $k \in [0,1]$ and any $\tau > T^{(3)}(q)$, $\gamma < T^{(3)}(q)$ there is a number c such that for all $\delta \in [0,1]$,

$$\frac{1}{\delta^{\tau}} \sum_{\mathbf{i} \in J_\delta^*} \phi_k(q) \mu^{(3)}(\mathbf{i}) \lambda_\mathbf{i} \leq c \cdot S^{(3)}(q).$$ \hfill (3.9)

Proof

i) Remember that $-\infty < T^{(3)}(q)$ in general and that $T^{(3)}(q) < \infty$ since the measures $\mu^{(3)}$ are contractive CMFs. Obviously there is a $\delta_0 > 0$ such that the assertion holds for $\delta < \delta_0$. Thus it is enough to prove that $S^{(3)}(q)$ is bounded from above and away from zero for $\delta \in [\delta_0, 1]$. For the remainder let δ be from this interval.

3.1. GEOMETRIC PROPERTIES

ii) Take $q \geq 0$ first. Then $\mu^{(3)}((B)_{\nu_\mathbf{i}}) \leq 1$ and $S^{(3)}(q) \leq \# G_\delta(q) \leq 1/\delta < 1/\delta_0$. On the other hand, there is a B with $\mu^{(3)}((B)_{\nu_\mathbf{i}}) \geq \mu^{(3)}(B) \geq 1/\# G_\delta(q) \geq \delta_0$, thus $S^{(3)}(q) \geq \delta_0$. Here $G_\delta(q)$ denotes the set of all δ-boxes on the x-axis with nonvanishing $\mu^{(3)}$-measure.

iii) Given $q \leq 0$ it is obvious that $S^{(3)}(q) \geq 1$. For the upper bound note that $\mu^{(3)}$ is a CMF arising from an IFS—but not necessarily with a basic open set. However, n can be chosen large enough to ensure $\mathcal{X}^n \leq \delta_0$. Then the diameter of $V_\delta^{(3)} := \epsilon_\mathbf{i} \cdot [(0,1)]$ is certainly smaller than δ_0 provided $\| \mathbf{i} \| = n$. Given $B \in G_\delta(q)$ there must be a word \mathbf{i} of length n such that $V_\delta^{(3)}$ meets B (L_δ is secure). Thus $V_\delta^{(3)} = \epsilon_\mathbf{i} \cdot [(0,1)]$ and $\mu^{(3)}((B)_{\nu_\mathbf{i}}) \geq \epsilon_\mathbf{i}$. Every $V_\delta^{(3)}$ can meet at most two boxes B. This implies $S^{(3)}(q) \leq 2 \epsilon_\mathbf{i} \cdot \cdots \cdot \epsilon_\mathbf{i}$. The independence of n from δ completes the proof.

Lemma 3.5 Given $q \geq 0$, $\eta > 0$ and $\gamma \in \mathbb{R}$ there are numbers c_1 and c_2 such that for all $\delta > 0$,

$$c_2 \cdot \sigma(q, T^{(1)}(q), T^{(2)}(q), \gamma, J_\delta) \leq \delta \cdot \mu^{(3)}(B_{\nu_\mathbf{i}}(0,1]) \leq \mu^{(3)}((B)_{\nu_\mathbf{i}}) \leq c_1 \cdot \sigma(q, T^{(1)}(q), T^{(2)}(q), \gamma, J_\delta).$$

Proof Let $\delta > 0$ and $q \geq 0$.

i) The sets V_δ^+ are circumscribed by $\lambda_\mathbf{i}$-hyper-rectangles, most of which are long stretched and thin. For $\mathbf{i} \notin J_\delta^+$ the $V_{\mathbf{i}}$ will be subdivided into sets of diameter $\approx \delta$. Take first the case $\lambda_\mathbf{i} > \nu_\mathbf{i}$, i.e. $\mathbf{i} \notin J_\delta^+$. Set

$$\varepsilon_{\mathbf{i}} := \frac{\nu_\mathbf{i}}{\lambda_\mathbf{i}}.$$ \hfill (3.9)

Then $\varepsilon_{\mathbf{i}} \leq 1$. Define

$$C(k, \mathbf{i}) := [(k - 1) \cdot \varepsilon_{\mathbf{i}}, k \cdot \varepsilon_{\mathbf{i}}] \times [0,1],$$ \hfill (3.9)

for $k = \ldots, 1/\varepsilon_{\mathbf{i}}$, where $[x]$ is the smallest integer greater than or equal to x. The sets $D(k, \mathbf{i}) := \epsilon_{\mathbf{i}} \cdot C(k, \mathbf{i})$ constitute a disjoint covering of $V_{\mathbf{i}}$ by $\lambda_\mathbf{i}$-hyper-rectangles, which are in fact squares (see Fig. 3.2). From Lemma 3.3 follows

$$S_{\mathbf{i}}^{(3)}(q) = \sum_{\nu \in \mathbb{K}(k, \mathbf{i})} \tau(q) \mu([[(k - 2) \cdot \varepsilon_{\mathbf{i}}, (k + 1) \cdot \varepsilon_{\mathbf{i}}]) \phi_k \sum_{\nu \in \mathbb{K}(k, \mathbf{i})} \mu(C(k, \mathbf{i})) \phi_k,$$

where $C(k, \mathbf{i}) := [(k - 1) \cdot \varepsilon_{\mathbf{i}}, k \cdot \varepsilon_{\mathbf{i}}] \times [0,1]$. In the case $\lambda_\mathbf{i} < \nu_\mathbf{i}$ one finds of course

$$\sum_{\nu \in \mathbb{K}(k, \mathbf{i})} \mu(C(k, \mathbf{i})) \phi_k = S_{\mathbf{i}}^{(3)}(q)$$

with the obvious modifications.
ii) Take $B \in G_0$. Observing that J_0 is secure and tight, and that the support of μ is contained in $\overline{\Omega}$, the invariance of μ yields:

$$\mu((B)_{ij}) = \sum_{i \in A_k} \sum_{\xi \in \mathbb{Z}} \mu(w_{-i-1}((B)_{ij} \cap V_j))$$

$$= \sum_{i \in A_k} \sum_{\xi \in \mathbb{Z}} \mu(w_{-i-1}((B)_{ij} \cap D(k, \overline{\xi}) \cap V_j))$$

$$\leq \sum_{i \in A_k} \sum_{\xi \in \mathbb{Z}} \mu(C(k, \overline{\xi})).$$

Here, Σ runs for fixed i over all k such that $(B)_{ij}$, $D(k, \overline{\xi})$ and V_j intersect. Since the $D(k, \overline{\xi})$ are disjoint and contain squares of side $\delta \nu$, there are for each i at most $1 + 3/\nu$ such integers k. Moreover, (B_k) meets only b sets V_j (Lemma 3.2). Consequently the last double sum has actually at most the $b_k := b(1 + 3/\nu)$ terms. So it is possible to find $k = B_{ij}$ and $\overline{\xi} = \overline{\xi}(B)$ such that $D(k, \overline{\xi}(B))$ meets (B), and such that for $C(B) := (B \cap D(k, \overline{\xi}(B)))$ the inequality

$$0 \neq \mu((B)_{ij}) \leq b_k : p_{ij} \mu(C(B))$$

holds. This leads to

$$\sum_{B \in G_0} \mu((B)_{ij}) \leq \sum_{B \in G_0} p_{ij} \mu(C(B)).$$

Since every fixed $D(k, \overline{\xi})$ is a square of side $\kappa(\overline{\xi}) \leq \delta$, it can at the most meet 16 sets $(B)_{ij}$ with B from G_0. Thus at the most 16 pairs $(B_{ij}, \overline{\xi}(B))$ can coincide and hence

$$S_0(\xi) \leq 16 b_k \sum_{i \in A_k} \sum_{\xi \in \mathbb{Z}} p_{ij} \mu(C(k, \overline{\xi}))^\nu \mu((C(k, \overline{\xi}))^\nu$$

$$= 16 b_k \left(\sum_{\xi \in \mathbb{Z}} p_{ij} S_{\xi}(1)^\nu + \sum_{\xi \in \mathbb{Z}} p_{ij} S_{\xi}(2)^\nu \right).$$

Now choose $T_k = T^{(1)}(q) + \eta$ such $k = 1, 2$. Setting $c' = 16 b_k^\nu \gamma$ from Lemma 3.4 gives

$$S_0(\xi) \leq c' \left(\sum_{\xi \in \mathbb{Z}} p_{ij} (\lambda_2')^\nu + \sum_{\xi \in \mathbb{Z}} (\mu(\mathbb{R}))^{3/\nu} \right).$$

Writing $a = T^{(1)}(q)$, $b = T^{(2)}(q)$, $c_1 = c'max(1, \nu^{-\nu})$ for short and observing $\kappa(\overline{\xi}) \leq \delta \leq \kappa(\overline{\xi})/\nu$ yields

$$S_0(\xi) \leq c_1 \left(\sum_{\xi \in \mathbb{Z}} p_{ij} \lambda_2'^\nu \lambda_3'^{3-\nu} + \sum_{\xi \in \mathbb{Z}} (\mu(\mathbb{R}))^{3/\nu} \right)$$

$$= c_1 \left(\sum_{\xi \in \mathbb{Z}} \lambda_2'^\nu \lambda_3'^{3-\nu} + \sum_{\xi \in \mathbb{Z}} (\mu(\mathbb{R}))^{3/\nu} \right)$$

$$\leq c_1 \sigma(a, b, \gamma - \eta, J_d).$$

The last estimate used $\lambda < 1 (3.2)$ and $\eta > 0$.

iii) The same argumentation as above but with B and $D(k, \overline{\xi})$ interchanged provides the desired lower bound. So, take $\overline{\xi} \in J_0$ and k such that $\overline{\mu}(C(k, \overline{\xi})) \neq 0$. The set $D(k, \overline{\xi}) := w_{-1}(C(k, \overline{\xi})) \cap V_j$ is contained in a rectangle with sides $\kappa(\overline{\xi})$ and $3 \kappa(\overline{\xi})$. Thus there are at most eight boxes from G_0 meeting $D(k, \overline{\xi})$ and hence among them, say B_{ij} with

$$\mu(D(k, \overline{\xi})) \geq \mu(B(k, \overline{\xi})).$$

Using the invariance of μ this allows the estimate

$$\sum_{\xi \in \mathbb{Z}} \mu(B(k, \overline{\xi}))^\nu \geq \mu(D(k, \overline{\xi}))^\nu \geq \mu(C(k, \overline{\xi}))^\nu.$$
Writing $a = T^{[0]}(q)$, $b = T^{[2]}(q)$, $c_2 = \min (1, \alpha^{-})/\alpha^\nu$ for short and observing $\kappa(\bar{q}) \leq \delta \leq \kappa(\bar{q})/\nu$ leads to

$$S_0(q)^\delta \geq c_0 \left(\sum_{\ell \in \mathbb{A}} p_{2,\ell} \lambda^{\nu} \nu_{\ell}^{1/2} + \sum_{\ell \in \mathbb{A}} p_{3,\ell} \lambda^{\nu} \nu_{\ell}^{1/2} \right)$$

$$= c_0 \left(\sum_{\ell \in \mathbb{A}} \lambda_{\ell}^{\nu} \cdot \lambda_{\ell}^{\nu} \nu_{\ell}^{1/2} + \sum_{\ell \in \mathbb{A}} \nu_{\ell}^{\nu} \cdot \nu_{\ell}^{\nu} \nu_{\ell}^{1/2} \right)$$

$$\geq c_0 \sigma(q, a, b, \gamma + \eta, J_0).$$

Lemma 3.6 Given $q < 0$, $\eta > 0$ and $\gamma \in \mathbb{R}$ there is a number c_0 such that for all $\delta > 0$

$$S_0(q)^\delta \leq c_0 \cdot \sigma(q, T^{[0]}(q), T^{[2]}(q), \gamma - \eta, J_0).$$

Proof The notation of the proof of lemma 3.5 is kept in use. Let $q < 0$, $\delta > 0$ and set $\delta' = \delta/3$. Take $B \in G_0$. Since J_0 is secure there is an integer k and a word $i \in J_0$ such that for $C(B) = C(k, \bar{q})$

$$0 \neq \mu(w_k^{-1}(B) \cap C(B)) \leq \mu(C(B)).$$

This implies in particular that $B' = w_k^{-1}(C(B))$ contains $C(B)$; considering the case $\lambda_k > \nu_k$ first, B' is a $3\delta / \lambda_k \times 3\delta / \nu_k$-rectangle with $w_k^{-1}(B)$ concentric in its middle. Moreover, $\delta / \lambda_k = 3\delta / \nu_k = 3\delta / \nu_k \geq 3\delta / \nu_k \geq 3$. Since $w_k^{-1}(B)$ and $C(B)$ intersect the claim follows. It is here where the idea of the new formalism enters, which says to use $\mu(B)$ of boxes B with nonvanishing measure. Similar for $\lambda_k \leq \nu_k$. As a consequence of the invariance of μ

$$\mu(B) \geq \mu(w_k^{-1}(B)) \geq \mu(B).$$

Since $\delta' < \delta$ there are at the most four boxes B with coinciding pair (k, \bar{q}) and thus

$$S_0(q)^\delta \leq \sum_{k \in K} \mu^\delta C(B)^k \leq 4 \sum_{k \in K} \mu^\delta C(k, \bar{q})^\delta.$$

The rest of the proof is essentially a repetition of the argument at the end of step ii) in the proof of lemma 3.5.

For negative q it is not so easy to derive a lower bound of $S_0(q)$. Even more information is required about the geometry of μ; similar as in the self-similar case μ should not concentrate at the boundary of the open set.

To be more precise: an IFS (w_1, \ldots, w_d) of diagonal affine contractions will be called vertically centered if there is an open set $O = \{x, \gamma \times x, \gamma \}$ such that for any $x \in K^{(1)}$ there is a number l in I_1 such that $x \in \pi^0(V_l)$ and $\pi^2(V_l) \subset [u, v]$. Note that V_l is a closed set. Mutatis mutandis horizontally centered is defined.

3.1. GEOMETRIC PROPERTIES

Figure 3.3 provides a multifractal with centered IFS. For such measures a lower bound of $S_0(q)$ can be given also for negative q.

However, it is an important note that the IFS generating a multifractal is not unique. In applications it can be helpful to change to a coarser construction of the same invariant set. More precisely speaking, the invariance (2.8) of K holds for any secure and tight, finite set J of words, not only for I_1. The resulting codespace $I_n = J^n$ can be naturally be identified with $I_n = J^n$, which motivates the term coarser IFS. Supplied with the obvious product measure J^n will produce the same SAMF μ, since the invariance (2.10) of H holds also with J. Summa summarum the following definition is effective:

Definition 3.7 A SAMF $\mu = (w_n, \ldots, w_1; p_1, \ldots, p_d)$ will be called centered self-affine multifractal, for short C-SAMF, if it possesses two coarser IFS, one centered vertically and one centered horizontally.

Figure 3.3: On the left the construction of a SAMF: The unit square O is drawn as well as its images $w_j(O)$, marked by the shaded regions. The arrows reveal the induced orientation. Through this data, the IFS is uniquely determined and obviously it is centered. Moreover, the projections of the invariant set K are even self-similar, allowing a calculation of the spectrum as described in subsection 3.3.1. On the right the multifractal corresponding to the probabilities $p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = 1/25$, $p_3 = p_4 = p_5 = p_6 = p_7 = p_8$ numbering the maps from the left to the right and from the bottom to the top. The image is composed of 150×150 points provided by a random algorithm.

The strong condition ‘centered’ is needed to be sure that the measure μ is nowhere concentrated on the boundary of the open set. This corresponds to the method of the new formalism using the measures $\mu(B)$ of boxes with $\mu(B) > 0$. More general assumptions become apparent in lemma 3.9 ii).

In examples, the situation of the lemma below is often encountered.
Lemma 3.8 (Self-Similar Projections) Let μ be a SAMF with round open set $[0,1]^2$. Assume that $w_{ij}^{(k)}(O) \cap \pi^{-1}(V_j) \neq \emptyset$ implies $w_{ji}^{(k)} = w_{ij}^{(k)}$. If for each i

$$\pi^{-1}(V_j) \cap [0,1] \neq \emptyset \implies \exists i \neq i : \pi^{-1}(V_j) = \pi^{-1}(V_i),$$

then the coarser IFS $\{w_{ij} : ij \in I_2\}$ is centered, and so is μ. Moreover, the projections of the measure $\mu^{(k)}$ are then self-similar.

To speak in pictures: sufficient for μ to be centered are the following three conditions.

- The projections $K^{(k)}$ (Lemma 3.3) are self-similar. (The sets V are then arranged in rows and columns.)
- If a column contains only one V, then V_j is not allowed to touch the `bottom' or the `top'.
- Similar for rows with only one entry.

See Fig. 3.4 or 3.13.

Proof Mark the words of the coarser cospace $I_2^\nu =: I_{0}^\nu$ by a \ast.

i) In order to establish I_{0}^ν as vertically centered take $x \in K^{(1)}$. There is $y \in [0,1]$ and $ij \in I_2$ with $(x,y) \in V_{ij}$. If $\pi^{-1}(V_j)$ contains neither 0 nor 1, then $l = i$ is a possible choice. Otherwise $\pi^{-1}(V_j)$ must intersect $[0,1]$. By assumption there is $k \neq j$ with $\pi^{-1}(V_k) = \pi^{-1}(V_j)$. Consider the set V_{ik}. It has the same π^{-2}-projection as V_{ij} (see Fig. 3.4) and hence contains x. Furthermore, $\pi^{-2}(V_j) \neq \pi^{-2}(V_{ik}) \subset \pi^{-2}(V)$ implies that its π^{-2}-projection contains neither 0 nor 1. So it is enough to choose $l = ik$.

ii) The case $y \in K^{(1)}$ is treated the same way. The self-similarity of $\mu^{(k)}$ is shown in subsection 3.5.1.

\diamond

Lemma 3.9 For any C-SAMF μ, any $q < 0$, $\eta > 0$ and $\gamma \in R$ there are numbers c_η, c_γ and $Q > 0$ such that for all $\delta > 0$ and $b' = c_\eta \cdot \delta$

$$S_b(q)^{b''} \geq c_b(q,L^2(q),L^2(q),\gamma,J) .$$

Proof

i) Take $i \in J_0^{(1)}$. By assumption there is a vertically centered, coarser IFS of μ with cospace $I_{0}^\nu =: I_{0}^\nu$ and round open set $O^* = [0,1]^2 \setminus \cup_{j} w_{ij}$. Since J is secure, the fixpoints of w_{ij} must lie inside O^*, and therefore, O^* satisfies the OSC also for the basic IFS w_{ij}, w_{ij}. For reasons which will become transparent only in v), we choose $O = O^*$, which means that not only the cospaces I_{0}^ν and I_{0}^ν can naturally be identified but also the construction of μ by cylindrical sets, due to $V_{ij} = w_{ij}(O^*)$. Similar as in (3.9) set

$$C(k,j) := \{ k-1 \cdot \varepsilon \leq \varepsilon \leq \varepsilon + \varepsilon \} \times [k,v],$$

with the k-range $[k/\varepsilon + 1, \ldots , k/\varepsilon]$. Take an integer k with $\mu(C(k,j)) \neq 0$. The idea is to estimate $\mu(C(k,j))$ from below in the following manner:

$$\mu(C(k,j)) \geq \sum_{i \neq j} \mu(w_{ij}^{-1}(B)) = \sum_{i \neq j} \mu(w_{ij}^{-1}(B)) = \mu(B),$$

where B is from G_k. Therefore, $w_{ij}^{-1}(B)$ is required to be a subset of $C(k,j)$ and B, to be contained in $\text{int}(V_j)$. Once such a box B is found, it is immediate that it can at most belong to three different $C(k,j)$. B lies in $\text{int}(V_j)$, which are mutually disjoint for different j from $J_0^{(1)}$ and $w_{ij}^{-1}(B)$ is a subset of $C(k,j)$. With $\gamma_j = \gamma_j^{-1}(q) - \eta$ this results in

$$3S_\eta(q) \geq \sum_{i \neq j} \sum_{\nu \in \nu^j} \mu(C(k,j))^{\nu} = \sum_{i \neq j} \mu^{(k)}(\gamma_j,\gamma_j^{-1}(q)),$$

and with Lemma 3.4

$$S_\eta(q) \geq c_3^j \cdot \sum_{i \neq j} \mu^{(k)}(\gamma_j,\gamma_j^{-1}(q)).$$

Note that this last relation is completely independent of the choice of O. The same procedure applied to words $i \in J_0^{(1)}$, with possibly different cospaces I_{0}^ν and round open set $O = O^{(\ast)}$, yields

$$2 \cdot S_\eta(q) \geq (c_3^j + c_3^j) \cdot \left(\sum_{i \neq j} \mu^{(k)}(\lambda_i,\lambda_i^{-1}(q)) + \sum_{i \neq j} \mu^{(k)}(\lambda_i,\lambda_i^{-1}(q)) \right).$$

Then the rest of the proof will follow the lines of Lemma 3.5 iii).

ii) It remains only to find B. To keep ideas clear, fix $i \in J_0^{(1)}$ and k with $\mu(C(k,j)) \neq 0$ for the rest of the proof. The assumptions given will be symmetric in order to cover the case $i \in J_0^{(1)}$ as well. The remaining task is of purely geometric nature. It concerns only the position of a certain box B. In particular using now the cospace I_{0}^ν will not affect step i). The various cospaces are distinguished by asterisks (*).

Remember that I_{0}^ν is vertically and I_{0}^ν horizontally centered. As an immediate consequence it is possible to choose $\Theta > 0$ such that

$$x \in K^{(1)} \Rightarrow \exists y : x \in \pi^{-1}(V_j) \text{ and } \pi^{-1}(V_j) \subset [\mu + \Theta, v - \Theta]$$

and

$$y \in K^{(2)} \Rightarrow \exists y : y \in \pi^{-1}(V_{ij}) \text{ and } \pi^{-1}(V_{ij}) \subset [\mu + \Theta, \mu - \Theta].$$

This means that μ is nowhere concentrated at the boundary of O. To be more precise: every strip $[x,y] \times R^1$ with nonvanishing measure meets the support K certainly at distance at least Θ from the `upper' and `lower' boundary of O (see Fig. 3.4). This is what is actually needed for the proof.
iii) Finally, some control in the direction complementary to ii) is required. Without loss of generality and after eventually choosing a smaller Θ, there is a letter m^* from I^*_k such that
\[
\pi^{(0)}(V^*_m) \subseteq [s + \Theta, t - \Theta]
\]
and similar for $I^*_{k'}$. For if there were no such m^*, then all $\pi^{(0)}(V^*_m)$ would contain either s or t. Then two cases would be possible. First, there could be $m^* = k^*$ such that $\pi^{(0)}(V^*_m)$ contained s and $\pi^{(0)}(V^*_t)$ contained t. Then at least one of the words m^*m^* or k^*k^* would satisfy the condition above, and the still centered IFS corresponding to $(I^*_k)^{B^*}$ could be used. Otherwise, μ would equal a translate of $\mu^{(0)}$ and could be considered as a self-similar multifractal. This case will not be treated here since it is trivial. An easy check shows that the conclusions drawn from this lemma (theorem 3.3) hold certainly also in this case.

iv) At last B will be constructed. For didactical reasons the definition of c_0 is postponed. Since $\mu(C(k, g)) \neq 0$, there is V^*_m which meets $C(k, g)$ in a point, say (x, y), of K. Without loss of generality $\pi^{(0)}(V^*_m) \subseteq [s + \Theta, t - \Theta]$ by ii). Now consider a code $\pi^{(0)}_m$ of (x, y) starting with m^*. In particular, $(x, y) = \pi^{(0)}_m$ and $k^*_m = s^m$. Then there is a unique n with
\[
x^*_m \leq \varepsilon_1 \cdot \rho^{-2} < x^*_m.
\]
Thereby ρ denotes the minimum of the ρ^j (3.2) of the two centered IFS involved. The factor ρ^{-2} is needed to cover the case $\varepsilon_1 = 1$, which may well occur. Choose a word m^n from I^*_k according to iii) such that $\pi^{(0)}_m(V^*_m)$ is contained in $[s + \Theta, t - \Theta]$. Let $k^*_1 = k^*_m, \ldots, k^*_n$ and $j^* = k^*_m \cdots k^*_n$. Then the set V_{m^n} meets $C(k, g)$ in (x, y) and is suitably small to be still in the middle of $C(k, g)$. Moreover, its subset V^*_m is at a convenient distance of the border of $O = O^*$: it must lie in $[s + \lambda^*_m, t - \lambda^*_m, \Theta] \times [u + \Theta, v - \Theta]$ since it is the image of V^*_m under $w^{(0)}_m$ and since it is a subset of V^*_m (see Fig. 3.5).

Now consider $B = w^{(0)}_m(B)$, where B varies over all δ-boxes. Since the sets B^*

cover the plane then one is with nonvanishing measure which meets V^*_m. The special choice $O = O^*$ in step i) implies, as will be shown straightforwardly, that $B^* = w^{(0)}_m(B^*)$ is contained in $C(k, g)$, as well as in O. With this proven one concludes immediately $B \subset (B^*) \subset \text{int}(V^*_m)$, thus $\mu(B) = \mu(B^*) = 0$ and B belongs indeed to G_0 and is the box desired in ii). Finally note that B^* is a $(3\delta/\lambda^*_m \times 3\delta/\lambda^*_m)$-rectangle concentric to B^*. Choosing finally $c_0 = 6/2\Theta(\delta/\rho)^2$ gives
\[
\frac{3\delta}{\lambda^*_m} = \Theta c_0 \rho^2 \frac{\rho^2}{2} \leq \Theta \frac{\rho^2 \rho^2}{2} \leq \Theta \frac{\rho^2 \rho^2}{2} < \min(\lambda^*_m, \Theta, \epsilon_1/2).
\]

Moreover, $\text{dist}(\pi^{(0)}_m(B^*), x) < \text{diam}(\pi^{(0)}_m(V^*_m)) = \lambda^*_m \leq \epsilon_1/2$ and thus $\pi^{(0)}_m(B^*)$ is a subset of $\pi^{(0)}(C(k, g))$ (which is not necessarily contained in $[s, t]$). On the other hand, $\text{dist}(\pi^{(0)}_m(V^*_m), [s, t]) \geq \lambda^*_m \Theta$ and so $\pi^{(0)}_m(B^*)$ lies in $[s, t]$. Secondly,
\[
\frac{3\delta}{\lambda^*_m} = \Theta c_0 \rho^2 \frac{\rho^2}{2} \leq \Theta \frac{\rho^2 \rho^2}{2} < \Theta,
\]
and $\text{dist}(\pi^{(0)}_m(V^*_m), [u, v]) \geq \Theta$. Thus $\pi^{(0)}_m(B^*)$ is contained in $[u, v]$. Summarizing, B^* is indeed a subset of $(C(k, g))$, and of O. ✷

Figure 3.4: A SAMF with $r = 5$ to which lemma 3.8 applies: consider the second iterates. To every set V_j touching the 'bottom' of O there is a V_{k^*} in the same column at distance greater or equal Θ from the bottom as well as from the top. Thus this SAMF is centered and concentrates nowhere on the boundary of O. (See step ii) in the proof of lemma 3.9.)

Figure 3.5: This picture shows the lower part of $C(k, g)$ for $k = 0$ and reveals the construction of V_j for two different points (x, y) of K (the black dots). Note that V_j must lie at a great distance from the boundaries of $(C(k, g))$, and of O, in order to know that B^*—which meets V^*_m—is indeed a subset of the latter two. (See the proof of lemma 3.9.)

3.1. GEOMETRIC PROPERTIES
3.2 Limit Theorems

This section is devoted to the asymptotic behaviour of $\sigma(q,a,b,\gamma,J_{\delta})$ for $\delta \to 0$ with focus in its dependence on γ. This is purely a question of convergence. First we consider two trivial cases.

Lemma 3.10 Let J be an arbitrary set of words. Then

$$
\sigma(q,a,b,\gamma,J_{\delta}) = \sum_{i=1}^{r} \frac{\lambda_i^a \lambda_i^b}{\gamma} \rho_i \nu_i^q \nu_i^r \nu_i^s \nu_i^t
$$

Proof Obviously $\lambda_i = \nu_i$ implies $\lambda_i^a \lambda_i^b \nu_i^q \nu_i^r \nu_i^s \nu_i^t = \nu_i^q \nu_i^r \nu_i^s \nu_i^t$. Assume for the moment that $\lambda_i \geq \nu_i$ (i = 1, ..., r) and that γ is chosen such that

$$
\sum_{i=1}^{r} \frac{\lambda_i^a \lambda_i^b}{\gamma} \rho_i \nu_i^q \nu_i^r \nu_i^s \nu_i^t = 1.
$$

Then $\sigma(q,a,b,\gamma,J_{\delta}) = 1$ for all $\delta > 0$, since J_{δ} is secure and tight, and the asymptotics are indeed trivial.

If one of the cases of lemma 3.10 applies, we call the corresponding SAMF ordered. For the remainder of this section ordered SAMFs will be excluded, i.e. the assumption

$$
c_1 < 0 < c_r
$$

(3.10)

is in force, where $c_1 := \log \lambda_i - \log \nu_i$. Still, whenever (3.10) is used as a necessary condition, it will be mentioned.

The complexity of the investigation of unordered SAMFs is founded in the fact that J_{δ} and J_δ are tight but not secure. First a relation to the somewhat simpler sets I_{δ} is established.

Lemma 3.11 Let $\delta_n = \lambda^a$, $k_\delta = \lfloor \log \delta / \log \nu \rfloor$ and $m_\delta = \lfloor 2 \log \nu / \log \lambda \rfloor$. Then

$$
J_{\delta} \subseteq \bigcup_{n=0}^{mk_\delta} I_{\delta + n}
$$

$$
I_M \subseteq \bigcup_{n=M}^{mM} J_{\delta + n}
$$

for all $\delta > 0$ and all integers M.

Proof

1) Let $\delta > 0$ and take j from J_{δ}. Set $n = [|j|/\delta]$. Then

$$
\nu^{\delta} \leq \kappa(|j|) \leq \kappa(i_1, ..., i_{\delta + n}) \leq \lambda^{\delta + n}
$$

and hence $n \geq k_\delta$ and $n \leq \lfloor \log \delta / \log \nu \rfloor \log \nu / \log \lambda = 1 \leq m_\delta k_\delta$. This proves the first inclusion.

2) Let $M \in \mathbb{N}$ and take j with $|j| = M$. There is a unique n with $\kappa(n) \leq \kappa(i_1, ..., i_{\delta + n}) \leq \kappa(n+1)$. From this $\kappa(n) \leq \lambda \cdot \kappa(i_1, ..., i_{\delta + n}) \leq \kappa(n+1)$. Moreover, $\nu^{\delta} \leq \kappa(|j|) \leq \lambda^{\delta + n} = \delta_n < \kappa(i_1, ..., i_{\delta + n}) \leq \lambda^{\delta + n}$, thus $n > M - 1$ and $n \leq \log \nu / \log \lambda$. Then

$$
\sigma(q,a,b,\gamma,J_{\delta}) = \sum_{i=1}^{r} \frac{\lambda_i^a \lambda_i^b}{\gamma} \rho_i \nu_i^q \nu_i^r \nu_i^s \nu_i^t
$$

(3.11)

where γ is regarded as a constant rather than as a variable. Since the asymptotic behaviour of $\sigma(a,b,\gamma)$ in n is of interest, the two terms σ_1^a and σ_2^a have to be studied separately. They are both positive and strictly decreasing in γ. We will concentrate our study on σ_1^a. But note that σ_2^a has exactly the same ‘looks’ with only one difference: the word j with $\lambda_j = \nu_j$ contribute to σ_1^a, not to σ_2^a. However, the proofs will be formulated in a manner to be correct also if it were just the other way round. So they will/mutatis mutandis/ also be valid for σ_2^a.

As lemma 3.10 might suggest, the asymptotic behaviour of σ_1^a is governed by the properties of the following ‘characteristic function’:

$$
\chi(a,\gamma) := \sum_{i=1}^{r} \frac{\lambda_i^a \lambda_i^b}{\gamma} \nu_i^q \nu_i^r \nu_i^s \nu_i^t.
$$

(3.12)

In order to apply limit theorems from probability theory consider the probability space $(I_{\delta}, B, P^\delta)$ where I_{δ} is endowed with the product topology, B is the σ-algebra of its Borel sets and P^δ is the product measure on B induced by the measures

$$
[I] \mapsto \frac{\lambda_i^a \lambda_i^b}{\gamma} \nu_i^q \nu_i^r \nu_i^s \nu_i^t
$$

on the factors $\{1, ..., r\}$ of I_{δ}. Note that P^δ depends on a and γ. Consequently they must be kept fixed when applying theorems from probability theory. The random variables

$$
X_{\delta} : I_{\delta} \mapsto \mathbb{R}, \quad \nu_{\delta} \mapsto \nu_{\delta}
$$

are independent (by the property of the product measure) and identically distributed, i.e.

$$
P^\delta[X_{\delta} = \nu] = \frac{1}{\chi(a,\gamma)} \sum_{i=1}^{r} \frac{\lambda_i^a \lambda_i^b}{\gamma} \nu_i^q \nu_i^r \nu_i^s \nu_i^t
$$

Their common expectation amounts

$$
E[X_{\delta}] = \frac{1}{\chi(a,\gamma)} \sum_{i=1}^{r} \frac{\lambda_i^a \lambda_i^b}{\gamma} \nu_i^q \nu_i^r \nu_i^s \nu_i^t = \frac{\chi'(a,\gamma)}{\chi(a,\gamma)}.
$$

(3.13)
Here the partial derivative of χ with respect to the k-th variable is denoted by χ_k. The connection between X_0 and σ_n^+ is provided by the random variable

$$Z_n := \sum_{k=1}^n X_k$$

through the following lemma:

Lemma 3.12 For fixed a and γ

$$\sigma_n^+(a, \gamma) = \sum_{l \in \mathbb{Z}^n} p_l \lambda_l^a \gamma_l = \chi_n(a, \gamma) \cdot P^+ |Z_n > 0|.$$

Proof Let c'_1, \ldots, c'_t denote the different values of c_1, \ldots, c_t. For short, denote by Σ' the sum over all $j = j_1 \ldots j_n \in \{1, \ldots, t\}^*$ such that $c'_j_1 + \ldots + c'_j_n > 0$. Then

$$P^+ |Z_n > 0| = \sum_{j \in \mathbb{Z}^n} P^+ |X_j = c'_j_1, \ldots, X_n = c'_n| = \sum_{j \in \mathbb{Z}^n} P^+ \{X_j = c'_j_1, \ldots, X_n = c'_n, k \in \{1, \ldots, n\}\} = P^+ \{X_j = c'_j_1, \ldots, X_n = c'_n, k \in \{1, \ldots, n\}\} = \chi_n(a, \gamma) \sigma_n^+(a, \gamma).$$

To do the same with σ_n^- just interchange λ_k and ν_k. The characteristic function is

$$\psi(b, \gamma) := \sum_{l \in \mathbb{Z}^n} p_l b^l \lambda_l^a = \frac{e^b}{\psi(b, \gamma)} \sum_{l \in \mathbb{Z}^n} p_l b^l \lambda_l^a \chi_n(a, \gamma).$$

The corresponding random variables are given through

$$P^+ |Y_n = x| = \frac{1}{\psi(b, \gamma)} \sum_{l \in \mathbb{Z}^n} p_l b^l \lambda_l^a \psi(b, \gamma),$$

where $d_i = \log \nu_i / \log \lambda_i = -c_i$, and

$$\sigma_n^-(b, \gamma) = \sum_{l \in \mathbb{Z}^n} p_l b^l \lambda_l^a = \psi(b, \gamma) \cdot P^+ |Y_1 + \ldots + Y_n \geq 0|$$

for fixed b and γ. Turning back to σ_n^+, we keep a and γ fixed and consider first the case $E[X_n] > 0$. The Central Limit Theorem then tells us that $P^+ |Z_n > 0|$ is bounded away from zero, i.e. asymptotically greater than $\frac{1}{2}$. Consequently σ_n^+ roughly scales exponentially with base $\chi(a, \gamma)$. Defining $\gamma^\dagger = \gamma^+(a)$ to be the unique real number satisfying

$$\chi(a, \gamma^\dagger) = \sum_{l \in \mathbb{Z}^n} p_l \lambda_l^{a} \gamma^\dagger l = 1 \quad (3.10)$$

it is immediate that $\sigma_n^+(a, \gamma)$ is bounded if $\gamma = \gamma^\dagger$ and tends exponentially to 0 if $\gamma > \gamma^\dagger$ resp. to ∞ if $\gamma < \gamma^\dagger$. Here the strict monotonicity of $\chi(a, \gamma)$ in γ was used. Now assume that $E[X_n] < 0$, i.e. $\chi(a, \gamma) < 0$. Then $P^+ |Z_n > 0|$ tends to zero exponentially with some base ω which is explicitly given by Chernoff's theorem [Bill, p 147]. Of course ω depends on γ and so the question whether $\omega \cdot \chi(a, \gamma)$ is greater, equal or less than 1 arises. In order to give the value of ω the moment generating function of the random variable X_0 is required.

$$M(\omega) := E[e^{\omega X_0}] = \sum_{j \in \mathbb{Z}^n} \omega^j \cdot P^+ |X_0 = x| = \chi(\omega^+, \gamma) \sum_{l \in \mathbb{Z}^n} \omega^l \lambda_l^{a} \gamma_l.$$
because t^+ minimizes by its definition the strictly convex function $t \mapsto \sum p_i^a \log \lambda_i^a e^{t \lambda_i^a}$ for fixed a and γ. This establishes the existence and the uniqueness of γ_0 and hence the solvability of (3.18).

Regarding the equation system, the independence of γ_i from a is immediate. Finally note that $M(t^+) \leq M(0) = 1$ for all γ. Hence $h(\gamma^+(a)) \leq \chi(a, \gamma^+(a)) = 1 = h(\gamma_0)$ and $\gamma_0 \leq \gamma^+(a)$. \diamond

Remark As the close relation to the proof of theorem 2.6 may suggest, it is indeed possible to calculate the spectrum F of a SMF directly, i.e. not as the Legendre transform of T but rather by using the methods introduced in this section. Without going into details we sketch the interesting fact, how the Legendre relation between F and T is hidden in Chernoff’s theorem. The $\sum \lambda_i^a$ over all words $i \in J_a$ satisfying $p_i \geq \lambda_i^a$ approximates $N_a(\alpha) \cdot \delta^a$, and hence determines $F^+(a)$ as the one γ for which this sum is asymptotically bounded. As lemma 3.11 suggests it is enough to consider the sum over all $i \in I_0$ with the same property. The random variables X_a, which attain the values $\log (p_i/\lambda_i^a)$ with probability $X_i^a / \sum X_i^a$, provide the connection to probability theory. A sophisticated study reveals that Chernoff’s theorem applies exactly for $\alpha < \alpha_0$, leading to

$$\frac{1}{n} \log \sum_{i: \lambda_i^a \geq \lambda_0^a} \lambda_i^a = \frac{1}{n} \log (\sum \lambda_i^a)^{T \sum X_i^a} \rightarrow \log (\sum \lambda_i^a \cdot \inf \{ M(t) \}).$$

Thereby $M(t) = E[e^{t X}] = (\sum \lambda_i^a)^{-1} \sum p_i^a \lambda_i^a e^{t \lambda_i^a}$. Consequently, $F^+(a)$ is the one γ for which $\inf \{ \sum \lambda_i^a \lambda_i^a \} t = 1$. This is exactly what (2.23) expresses. On the other hand, these equations just say that F^+ is the Legendre transform of T. In the case $\lambda_i^a = \lambda_0^a$ it reads most explicitly as

$$\inf \left(a \gamma + \frac{\log \sum_{i: \lambda_i^a \geq \lambda_0^a} p_i^a}{\log 1/\lambda_i^a} \right) = -\gamma + \inf \left(a t + F(t) \right) = 0.$$

We are now in the position to give the asymptotic behaviour of σ^+_a.

Lemma 3.14 Assume $c_1 < 0 < c_0$ and define

$$\Gamma^+(a) := \begin{cases}
\gamma^+(a) & \text{if } \chi_i(a, \gamma^+(a)) \geq 0 \\
\gamma_0 & \text{otherwise}.
\end{cases}$$

Then

$$\lim_{n \to \infty} \frac{1}{n} \log \sigma^+_a(a, \gamma) = \begin{cases}
< 0 & \text{if } \gamma > \Gamma^+(a) \\
0 & \text{if } \gamma = \Gamma^+(a) \\
> 0 & \text{if } \gamma < \Gamma^+(a).
\end{cases}$$

Proof Fix $a \in \mathbb{R}$.

32. Limit theorems

i) First, γ shall be fixed too. In order to obtain the asymptotics of σ^+_a it is enough to know the one of $P^{\gamma}(Z_n > 0)$. Assume first that the expectation $E[X_i] > 0$, i.e. $\chi_i(a, \gamma^+(a)) \geq 0$. The common variance of the X_n is $\text{var} = E[X_n - E[X_n]^2]$. The $\chi_i(\gamma^+(a))$ and the investigated limits are $\log \chi_i(\gamma^+(a))$ and $\chi_i(\gamma^+(a))$. Assume $\gamma^+(a) = 0$. Then, $\Gamma^+(a) = 0$ and $h(\gamma^+(a)) = h(\gamma) = h(\gamma^+(a))$. But since h is a strictly decreasing function, and since $h(\gamma_0) = 1 = h(\gamma^+(a))$, this implies $\gamma^+(a) = \gamma_0$. Note in addition the equivalence of the following four conditions, which is an immediate consequence of (3.18):

$$\chi_i(a, \gamma^+(a)) = 0 \quad \text{if } \chi_i(a, \gamma^+(a)) \geq 0 \quad \text{for } \gamma > \gamma^+(a).$$

ii) From now on, γ is variable in \mathbb{R}. The base of the exponential growth of σ^+_a is switching between two functions of γ according to i). However, it is important to recognize that such a change is impossible in the γ interval $[\gamma_0, \gamma^+(a)]$. Note in addition the equivalence of the following four conditions, which is an immediate consequence of (3.18):

$$\chi_i(a, \gamma^+(a)) = 0 \quad \text{if } \chi_i(a, \gamma^+(a)) \geq 0 \quad \text{for } \gamma > \gamma^+(a).$$

iii) From (M(0) = 1) follows $h(\gamma) \leq \chi(a, \gamma)$. Thus, $\chi(a, \gamma)$ and $h(\gamma)$ are both strictly greater than 1 for $\gamma > \gamma_0$ resp. strictly less than 1 for $\gamma > \gamma^+(a)$. For these γ it does not matter which case of i) applies. For the remaining $\gamma \leq \gamma_0$ holds $\chi_i(a, \gamma^+(a)) = 0$ for all $\gamma \leq \gamma^+(a), \Gamma^+(a) = \gamma^+(a)$. The investigated lines is $\log \chi_i(a, \gamma^+(a))$; or $\chi_i(a, \gamma^+(a)) = 0$ for all $\gamma \leq \gamma^+(a), \Gamma^+(a) = \gamma_0$ and the lines is $\log h(\gamma)$. This proves the claim. \diamond

Turning again to σ^+_a define $\gamma^* = \gamma^+(a)$ to be the unique real number satisfying

$$\psi(h, \gamma^*) = \sum_{i=1}^r p_i h \lambda_i^a e^{h \lambda_i^a} = 1.$$

Next, consider the equation system

$$\psi(h, \gamma^*) = \sum_{i=1}^r p_i h \lambda_i^a e^{h \lambda_i^a} = 1$$

$$\psi_i(h, \gamma^*) = \sum_{i=1}^r p_i h \lambda_i^a e^{h \lambda_i^a} = 0$$
Interchanging λ_i with μ_i the existence of a unique solution can be deduced from lemma 3.13. Moreover, \(\psi(b, \gamma) = \chi(b, \gamma) \) for all b and γ and this solution must be $\gamma = \gamma_0$, $t = -t^*(\gamma_0 - b, \gamma_0)$. Setting

\[
\Gamma^*(a) := \begin{cases}
\gamma^*(b) & \text{if } \psi_1(b, \gamma^*(b)) \geq 0 \\
\gamma_0 & \text{otherwise,}
\end{cases}
\]

with γ_0 from lemma 3.13, one finds

\[
\lim_{n \to \infty} \frac{1}{\log n} \log \sigma^*_n(b, \gamma) \begin{cases}
< 0 & \text{if } \gamma > \Gamma^*(b), \\
= 0 & \text{if } \gamma = \Gamma^*(b), \\
> 0 & \text{if } \gamma < \Gamma^*(b),
\end{cases}
\]

from (3.15) and the proof of lemma 3.14.

To get an illuminating picture note that the three relevant values $\gamma^+(a)$, $\gamma^-(b)$ and γ_0 are found on the level curve $\chi = 1$ in the (a, γ)-plane (see Fig. 3.6). The curve

is the graph of the function $a \mapsto \gamma^+(a)$. Moreover, it intersects every straight line $a \mapsto \gamma = a + b_0$ exactly once in the point $(-\gamma(b_0) - b_0, \gamma(b_0))$. Finally, it has a unique minimum due to $c_1 < 0 < c_2$ and the corresponding minimal value is γ_0.

This illustrates the independence of γ_0 from a once more.

Now that the behavior of $\sigma_n(a, b, \gamma)$ is known, the conclusions for the sums over the somewhat more complicated sets J_0 may be drawn.

Proposition 3.15 Assume $c_1 < 0 < c_2$ and let $\delta_0 = \lambda^\infty$. Then

\[
\lim_{\delta \to \delta_0} \sigma(q, a, b, \gamma, J_0) = 0 \quad \text{if } \gamma > \max(\Gamma^+(a), \Gamma^-(b)),
\]

\[
\limsup_{n \to \infty} \sigma(q, a, b, \gamma, J_0) = \infty \quad \text{if } \gamma < \min(\Gamma^+(a), \Gamma^-(b)).
\]

Proof

1) Take first $\gamma > \max(\Gamma^+(a), \Gamma^-(b))$. Lemma 3.14 and (3.21) give $L_1 < 1$ and $L_2 < 1$ such that $\sigma_n(a, b, \gamma) = \sigma_n^*(a, \gamma) + \sigma_n^0(b, \gamma) \leq L_1^n + L_2^n$ for n large enough. Lemma 3.11 implies for sufficiently small $\delta > 0$

\[
\sigma(q, a, b, \gamma, J_0) \leq \sum_{n=0}^{\infty} \sigma(q, a, b, \gamma, J_0) \leq \sum_{n=0}^{\infty} L_1^n + L_2^n \leq \delta n_0(\lambda^k_1 + \lambda^k_2).
\]

The first part of the theorem then follows from $k_0 \to \infty \ (\delta \to 0)$.

2) Take now $\gamma < \min(\Gamma^+(a), \Gamma^-(b))$. Since σ_n^* and σ_n^0 are both positive, (3.21) and lemma 3.14 provide a number $L > 1$ such that $\sigma_n(a, b, \gamma) \geq L^n$ for sufficiently large n. Then

\[
\sum_{n=0}^{\infty} \sigma(q, a, b, \gamma, J_0) \geq \sigma(M(a, b, \gamma)) \geq L^n
\]

for large M. Since the terms on the left hand side are all positive there must be an integer $n(M)$ between M and $\delta n(M)$ with

\[
\sigma(q, a, b, \gamma, J_{0,\infty}) \geq \frac{1}{\delta n(M)} L^M.
\]

This completes the proof. \(\diamond \)

3.3 Generalized Dimensions

In this section the geometric properties of SAMFs and the limit proposition 3.15 are used in order to estimate the singularity exponents $T(q)$. The lower and the upper bound differ in general, but the coincidence provided that $T^{(1)}(q)$ and $T^{(2)}(q)$ are grid-regular. Moreover, as shall be shown, the latter is a sufficient condition for the grid-regularity of T. Finally the differentiability of T will be investigated.

3.3.1 Estimate

The notation of section 3.2 has to be adapted. Now the dependence on q has to be indicated explicitly. On the other hand, the variables a and b will only take some particular values. Moreover, a formula should be provided which includes ordered SAMFs. To keep the following definitions at reasonable size set $a = T^{(2)}(q)$, $b = T^{(2)}(q)$. Denote the unique solution (in γ) of

\[
\sum_{i=1}^{r} p_i^a \lambda_i^a \gamma_i^a = 1 \quad \text{resp.} \quad \sum_{i=1}^{r} p_i^b \lambda_i^b \gamma_i^b = 1
\]

by $\gamma^+(q)$, resp. $\gamma^-(q)$. If $\lambda_i < t_i$ and $\lambda_j > t_j$ for some i and some j, denote the unique solution (in (x, γ)) of

\[
\sum_{i=1}^{r} p_i^a \lambda_i^a \gamma_i^a = 1 \quad \text{resp.} \quad \sum_{i=1}^{r} \log(\lambda_i/\lambda_0)p_i^a \lambda_i^a \gamma_i^a = 0
\]
by \(\{a_q(q), \gamma_0(q)\}\), otherwise set \(\gamma_0(q) = -\infty\). Finally set

\[
\Gamma^+(q) := \begin{cases} \gamma^+(q) & \text{if } \sum_{i=1}^\infty \log(\lambda_i/\lambda_p) \nu^i \lambda_i^{-\gamma^+} |q|^a \geq 0, \\ \gamma_0(q) & \text{otherwise}, \end{cases}
\]

\[
\Gamma^-(q) := \begin{cases} \gamma^-(q) & \text{if } \sum_{i=1}^\infty \log(\lambda_i/\lambda_p) \nu^i \lambda_i^{-\gamma^-} |q|^b \geq 0, \\ \gamma_0(q) & \text{otherwise}, \end{cases}
\]

and define

\[
\Gamma(q) := \max(\Gamma^+(q), \Gamma^-(q))
\]

(3.22)

In order to provide lower bounds, the analog definitions have to be carried out with

\[
a = \Gamma^+(q), \quad b = \Gamma^-(q).
\]

The corresponding functions will be denoted by \(\gamma^+(q), \gamma^-(q), \gamma_0(q), \Gamma^+(q), \Gamma^-(q), \Gamma(q)\) and \(\Gamma(q)\).

Proposition 3.16 Let \(\mu\) be a SAMF and let \(q \geq 0\). Then

\[
\Gamma(q) \leq T(q) \leq \Gamma(q).
\]

The upper bound is also valid for negative \(q\), and, provided \(\mu\) is centered, the lower bound as well. Moreover, for ordered C-SAMFs the left hand side even bounds \(\Gamma(q)\) from below.

Proof Let \(q \in \mathbb{R}\).

i) Take \(\gamma > \Gamma(q)\) arbitrarily and choose \(\eta > 0\) such that \(\gamma - \eta > \Gamma\). Lemma 3.5 (if \(q \geq 0\)) resp. lemma 3.6 (if \(q < 0\)) and proposition 3.15 say that

\[
S_\delta(q) \delta^{-\eta} \leq \text{const} \cdot \sigma(q, T^+(q), T^-(q), \gamma, \eta, J_0) \leq 1
\]

for all sufficiently small \(\delta > 0\). This gives the upper bound.

ii) Take \(\gamma < \Gamma(q)\) arbitrarily and choose \(\eta > 0\) such that \(\gamma + \eta < \Gamma\). Lemma 3.5 (if \(q \geq 0\)) resp. lemma 3.9 (if \(q < 0\)), which only applies to C-SAMFs, implies

\[
S_\delta(q) \delta^{\gamma + \eta} \leq \text{const} \cdot \sigma(q, T^+(q), T^-(q), \gamma, \eta, J_0)
\]

for arbitrary \(\delta > 0\) and for a particular multiple \(\delta'\) of \(\delta\). Since \(\nu \cdot \lambda^\gamma\) is an admissible sequence, proposition 3.15 gives \(T(q) \geq \gamma\), but no information about \(\Gamma(q)\).

iii) Assume now \(\lambda_i \geq \nu_i\) \((i = 1, \ldots, r)\). Note first that \(\gamma^+(q) = \Gamma(q)\): either \(\lambda_i = \nu_i\) for \(i = 1, \ldots, r\) and the solutions \(\gamma^+ = \gamma^- = \gamma_0\) coincide, or \(\Gamma^+ = \gamma^+\) and \(\Gamma^- = \gamma^-\). Take now \(\eta > 0\) arbitrarily. Provided \(\mu\) is a C-SAMF lemma 3.9 and lemma 3.10 yield

\[
S_\delta(q) \delta^{-\gamma - \eta} \geq c_4 \sigma(q,a, b, \gamma, J_0) = c_0
\]

for all \(\delta > 0\). Hence \(\Gamma(q) \geq \gamma - \eta\) and the lower bound is also valid for \(\Gamma(q)\).

A similar argument applied to the case \(\lambda_i \geq \nu_i\) \((i = 1, \ldots, r)\).

3.3. GENERALIZED DIMENSIONS

3.3.2 Grid-Regularity

Of course, the value of \(T(q)\) is determined by the proposition above as soon as \(\Gamma^+(q) = T^+(q)\) and \(\Gamma^-(q) = T^-(q)\) are given. In the case of ordered SAMFs less assumptions give even the grid-regularity of \(T(q)\).

Corollary 3.2 Let \(\mu\) be a SAMF with \(\lambda_i \geq \nu_i\) \((i = 1, \ldots, r)\) and let \(q\) be a real number for which \(T^+(q)\) is grid-regular. If \(q < 0\) assume in addition that \(\mu\) is vertically centered. Then \(T(q)\) is grid-regular too and

\[
\sum_{i=1}^\infty \nu^i_{\lambda} \lambda_i^{-\gamma^+(q)} q^i = 1.
\]

For \(\lambda_i = \nu_i\) \((i = 1, \ldots, r)\), the formula for \(T(q)\) reduces to the earlier equation (2.22)

\[
\sum_{i=1}^\infty \nu^i_{\lambda} \lambda_i^{-\gamma^-(q)} q^i = 1.
\]

Proof Lemma 3.9 holds although \(\mu\) is only vertically centered. This is obvious since \(J_0^+ = J_0^+\). Moreover, \(\gamma^+(q) = \Gamma(q) = \gamma^+(q)\) and proposition 3.16 proves the claim.

Also the singularity exponents of an arbitrary SAMF are grid-regular, provided \(T^+(q)\) and \(T^-(q)\) are. Though this may not be surprising, the proof needs a new idea.

Theorem 3.3 Let \(\mu\) be an arbitrary SAMF. If \(q \geq 0\) is such that \(T^+(q)\) and \(T^-(q)\) are grid-regular, then \(T(q)\) is grid-regular too and

\[
T(q) = \Gamma(q).
\]

The assertion holds also for negative \(q\) provided the measure is centered.

Remark The condition \(\Gamma^+(q) = T^+(q)\) is certainly satisfied for SAMFs with self-similar projections.

Proof Take \(a \in \mathbb{R}\) as in the statement and set \(a = T^+(q), b = T^-(q)\) for short. The equality \(T = \Gamma\) is immediate. To prove the grid-regularity some preparation is needed.

i) First, let us prove a kind of monotonicity of \(\sigma\): if \(\sigma(q,a,b,\gamma, J_0) \leq 1\) and \(\gamma \leq a+b\), then

\[
\sigma(q,a,b,\gamma, J_0) \leq 1
\]

(3.23)

for all \(\delta > 0\). Recall the recursive construction of \(J_0\) (2.4) on page 34. The proof is by induction on this construction. For \(J(1) = I_1\) (3.23) is trivial. Assuming \(\sigma(q,a,b,\gamma, J(m)) \leq 1\) the same will be verified for \(J := J(m+1)\).

It is enough to know

\[
\sigma(q,a,b,\gamma, J(m)) \cdot \sigma(q,a,b,\gamma, J_0) \geq \sigma(q,a,b,\gamma, J).
\]
and therefore enough to know, that
\[\lambda^J \eta^J \sigma(q, a, b, \gamma, I) \geq \sum_{j \in J^+} \lambda^J \eta^J \sigma(q, a, b, \gamma, I) + \sum_{j \in J^-} \lambda^J \eta^J \sigma(q, a, b, \gamma, I), \]
for any \(j \in J(m)^+ \) and mutatis mutandis for \(j \in J(m)^- \). Set \(j = j \cdot k \) for short and pass through the possible cases:
\[\lambda_j > \eta_j, \quad \lambda_j \leq \eta_j, \quad \lambda_j < \eta_j. \]
Here \(y^{p} \cdot \eta^J \geq y^{p} \cdot \eta^J \) for \(y \geq x \) was used, and (3.23) is proven. Similarly
\[\sigma(q, a, b, \gamma, J) \geq 1 \]
for all \(\delta > 0 \) provided \(\sigma(q, a, b, \gamma, J) \geq 1 \) and \(\gamma \geq a + b \).

ii) To get an intuition note that any \(\gamma \) satisfying (3.23) must by proposition 3.15 resp. lemma 3.10 be greater or equal to \(\Gamma(q) \). However, it will even be proven \(\Gamma(q) = \lim \gamma(J) \), where \(\gamma(J) \) denotes the unique solution of
\[\sigma(q, a, b, \gamma, J) = 1. \]
This property of \(\gamma(J) \) will render an estimate of \(\sigma(q, a, b, \gamma, J) \) for all \(\delta \).

iii) Fix \(\delta > 0 \) for the moment and assume \(\gamma(J) \leq a + b \). Certainly
\[\mu^J = \sum_{j \in J^+} \mu_j = \sum_{j \in J^-} \mu_j = \mu, \]
again by the construction of \(J_\delta \). Let \(s := \# J_\delta \) and let \(j : \{1, \ldots, s\} \rightarrow J_\delta \)
\(l \rightarrow j(l) \) be an enumeration of \(J_\delta \). Furthermore set \(w_j := \mu_j \eta^J \) and \(p_j := \mu_j \eta^J \),
denote the relevant values of the associated multifractal
\[\mu^* := (w^1, \ldots, w^s; p^1, \ldots, p^s) \]
by \(\sigma^*, S^* \), \(T^* \) and so on. In particular \(I^* = \{1, \ldots, s\} \) corresponds to \(J_\delta \) and \(\sigma^*(q, a, b, \gamma, I^*) = \sigma(q, a, b, \gamma, J) \). On the other hand, \(\mu^* = \mu \) by the above invariance, which means that only a coarser IFS was chosen for the same multifractal. Thus all geometrical values coincide, e.g., \(S^*(q) = S(q), T^* = T, T^* = T \) and so on. Now apply (3.23), lemma 3.5 and lemma 3.6 to the coarser IFS. By definition of \(\gamma(J) \)
\[\sigma^*(q, a, b, \gamma(J), J^*) \leq 1 \]
for all \(\varepsilon > 0 \). Given \(\eta > 0 \), \(S^*(q) = \varepsilon \) is bounded from above independently of \(\varepsilon > 0 \). Thus \(T^*(q) \leq \gamma(J) + \eta \). Altogether
\[T(q) = T^*(q) \leq \gamma(J). \]
Mutatis mutandis the assumption \(\gamma(J) \geq a + b \) leads with lemma 3.5 resp. lemma 3.9 to
\[T(q) \geq \gamma(J). \]
iv) After all these preliminaries let us prove the assertion of the theorem. Take first the case \(\gamma(J) \leq a + b \). Then
\[\sigma(q, a, b, \gamma(J), J) \leq 1 \]
by (3.23) and, since \(\sigma \) is decreasing in \(\gamma \), \(\gamma(J) \leq \gamma(I) \leq a + b \). Consequently, \(T(q) \leq \gamma_{\text{sd}} := \inf_{\delta > 0} \gamma(J_\delta) \) by v). On the other hand,
\[\sigma(q, a, b, \gamma(J), J) \geq \gamma(J), \quad J \leq 1 \]
for all \(\delta > 0 \) and by lemma 3.5 resp. lemma 3.9 \(\Gamma(q) \geq \gamma_{\text{sd}} \). This yields indeed
\[\Gamma(q) = \Gamma(q) = \inf_{\delta > 0} \gamma(J_\delta). \]
v) If \(\gamma(J) \geq a + b \) then \(\Gamma(q) \geq \gamma_{\text{sd}} := \sup_{\delta > 0} \gamma(J_\delta) \) by v). With lemma 3.5 resp. lemma 3.6 and
\[\sigma(q, a, b, \gamma_{\text{sd}}, J) \leq \sigma(q, a, b, \gamma(J), J) \leq 1 \]
for all \(\delta > 0 \), which tends to \(T(q) \leq \gamma_{\text{sd}} \) and
\[\Gamma(q) = \Gamma(q) = \sup_{\delta > 0} \gamma(J_\delta). \]
\[\sigma^*(q, a, b, \gamma(J), J^*) \leq 1 \]
for all \(\varepsilon > 0 \). Given \(\eta > 0 \), \(S^*(q) = \varepsilon \) is bounded from above independently of \(\varepsilon > 0 \). Thus \(T^*(q) \leq \gamma(J) + \eta \). Altogether
\[T(q) = T^*(q) \leq \gamma(J). \]
Mutatis mutandis the assumption \(\gamma(J) \geq a + b \) leads with lemma 3.5 resp. lemma 3.9 to
\[T(q) \geq \gamma(J). \]

3.3. GENERALIZED DIMENSIONS

for all \(\varepsilon > 0 \). Given \(\eta > 0 \), \(S^*(q) = \varepsilon \) is bounded from above independently of \(\varepsilon > 0 \). Thus \(T^*(q) \leq \gamma(J) + \eta \). Altogether
\[T(q) = T^*(q) \leq \gamma(J). \]
Mutatis mutandis the assumption \(\gamma(J) \geq a + b \) leads with lemma 3.5 resp. lemma 3.9 to
\[T(q) \geq \gamma(J). \]

3.3.3 Differentiability

Let us turn to the question of differentiability. For ordered SAMFs the answer is readily given by corollary 3.2 and the implicit function theorem: the regularities of \(T^{(1)} \) resp. \(T^{(2)} \) carry over to \(\Gamma^\gamma(q) \) resp. \(\gamma^\gamma(q) \) and hence to \(T \).

For general SAMFs \(\gamma(q) \) has to be taken into account as well. Since \(\gamma(q) \) depends \(C^1 \) on \(q \), the only difficulty is at values \(q \) where \(\Gamma \) switches from one of the three candidates \(\Gamma^\gamma, \gamma^\gamma \) and \(\gamma_0 \) to another. In this context we can prove at least:

Proposition 3.17 If \(T^{(1)}(q) \) is differentiable in a neighbourhood of \(q_0 \), then \(\Gamma^\gamma(q) \) has the same property. Similar for \(T^{(2)} \) and \(\Gamma^{\gamma^\gamma} \).
Proof} Here, the dependence of χ (3.12) on q has to be expressed explicitly:

$$\chi(a, \gamma, q) := \sum_{i=1}^{r} p_i a^{\gamma} q^{-\alpha_i}.$$

For ordered SAMFs the assertion is obvious. Thus assume without loss of generality $\lambda_i < \nu_1$ and $\lambda_j > \nu_2$.

i) The pair of equations $\chi(a, \gamma, q) = 1$, $\chi(q, \gamma, q) = 0$ is uniquely solved by some (a_0, γ_0) depending on q, where a_0 is actually not of interest here. Since

$$\det \begin{pmatrix} \chi_{1,1} & \chi_{1,2} \\ \chi_{2,1} & \chi_{2,2} \end{pmatrix} = -\chi_{1,1} \chi_{2,2} > 0$$

at $(a, \gamma) = (a_0, \gamma_0)$, the solutions a_0 and γ_0 depend differentiably on q. Taking the implicit derivative of the first equation and observing $\chi_{,1} = 0$ yields

$$\frac{d}{dq} \gamma_0(q) = -\frac{\chi_{2,2}(a_0, \gamma_0, q)}{\chi_{2,1}(a_0, \gamma_0, q)}.$$ \hfill (3.24)

In particular $\gamma_0 \in C^1$.

ii) From $\chi(T^{(1)}(q), \gamma^+(q), q) \equiv 1$ and $\chi_{,2} > 0$ follows

$$\frac{d}{dq} \gamma^+(q) = -\frac{\chi_{2,2}(T^{(1)}(q), \gamma^+, q) + \chi_{1,1}(T^{(1)}(q), \gamma^+, q)}{\chi_{2,1}(T^{(1)}(q), \gamma^+, q)}.$$ \hfill (3.25)

So, $\gamma^+(q)$ is differentiable near q_0.

iii) Since $\chi_{,1}(T^{(1)}(q), \gamma^+, q)$ is a continuous function of q near q_0, a switch from $\gamma_0(q)$ to $\gamma^+(q)$ in the value of $\Gamma^+(q)$ is only possible at a zero of $\chi_{,1}$. But then $\gamma_{0}(q) = \gamma^+(q)$ by (3.19). Moreover, $a_0(q) = T^{(1)}(q)$ is easily verified, and the derivatives of γ_0 and γ^+ coincide by i) and ii).

iv) The argumentation for Γ^- is similar. \hfill \bigtriangleup

This proposition has consequences:

- The differentiability of $T^{(1)}$ and $T^{(2)}$ carries over to $\Gamma = \max(\Gamma^+, \Gamma^-)$ except at points where the maximum causes a wedge. This may only happen when $\gamma^+(q) = \gamma^-(q)$.

- With the possibility of wedges a completely new feature appears, which is not encountered among the singularity exponents of SMFs. This may have consequences for the search of models.

- There are IFS, i.e., multiplicative cascades, producing nondifferentiable singularity exponents, not only carefully constructed examples.

3.3. GENERALIZED DIMENSIONS

The section closes with an astonishing and satisfying result: At $q = 1$ one would expect a wedge, since $\gamma^+(1) = \gamma^-(1) = 0$. Nevertheless T is always differentiable at $q = 1$ and the interesting value D_1 can be given, provided that $T^{(1)}$ and $T^{(2)}$ are grid-regular and C^1 near 1.

Corollary 3.4 For any SAMF μ the following implications hold:

i) If $\sum_{i=1}^{r} p_i \log(\lambda_i/\nu_i) > 0$ and $T^{(1)}$ is grid-regular and C^1 near 1, then

$$D_1 = \frac{\sum_{i=1}^{r} p_i \log(p_i - D_1^{(1)} \log(\lambda_i/\nu_i))}{\sum_{i=1}^{r} p_i \log \nu_i}.$$

if $\sum_{i=1}^{r} p_i \log(\lambda_i/\nu_i) < 0$ and $T^{(2)}$ is grid-regular and C^1 near 1, then

$$D_1 = \frac{\sum_{i=1}^{r} p_i \log(p_i - D_1^{(2)} \log(\nu_i/\lambda_i))}{\sum_{i=1}^{r} p_i \log \lambda_i},$$

finally, if $\sum_{i=1}^{r} p_i \log(\lambda_i/\nu_i) = 0$ and $T^{(1)}$ and $T^{(2)}$ are grid-regular and C^1 near 1, then

$$D_1 = \frac{\sum_{i=1}^{r} p_i \log(p_i) - \sum_{i=1}^{r} p_i \log \lambda_i}{\sum_{i=1}^{r} p_i \log \nu_i}.$$ \hfill (3.26)

Proof}

i) Certainly $T^{(1)}(1) = T^{(2)}(1) = 0$, thus $\gamma^+(1) = \gamma^-(1) = 0$. Consequently, the conditions in the definitions of Γ^+ and Γ^- reduce to $\sum_{i} p_i \log(\lambda_i/\nu_i) \geq 0$ and $\sum_{i} p_i \log(\nu_i/\lambda_i) \leq 0$, respectively.

ii) Assume first that $\sum_{i} p_i \log(\lambda_i/\nu_i) > 0$ and that $T^{(1)}(q)$ is grid-regular and C^1 near 1. Then, for continuity reasons, $\Gamma(q) = \gamma^+(q) = \Gamma(q)$ near $q = 1$, since $\gamma_0 \leq \gamma^+$. With proposition 1.19 and (3.25)

$$D_1 = \frac{\sum_{i=1}^{r} p_i \log(p_i - D_1^{(1)} \log(\lambda_i/\nu_i))}{\sum_{i=1}^{r} p_i \log \nu_i}.$$ \hfill (3.26)

The case $\sum_{i} p_i \log(\lambda_i/\nu_i) < 0$ is obtained by interchanging λ_i with ν_i and replacing $T^{(1)}(q)$ by $T^{(2)}(q)$.

iii) At last assume that $\sum_{i} p_i \log(\lambda_i/\nu_i) = 0$ and that $T^{(1)}(q)$ and $T^{(2)}(q)$ are grid-regular and C^1 near 1. Unless $\lambda_i = \nu_i$ ($i = 1, \ldots, r$)—which is a trivial
Box and Hausdorff Dimension

In this section simple formulas for the special value \(D_0 = T(0) = d_{\text{max}}(K) \) and for the ‘almost sure’ Hausdorff dimension of \(K \) are provided. While only the general case is treated in this section, most explicit results in a slightly less general case are spotted in subsection 3.5.2. To give some history and also for later use the inspiring results of Douady et Oesterlé [DO] and Falconer [Falc3] are stated first.

The main result in [Falc3] can be summarized as follows: Given a linear transformation \(S \) on \(IR^d \) with singular values \(\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_d \), the singular value function \(\phi^\gamma \) is for positive \(\gamma \) defined by

\[
\phi^\gamma(S) = \left\{ \begin{array}{ll}
\alpha_1 \cdots \alpha_{d-\gamma+1} & \text{if } \gamma \leq d, \\
\alpha_1 \cdots \alpha_d & \text{otherwise},
\end{array} \right.
\]

where \(\gamma = \lceil \gamma \rceil \). For a family \(S_1, \ldots, S_r \) of contractive linear transformations on \(IR^d \) let \(\Delta = \Delta(S_1, \ldots, S_r) \) be the unique \(\Delta > 0 \) such that

\[
\lim_{n \to \infty} \left(\sum_{i=1}^{n} \phi^\gamma(S_i) \right)^{1/n} = 1.
\]

Theorem 3.5 (Falconer) Assume that \(|S_i| < 1/3 \) for \(i = 1, \ldots, r \). Then, the unique nonempty invariant compact set

\[
K = \bigcup_{i=1}^{r} \left(S_i(K) + a_i = (S_i(\cdot) + a_i) \right)
\]

has the dimension

\[
d_{\text{HD}}(K) = d_{\text{max}}(K) = \min \{ d, \Delta(S_1, \ldots, S_r) \}
\]

for almost all \((a_1, \ldots, a_r) \in IR^{rd} \) in the sense of \(d \)-dimensional Lebesgue measure.

Remark If \(|S_i| < 1/3 \) is not satisfied replace \((S_1, \ldots, S_r) \) by \((S_i : |S_i| = n) \) where \(n \) is chosen so that \(|S_i| < 1/3 \) for \(i \in \mathbb{N} \). Since \(\Delta(S_1, \ldots, S_r) = \Delta \{ (S_i : |S_i| = n) \} \) and \(K \) is as well invariant under \(\{ S_i : |S_i| = n \} \) the dimension of \(K \) is still given as in the theorem, but for almost all parameters \(a \in IR^{rd} \) in the sense of \(d \)-dimensional Lebesgue measure.

It is quite easy to see that \(\Delta(S_1, \ldots, S_r) \) is the limit of the sequence \(\Delta_n \) defined through

\[
\sum_{i=1}^{n} \phi^\gamma(S_i) = 1.
\]

Moreover, [Falc3] actually proves that these numbers \(\Delta_n \) bound \(d_{\text{max}}(K) \) from above. (This was already detected in [DO] in a slightly different context.) A comparable situation is found in our theorem 3.3 iii), where the numbers \(\gamma(J_0) \) bound \(T(q) \), and where \(T(q) = \lim \gamma(J_0) \).

As this relation suggests, the value \(\Delta \) can be computed in a similar way as \(\Gamma \). To this end,

\[
\varphi(\gamma) = \begin{cases}
\lambda_i^{\gamma} & \text{if } 0 \leq \gamma \leq 1, \\
(\lambda_i)\lambda_i^{-\gamma} & \text{if } 1 < \gamma \leq 2, \\
(\lambda_i)\lambda_i^{-\gamma} & \text{if } 2 < \gamma.
\end{cases}
\]

Theorem 3.6 (Value of \(\Delta \)) Let \(S_i(x,y) = (d_1x, d_2y) \) in the linear parts of a set of diagonal affine contractions as in (3.1). Then

\[
\Delta(S_1, \ldots, S_r) = \max(\Delta^+, \Delta^-),
\]

where \(\Delta^+ \) and \(\Delta^- \) are uniquely defined by

\[
\sum_{i=1}^{r} \varphi(\gamma) = 1 \quad \text{resp.} \quad \sum_{i=1}^{r} \theta(\gamma) = 1.
\]

In particular, if \(\lambda_i > \nu_i \) for \(i = 1, \ldots, r \), then \(\Delta = \Delta^+ \).

Remark For the actual Hausdorff dimension of certain SAMP see (3.28) on p. 104.

Proof We proceed in a similar manner as in section 3.2.

o) First, if \(\Delta^+ \geq 2 \), then \(\sum \lambda_i \nu_i \geq 1 \), \(\Delta^+ = \Delta^- \) and \(\sum_{i=1}^{r} \phi^\gamma(S_i) = 1 \) for all \(n \).

Thus assume \(\Delta^+ < 2 \) for the remainder.

i) By definition, \(\varphi^\gamma(S) \) equals \(\varphi(\gamma) = \lambda_i^{\gamma} \) if \(\lambda_i > \nu_i \) resp. \(\theta(\gamma) = \lambda_i^{-\gamma} \) if \(\lambda_i \leq \nu_i \). For fixed \(\gamma \) define a probability space \((I_n, \mathcal{B}, P^*) \) where \(P^* \) is the product measure on \(\mathcal{B} \) induced by the measures

\[
\{ \gamma \} \mapsto \sum_{i=1}^{r} \varphi(\gamma),
\]

on the factors \(\{1, \ldots, r\} \) of \(I_n \). Remind \(\log(\lambda_i/\nu_i) \). The random variables

\[
X_n : I_n \to \mathbb{R}, \quad x_n \mapsto \log(\lambda_i/\nu_i)
\]

are independent and identically distributed, and their common expectation amounts
Defining a product measure P^\ast and random variables Y_n the same way but with θ replacing φ and $c_i = -c_i$ replacing c_i, yields for fixed γ

$$\sum_{i \in \mathbb{Z}} \varphi_i(S_i) = \sum_{i \in \mathbb{Z}} \varphi_\ast(i) + \sum_{i \in \mathbb{Z}} \theta_i(\gamma) =$$

$$\left(\sum_{i \in \mathbb{Z}} \varphi_i(\gamma)\right)\overline{P^\ast}[X_1 + \ldots + X_n > 0] + \left(\sum_{i \in \mathbb{Z}} \theta_i(\gamma)\right)\overline{P^\ast}[Y_1 + \ldots + Y_n \geq 0]$$

(compare lemma 3.12). The way to proceed now is: assume first that $\Delta^+ \geq \Delta^-$. Then $E_{\Delta^+}[X_n] \geq 0$ by ii) below. Since the positive function $\theta_i(\gamma)$ is monotonous, one finds

$$\overline{P^\ast}[X_1 + \ldots + X_n > 0] \leq \left(\sum_{i \in \mathbb{Z}} \varphi_\ast(i)\right)^{\frac{1}{n}} \leq \mathbb{E}_\gamma^X,$$

thus $\Delta^+ = \Delta(S_1, \ldots, S_n)$ by the Central Limit Theorem. Similar considerations yield $\Delta^- = \Delta(S_1, \ldots, S_n)$, provided $\Delta^- \geq \Delta^+$.

ii) Assume $E_{\Delta^+}[X_n] < 0$. The claim is $\Delta^+ < \Delta^-$. For the proof a `hidden' variable a has to be introduced. Therefore, modify (3.12) to

$$\chi(a, \gamma) = \sum_{i \in \mathbb{Z}} \lambda_i^n \nu_i(a)^{\gamma_i},$$

Different cases are considered.

1. $0 < \Delta^+ \leq 1$: then $\Delta^- \leq 1$ may be assumed. By assumption

$$E_{\Delta^-}[X_n] = \frac{\chi(a, \Delta^-)}{\chi(a, \Delta^+)} > 0,$$

and by concavity $\chi(a, \Delta^-) < 0$ for all $a \leq \Delta^+$. So

$$\chi(0, \Delta^-) > \chi(\Delta^+, \Delta^-) = \sum_{i \in \mathbb{Z}} \nu_i^{\Delta^+} = 1 - \sum_{i \in \mathbb{Z}} \nu_i^{\Delta^-} = \chi(0, \Delta^-)$$

and $\Delta^+ < \Delta^-$. 2. $1 < \Delta^+ < 2$: this time the expectation $E_{\Delta^+}[X_n]$ has the same sign as $\chi(1, \Delta^+)$, so $\chi(a, \Delta^-) < 0$ for all $a \leq \Delta^-$. Assume first $\Delta^- \geq 1$. Then

$$\chi(0, \Delta^-) > \chi(1, \Delta^-) = \sum_{i \in \mathbb{Z}} \nu_i^{\Delta^-} = 1 - \sum_{i \in \mathbb{Z}} \nu_i^{\Delta^-} = \chi(0, \Delta^-)$$

and $\Delta^+ < \Delta^-$, which is actually a contradiction. If $\Delta^- \geq 2$ there is nothing to prove. So assume finally $1 < \Delta^- < 2$. Then

$$\chi(\Delta^+, \Delta^-) > \chi(1, \Delta^-) = 1 = \sum_{i \in \mathbb{Z}} \nu_i \lambda_i^{\Delta^-} = \chi(\Delta^+, \Delta^-)$$

and again $\Delta^+ < \Delta^-$. 3.4. **Box and Hausdorff Dimension**

Theorem 3.7 Let μ be a SAMF with support K and assume that $D^{(i)}=d_{min}(K^{(i)})$ exists for $k = 1, 2$. Then

$$d_{min}(K) = \max(d^+, d^-)$$

where d^+ and d^- are defined through

$$\sum_{i=1}^{\infty} \lambda Y^{(i)} \nu_i^{d^+ - D^{(i)}} = 1 \quad \text{resp.} \quad \sum_{i=1}^{\infty} \nu_i X^{(i)} \lambda_i^{d^- - D^{(i)}} = 1.$$

In particular, if $\lambda_i \geq \nu_i (i = 1, \ldots, r)$, then $d_{min}(K) = d^+$.

This formula covers results from [GL] and [Mu]. The following lemma allows an easier handling of Γ. For SAMFs it is not needed since then $\gamma^\ast = \gamma = \Gamma$ for all q.

Lemma 3.18 Assume that not all $c_i = 0$, i.e. μ is not a SMF. For convenience write $a = T^{(i)}(q), b = T^{(i)}(q), \gamma^+ = \gamma^{-}(q), \gamma^{-} = \gamma^{-}(q)$ and $\Gamma = \Gamma(q)$. Then,

$$\gamma^+ \leq a + b \Leftrightarrow \gamma^{-} \leq a + b \Leftrightarrow \Gamma = \max(\gamma^+, \gamma^{-}) \Leftrightarrow \gamma \ast \leq a + b.$$

Proof The functions χ and ψ from section 3.2 will be in use.

i) Assume first that $\gamma^+ < a + b$. Then

$$\sum_{i=1}^{\infty} \lambda Y^{(i)} \nu_i^{d^+ - \gamma^{-}} = 1$$

and hence $\gamma^+ < a + b$. Similarly $\gamma^+ > a + b$ if $\gamma^+ > a + b$. This shows the first equivalence.

ii) Next the easy case $\gamma^+ = \gamma^+ = a + b$ is treated; by direct computation $\chi(a + b) = \psi(a + b)$ and so at least one of them is greater or equal to zero. This yields: $\Gamma^+ = \gamma^+$ or $\Gamma^- = \gamma^-$. Thus $\Gamma = a + b$, what was to show.
iii) Now take the case $\gamma^+ = a + b$ and $\gamma^- = a + b$. As will be shown at once, $\gamma^+ \geq \gamma^-$ implies $\chi_i(a, \gamma^+) \geq 0$ and so $\gamma^+ = \Gamma^+ = \Gamma$. The symmetric argument for the case $\gamma^+ \leq \gamma^-$ yields indeed $\Gamma = \max(\gamma^+, \gamma^-)$ as desired. The proof is by contradiction and resembles the one in theorem 3.6: assume $\chi_j(a, \gamma^+) < 0$. Then $\chi_i(x, \gamma^+) < 0$ for all $x \leq a$ by convexity and

$$
\chi(\gamma^+ - b, \gamma^-) > \chi(a, \gamma^+) = 1 = \psi(b, \gamma^-) = \chi(\gamma^+ - b, \gamma^-).
$$

The monotonicity of χ in the variable γ yields $\gamma^+ < \gamma^-$.

iv) Next take the case $\gamma^+ > a + b$ and $\gamma^- > a + b$. Now the aim is to show that Γ cannot exceed $\max(\gamma^+, \gamma^-)$. (This is not true for SFMs.) The idea is to prove that $\gamma^+ \geq \gamma^-$ implies $\chi_i(a, \gamma^+ < 0$, and so $\Gamma^+ = \gamma_0 < \gamma^+$ by (3.19). So assume $\chi_i(a, \gamma^+) < 0$. Strict convexity implies $\chi_j(a, \gamma^+) > 0$ for all $x > a$, $\chi(\gamma^+ - b, \gamma^-) > (a, \gamma^+) = 1 = \gamma(\gamma^+ - b, \gamma^-)$ and indeed $\gamma^+ < \gamma^-$. This means in particular that if $\gamma^+ = \gamma^-$ then $\gamma_0 = \gamma_0$.

v) It remains to show that $\gamma^+ > a + b$, $\chi_i(a, \gamma^+) < 0$ and $\psi_j(b, \gamma^-) < 0$ imply $\gamma_0 > a + b$. Assume the contrary, i.e. $\gamma_0 \leq a + b < \min(\gamma^+, \gamma^-)$. By lemma 3.14 ii) $\chi_j(a, \gamma^+)$ and $\psi_j(b, \gamma^-)$ have no zero in $[\gamma_0, \min(\gamma^+, \gamma^-)]$. Hence $0 \chi_i(a, a + b) = -\psi_j(b, a + b) > 0$ which is impossible.

Proof of the Theorem. In the case of a SFM it is enough to refer to (2.13). For a SAMF corollary 2.1 and theorem 3.3 imply $d_{\text{Sam}}(K) = T(0) = T(0)$. Of course $d^+ = \gamma^+(0)$, $d^- = \gamma^-(0)$. By lemma 3.18 it is enough to show $T(0) \leq T(0) + T(0) + T(0)$, i.e. $d_{\text{Sam}}(K) \leq D^+ + D^-$. But this is immediate since K is a subset of $K(K)$. For general q, however, there is no a-priori inequality between $T(0)$ and $T(0) + T(0)$ (see Ex. 3.2). Finally use corollary 3.2.

The theorems 3.2.5, 3.6 and 3.7 turn to the following considerations concerning the box dimension of self-affine sets: let $w_i(x, y) = S_i(x, y) + (u_i, v_i)$ be diagonal affine contractions (3.1) and K their invariant compact set. For simplicity assume in theorem 1 that $\| S_i \| < 1/3$. The projections $K^{(i)}$ are invariant under the IFS $\{w_i^{(i)}\} \ldots \{w_i^{(i)}\}$ by lemma 3.3 and Falconer’s theorem can be applied.

- When $\sum \lambda_i \leq 1$ then $d_{\text{Sam}}((K)) = \Delta^*$ for almost all $(u_1, \ldots, u_s) \in \mathbb{R}^s$. If the latter holds then $\Delta^* = \Delta^*$. If, in addition, $\Delta^* \leq \Delta^*$, e.g. if $\lambda_i \geq \nu_i$ ($i = 1, \ldots, r$), it may be concluded with no further assumption that $d_{\text{Sam}}(K) = d_{\text{Sam}}(K) = \Delta(S_1, \ldots, S_s) = d_{\text{Sam}}(K^{(i)})$ since $d_{\text{Sam}}(K) \geq d_{\text{Sam}}(K^{(i)})$ and $d_{\text{Sam}}(K) \leq \Delta$.

- If $\sum \lambda_i \geq 1$ and $\sum \nu_i \geq 1$ then $d_{\text{Sam}}(K^{(i)}) = 1$ for almost all $(u_1, \ldots, u_s) \in \mathbb{R}^s$ and almost all $(v_1, \ldots, u_n) \in \mathbb{R}^n$. As before $\Delta^* = \Delta^*$ and $\Delta^* = \Delta^*$, and assuming the existence of a round open set one finds $d_{\text{Sam}}(K) = \Delta(S_1, \ldots, S_s)$.

3.5 Centered Self-Affine Multifractals

Thus, the condition in proposition 4 in [Fal5] can considerably be weakened in the case of diagonal affinities. This is of course a consequence of the common invariant subspaces of the maps w_i.

Finally, two recent results should be mentioned. First, Falconer [Fal5] provides a lower bound $d_{\text{Sam}}(K)$ of the Hausdorff dimension of self-affine sets. Using the notation in theorem 3.2 this bound holds for all $(u_1, \ldots, u_s) \in \mathbb{R}^s$ such that the images $w_i(K)$ are mutually disjoint. As examples show, d_{Sam} can be quite close to the upper bound Δ of the box dimension. On the other hand, since d_{Sam} as well as Δ do not depend on the translations u_i, they must cover the worst cases and cannot be expected to be equal. A tedious but straightforward analysis of diagonal affinities gives an explicit formula for d_{Sam} and reveals indeed, that $d_{\text{Sam}} < \Delta$ unless all $\lambda_i = \nu_i$. Secondly, Carmona et al [Car] give explicit formulas for the exact Hausdorff and box dimensions of certain self-affine sets in the plane, which form a class of supports of SAMFs. Their result on the box dimension agrees with ours.

3.5.1 Numerical Calculation

Provided the projections $\mu(i)$ and $\mu(i)$ of μ are self-similar, their singularity exponents are grid-regular and can be determined by solving implicit equations. Consequently, the exponents of a C-SAMF can be calculated and plotted by a computer.

For the moment assume only that $w_i^{(k)}(O) \cap w_j^{(k)}(O) \neq \emptyset$ implies $w_i^{(k)} = w_j^{(k)}$ ($k = 1, 2$). Denote by s resp. t the number of distinct maps w_i resp. w_j. Let $\{w_i^{(k)} \ldots w_j^{(k)}\}$ be an enumeration of $\{w_i^{(k)} \ldots w_j^{(k)}\}$ and let $\{w_i^{(k)} \ldots w_j^{(k)}\}$ be the same for $\{w_i^{(k)} \ldots w_j^{(k)}\}$. Furthermore, set

$$
p_i^{(k)} := \sum_{j: w_j^{(k)}=w_i} p_j, \quad \lambda_i^{(k)} := \text{Lip}(w_i^{(k)}) \quad (i = 1, \ldots, s)
$$

and

$$
p_j^{(k)} := \sum_{i: w_i^{(k)}=w_j} p_j, \quad \nu_i^{(k)} := \text{Lip}(w_i^{(k)}) \quad (i = 1, \ldots, t).
$$

Thus, follows from lemma 3.3.

\[\mu(x) = \sum_{j=1}^{c} \mu_j(x)^{\gamma_j} \]

what can be expressed as

\[\mu(x) = \langle w_1, \ldots, w_n \rangle. \]

By assumption the interval \([0, 1]\) is a basic open set for \((w_1, \ldots, w_n)\) as well as for \((w_1, \ldots, w_1)\) on the respective axis. Thus the projections of the measure are in fact self-similar. Corollary 2.5 with \(d = 1\) yields the grid-regular \(T^{(1)}(q)\):

\[\sum_{j=1}^{c} (p_j)^{T^{(1)}(q)} \alpha_j = 1 \quad \text{and} \quad \sum_{j=1}^{c} (p_j)^{T^{(1)}(q)} \alpha_j = 1. \]

In particular, theorem 3.3 applies for all \(q\). The three candidates \(\gamma_1, \gamma_2, \gamma_3\) can, therefore, be numerically determined as well as the relevant conditions, to obtain \(\Gamma\). To this end some remarks: it may be helpful to use the variable \(e^{\gamma q}\) rather than \(\gamma p\), translating the transcendent equation into a polynomial one. Moreover, the calculation of \(\gamma_0\) as well as some tests to determine \(\Gamma\) can often be avoided due to lemma 3.18.

Finally, if it comes to compute \(\gamma_0\), note for good first approximations of the solution \((\alpha_0, \beta_0, \gamma_0)\) of (3.18) that

\[T^{(1)}(q) \leq 0 \leq \min(\gamma, \gamma^+). \]

Example 3.1 (A General C-SAMF) Take

\[w_1(x, y) = (x^2 + 1, y^2) \quad w_2(x, y) = (-x + 1, y^2) \quad w_3(x, y) = (x^2 + 1, y^2 + 1) \]

with the round open set \([0, 1]^2\) (see Fig. 3.7). The projections \(K^i\) are then self-similar. To establish a corresponding SAMF as centered, one has to consider the coarser IFS \(w_{ij}\), with \(ij \in \{1, \ldots, 4\}^2\) and to observe that \(w_2\) reverses the orientation on the \(x^1\)-axis.

Choose first the probabilities \(p_1 = 1/5, p_2 = 4/5, p_3 = 2/5\) and \(p_4 = 2/5\). Then, a numerical evaluation shows that \(\Gamma = \gamma^+\) for all \(q\). \(D_{\infty} = 1.096, D_0 = 1.309, D_1 = 1.287, D_{\infty} = 1.636\) and \(F(D_{\infty}) = F(D_{\infty}) = 0\) (see Fig. 3.8).

Figure 3.8: Example 3.1 with \(p_1 = 1/5, p_2 = 4/5, p_3 = 2/5\) and \(p_4 = 2/5\). Generalized dimensions and spectrum, the latter obtained as a parametric plot (122) with \(-35 \leq q \leq 35\). Note the slow convergence of \(D_{\infty}\) to \(D_{\infty}\). In particular compare \(D_{\infty} = 1.138\) with \(-\Gamma(35) = 1.108\).

Figure 3.9: On the left the generalized dimensions and on the right the spectrum of example 3.1 with \(p_1 = p_2 = p_3 = p_4 = 1/4\). Note how the concavity of the spectrum is disturbed but not destroyed.

Choosing then the probabilities all equal to \(1/4\) results in \(\Gamma = \gamma^+\) for \(q < 1.838\) and \(\Gamma = \gamma^+\) otherwise, in particular \(\Gamma = \Gamma^+\) on all of \(\mathbb{R}\). Furthermore, \(D_{\infty} = 1, D_0 = 1.245, D_{\infty} = 1.728, F(D_{\infty}) = 1/2\) and \(F(D_{\infty}) = 0\) (see Fig. 3.9).

Thus, \(\Gamma\) is in both cases continuously differentiable, and consequently the spectrum
is in fact grid-regular. Note how in the second choice of \(p_i \) the change of \(\Gamma \) from \(\gamma^* \) to \(\gamma_0 \) disturbs the concavity of \(F \), but does not destroy it.

3.5.2 Carpets and Subsets of Given Local H"older Exponent

To present a first special kind of SAMFs consider a (fixed) IFS of diagonal affine contractions having the following three properties: \(K^{(1)} \) is self-similar, \(\lambda_i > \nu_i \) for \(i = 1, \ldots, r \), and \([0,1]^2\) is a basic open set. Denote by \(\mu(p) \) the corresponding SAMF with probability vector \(p \). Then, the invariant set \(K = \text{supp}(\mu(p)) \) does not depend on \(p \) and the information dimension \(D_1(p) \) of \(\mu(p) \) is provided by corollaries 3.4 and 2.7.

Theorem 3.8 (Gatzouras, Lalley [GL]) With the notation from above:

\[
\delta_{\text{in}(\mu(p))} = D_1(p)
\]

Moreover,

\[
\delta = \delta_{\text{in}(\mu)} = \delta_{\text{in}(\mu(p))} \iff 0 < m(K) < \infty \implies \sum_{j=1}^s \nu_j^{D_1^{(j)}} = 1 \quad (i = 1, \ldots, s)
\]

Our contribution are the singularity exponents, in particular \(d_{\text{in}}(K) \) which agrees with the value found in [GL] (see theorem 3.7). Explicit formulas for \(T(q) \) are obtained under almost the same conditions as above, i.e. provided the underlying IFS has the following two properties: \(K^{(1)} \) is self-similar and \(\lambda = \lambda > \nu = \nu_1 \) (i = 1, \ldots, r). For convenience we will address the corresponding multifractals as *carpets*.

Corollary 3.9 (Carpets) Let \(\mu \) be a carpet. If \(q < 0 \) assume in addition that \(\mu \) is vertically centered. Then \(T(q) \) is grid-regular and, with the notation of (3.26),

\[
T(q) = \left(\frac{1}{\log \nu} - \frac{1}{\log \lambda} \right) \log \left(\sum_{j=1}^s (p_j)^q \right) = \frac{1}{\log \nu} \log \left(\sum_{j=1}^s (p_j)^q \right).
\]

Proof Apply corollary 3.2 and use that \(\mu^{(1)} \) is self-similar (3.26).

There is a number of notable values of \(D_0 \). With (3.26), the box dimension of a carpet is

\[
D_0 = d_{\text{in}}(K) = \frac{\log s}{\log(1/\lambda)} + \frac{\log(\gamma/\lambda)}{\log(1/\nu)}.
\]

This formula was already found by McMullen [Mu] and Bedford [Bed1] for a special kind of carpets, the so-called generalized Sierpiński carpets.

3.5. CENTERED SELF-AFFINE MULTIFRACTALS

Furthermore, we take the chance having explicit formulas for a study of the most probable resp. most rarefied points. By straightforward calculation \((t_0 = \nu)\):

\[
D_{\nu} = \left(\frac{1}{\log \lambda} - \frac{1}{\log \nu} \right) \log \left(\frac{\max(p_i, \ldots, p_s)}{\nu} \right) + \frac{1}{\log \nu} \log \left(\frac{\max(p_i, \ldots, p_s)}{\nu} \right)
\]

\[
D_{\nu} = \left(\frac{1}{\log \lambda} - \frac{1}{\log \nu} \right) \log \left(\frac{\min(p_i, \ldots, p_s)}{\nu} \right) + \frac{1}{\log \nu} \log \left(\frac{\min(p_i, \ldots, p_s)}{\nu} \right).
\]

and

\[
F(D_{\nu}) = \left(\frac{1}{\log \lambda} - \frac{1}{\log \nu} \right) \log \left(\frac{\nu}{\nu} \right) - \frac{1}{\log \nu} \log \left(\frac{\nu}{\nu} \right)
\]

\[
F(D_{\nu}) = \left(\frac{1}{\log \lambda} - \frac{1}{\log \nu} \right) \log \left(\frac{\nu}{\nu} \right) - \frac{1}{\log \nu} \log \left(\frac{\nu}{\nu} \right)
\]

where \(u^{+} \) resp. \(v^{+} \) denote the number of maximal resp. minimal \(p_i^{(1)} \).

In order to give a heuristic argument consider a cylindrical set \(\bigcup_i \mathcal{J}_i \). This is essentially a \(\lambda \nu \nu \) rectangle and can be subdivided into squares of side \(\delta \). The \(h \)-th square, counting according to the orientation induced by \(u_1 \), has the measure \(p_i^{(1)}(\delta^{(1)})^h = \frac{\nu}{\lambda} p_i^{(1)}(\delta^{(1)})^h \). But \(\mu^{(1)} \) is a SMF, thus \(D_{\nu} = \min \log(p_i^{(1)}/\log \lambda) \) and the \(\mu^{(1)} \)-measure of an \(\epsilon \)-box on \(\mathbb{R} \) amounts at the most \(\epsilon^{D_{\nu}} \), i.e. when the box coincides with some \(\delta \cdot \bigcup_i \mathcal{J}_i \). Thus, \(\mu^{(1)} \)-measure of an \(\delta \cdot \bigcup_i \mathcal{J}_i \) can be seen that the measure of a \(\delta \cdot \bigcup_i \mathcal{J}_i \) contained in \(\mathcal{J}_i \) amounts at the most

\[
D_{\nu}(\bigcup_i \mathcal{J}_i) = \frac{1}{\log \lambda} \nu^{(1)} - \frac{1}{\log \nu} \nu^{(1)}
\]

The number of such squares is approximately \((\lambda \nu \nu)^{(1)} \) where \(F^{(1)} := F^{(1)}(D_{\nu}) \).

Thus, taking the squares for \(\delta \cdot \bigcup_i \mathcal{J}_i \) boxes, \(\mu(\bigcup_i \mathcal{J}_i) = \delta \cdot \bigcup_i \mathcal{J}_i \) is only possible if

\[
p_i = \lambda^{D_{\nu}} \nu^{(1)} \nu^{D_{\nu}} = D_{\nu} \quad (3.30)
\]

holds, where \(i \) passes through all letters \(\mathcal{J}_{i} \). Otherwise, i.e. if (3.30) would not hold for all \(\mathcal{J}_{i} \), there had to exist a letter \(l \) with \(p_l \) greater than the right-hand side of (3.30). Considering the squares in \(\bigcup_i \mathcal{J}_i \) for \(i = l \cdots l \) reveals that \(D_{\nu} \) would not be the smallest Hölder exponent in contradiction to theorem 12. Consequently

\[
\frac{\log \#(B \in G_{\nu} : \mu(B) = \delta \cdot \bigcup_i \mathcal{J}_i)}{\log \delta_0} = \gamma
\]

where

\[
\sum_{i} \lambda^{D_{\nu}} \nu^{(1)} \nu^{D_{\nu}} = 1,
\]
the sum being taken over all i satisfying (3.30). Though the argumentation is not rigorous in general, it is certainly exact for carpets with $\log w_i/\log \lambda = \text{const} \in \mathbb{Q}$, choosing δ_i to be a convenient power of ν. Similar for $-\infty$.

Often $\gamma = F(D_{\infty})$ is the solution of (3.32). Although (3.31) gives then a satisfactory interpretation of $F(D_{\infty})$, it is important to note the following:

- The assumption that the measure is ordered was essentially used to derive a simple formula for γ. For an ordered C-SAMFs see examples 3.3 and 3.6.
- The equation (3.31) describes merely a fact concerning numbers of boxes with particular properties. It says nothing about the dimension of a set whatsoever.

Compare with example 3.3.

Now let us check the formulas for carpets. Straightforward calculation yields $D_{w_i}^{(1)} = \log(\max(p_i^+))/\log \lambda$ and $F^{(1)} = -\log w^+/\log \lambda$, and thus indeed

$$\lambda^{D_{w_i}^{(1)}}_{\mu_i} = \max(p_i)$$

and

$$\lambda^{F^{(1)}} = \max(F) / \max(w) = 1/\nu$$

for all i. So (3.30) chooses all maximal probabilities p_i and (3.32) is indeed satisfied by $\gamma = F(D_{\infty})$. Provided the maps w_i with the maximal probabilities are arranged in the w^+ columns corresponding to the maximal p_i^+, then their invariant set $K' = \langle w_1, \ldots, w_n \rangle$ may fairly be called the set of most probable points. Moreover, its box dimension is just $F(D_{\infty})$ due to (3.29). The similar holds replacing ∞ by $-\infty$.

However, if the maps are arranged in a different manner it is not as simple to give the densest parts of μ. So the interpretation of $F(\alpha)$ as the dimension of subsets K_α with focal Hölder exponent α (compare Ex. 2.10) has to be carried out cautiously. On the other hand, it has to be referred to α. There it is proven that under restricted circumstances $F(\alpha)$ equals indeed the Hausdorff dimension of K_α ‘almost surely’ in the sense of theorem 3.5.

Example 3.2 (Three Carpets)

Take $w_i(x,y) = (x/3,y/4) + (u_i,v_i)$ ($i = 1, \ldots, 6$)

with the following entries (u_i,v_i) in rising order

$$(0,0) \quad (2/3,1/4) \quad (0,2/4) \quad (2/3,2/4) \quad (0,3/4) \quad (2/3,3/4).$$

The IFS is centered with respect to the open set $O' = [1/2,3/2] \times [0,1]$ (see Fig. 3.10). Choosing $p_1 = p_2 = 1/4$, $p_3 = p_4 = 1/5$, $p_5 = 1/6$, $p_6 = 1/7$ gives $D^{(1)} = 1/2, p_7 = 1/4,\ D^{(2)} = 1$.

$$T(q) = \frac{\log 2}{\log 3} - \frac{1}{\nu}(1-q) + \frac{1}{\log 4} \log \left(2^{-3a} + 2^{-a}\right).$$

Hence:

- Although $\mu^{(1)}$ and $\mu^{(2)}$ are both homogeneous μ is not (see Fig. 3.11).

Figure 3.10: The construction of the three carpets of example 3.2. The IFS on the left is centered with respect to the round open set $[1/2,3/2] \times [0,1]$, the others as usual with respect to the unit square.

Figure 3.11: On the left the generalized dimensions and on the right the spectrum of the first carpet appearing in example 3.2.

A different choice of probabilities p_i shows that there is a priori no inequality between $T(q)$ and $T^{(1)}(q) + T^{(2)}(q)$ unless $q = 0$ (compare theorem 3.7). Corollary 3.9 may be rewritten as

$$T(q) = T^{(1)}(q) + T^{(2)}(q) + \frac{\log \left(\sum_{i=1}^n (p_i^{1/4} + \sum_{j=5}^n (p_j^{1/4})^{1/4}\right)}{\log \nu}$$

Taking w_i as above but with the following entries (u_i,v_i) in rising order

$$(1/3,0) \quad (1/3,1/4) \quad (0,2/4) \quad (1/3,2/4) \quad (2/3,2/4) \quad (1/3,3/4)$$

and with $p_1 = 1/20, p_2 = 1/5, p_3 = 1/4, p_4 = 1/5, p_5 = 1/30, p_6 = 1/5$ one obtains $T(q) < T^{(1)}(q) + T^{(2)}(q)$ for large $|q|$. Finally taking $p_1 = p_2 = p_6 = 0$ (i.e., omitting the corresponding maps) and $p_3 = 1/3, p_4 = 1/9$ and $p_5 = 5/9$ leads to $T(q) > T^{(1)}(q) + T^{(2)}(q)$ for large $|q|$. Thus
The only a priori inequality between $T(q)$ and $T^{(1)}(q) + T^{(2)}(q)$ is at $q = 0$.

3.5.3 Products

The C-SAMFs of the second special type are not necessarily ordered but still possess a simple expression for their generalized dimensions and their spectrum: the product of two self-similar multifractals on \mathbb{R}. Such measures are considered in \mathbb{Z}.

Corollary 3.10 (Product Measures)

Let $\mu^{(1)} := (w_{1}^{(1)}, \ldots, w_{s}^{(1)}, p_{1}^{(1)}, \ldots, p_{s}^{(1)})$ be two given SMFs on \mathbb{R}. Define

$$w_{ij}(x, y) := (w_{i}^{(1)}(x), w_{j}^{(2)}(y)) \quad p_{ij} := p_{i}^{(1)} p_{j}^{(2)}$$

for all pairs $(ij) \in \{1, \ldots, s\} \times \{1, \ldots, t\} \sim \{1, \ldots, r\}$. Then

$$\mu := (w_{ij}^{(1)}, \ldots, w_{ij}^{(s)}, p_{ij}^{(1)}, \ldots, p_{ij}^{(s)})$$

is the product measure of $\mu^{(1)}$ and $\mu^{(2)}$. Moreover, μ is a C-SAMF, $\mu^{(1)} = \mu^{(1)}$, $\mu^{(2)} = \mu^{(2)}$, $T(q) = T^{(1)}(q) + T^{(2)}(q)$, $D_{q} = D_{q}^{(1)} + D_{q}^{(2)}$ and

$$F(\alpha^{(1)} + \alpha^{(2)}) = F^{(1)}(\alpha^{(1)}) + F^{(2)}(\alpha^{(2)})$$

for $\alpha^{(1)} = -(T^{(1)})'(q)$. Finally note that T and F are grid-regular.

Remark The relation $T(q) = T^{(1)}(q) + T^{(2)}(q)$ holds of course for general products of multifractals, and if $\mu^{(1)}$ and $\mu^{(2)}$ are CMFs then μ is one too. For more information about the dimension of the product of metric spaces we propose $|W|$ and $|Tr|$.

3.5. CENTERED SELF-AFFINE MULTIFRACTALS

Proof Instead of giving the straightforward general proof of the additivity of generalized dimensions theorem 1.1 shall be applied, for it provides also the grid-regularity. Certainly $w_{ij}^{(1)} = w_{i}^{(1)}$, $w_{ij}^{(2)} = w_{j}^{(2)}$ and

$$\sum_{|ij| w_{ij}^{(1)} = 2} p_{ij}^{(1)} = \sum_{|2p_{ij}^{(2)} = 2} p_{ij}^{(2)} = p_{ij}^{(2)}.$$

Thus $\mu^{(1)} = \mu^{(2)}$ by (3.26) and lemma 3.3. Similarly $\mu^{(1)} = \mu^{(2)}$. Almost evidently μ is the product measure of $\mu^{(1)}$ and $\mu^{(2)}$ by construction. Straightforward computation yields $\gamma^{*} = \gamma^{*} = T^{(1)} + T^{(2)}$. Lemma 3.18 completes the proof. \(\Box\)

3.5.4 A Further Explicit Formula

A third kind of C-SAMFs with explicit formula for $T(q)$ is the following.

Assume that the projections $K^{(1)}$ are self-similar, furthermore, that $\nu = \lambda^{2}$ and that

$$\lambda_{i} = \lambda, \quad \nu_{i} = \nu \quad (i = 1, \ldots, r_{i})$$

for some integer r_{i} strictly between 0 and r. Without loss of generality it is possible to write

$$\lambda_{i}^{\frac{1}{2}} = \lambda \quad (i = 1, \ldots, s_{1}) \quad \lambda_{i}^{\frac{2}{2}} = \lambda \quad (i = s_{1} + 1, \ldots, s)$$

$$\nu_{i}^{\frac{1}{2}} = \nu \quad (i = 1, \ldots, t_{1}) \quad \nu_{i}^{\frac{2}{2}} = \nu \quad (i = t_{1} + 1, \ldots, t)$$

for some integers $s_{1} < s$ and $t_{1} < t$. Solving equations of second order gives

$$\lambda^{(1)} = \frac{1}{2} \frac{\sum_{i=1}^{s_{1}} (\nu_{i})^{2} \lambda^{(2)}}{\sum_{i=s_{1}+1}^{s_{1}} (\nu_{i})^{2} \lambda^{(1)}}$$

and similar for $T^{(2)}(q)$. Furthermore,

$$\lambda^{(2)} = \frac{1}{2} \frac{\sum_{i=1}^{t_{1}} (\nu_{i})^{2} \lambda^{(1)}}{\sum_{i=t_{1}+1}^{t_{1}} (\nu_{i})^{2} \lambda^{(2)}}$$

Moreover,

$$\gamma_{n} = -\frac{1}{\log(\lambda)} \log \left(4 \sum_{i=1}^{s_{1}} \nu_{i} \lambda^{(2)} \right)$$

Finally, the tests whether $\Gamma_{n} = \gamma_{n}$ resp. $\Gamma_{n} = \gamma_{n}$ reduce to

$$\sum_{i=1}^{s_{1}} \nu_{i} \lambda^{(1)} \geq 2 \lambda^{(1)_{2}} \sum_{i=s_{1}+1}^{s} \nu_{i} \lambda^{(2)} \quad \text{resp.} \quad \sum_{i=1}^{t_{1}} \nu_{i} \lambda^{(2)} \geq 2 \lambda^{(2)_{2}} \sum_{i=t_{1}+1}^{t} \nu_{i} \lambda^{(1)}.$$
Example 3.3 (A ‘Circular’ Multifractal) Consider the IFS

\[
\begin{align*}
 w_1(x, y) &= (x/2 + 1/4, y/4) \\
 w_2(x, y) &= (x/2 + 3/4, y/2 + 1/4) \\
 w_3(x, y) &= (x/2 + 1/4, y/4 + 3/4) \\
 w_4(x, y) &= (x/4, y/2 + 1/4)
\end{align*}
\]

supplied with \(p_1 = \ldots = p_4 = 1/4 \). It has self-similar projections \(K^{(i)} \) with \(p_i^* = \lambda_i^\gamma \), \(\nu_i^* = \nu_i^\gamma \) \((i = 1, 2, 3, 4) \). Thus \(\mu^{(i)} \) and \(\mu^{(j)} \) are homogeneous S-MFS, and lemma 3.8 applies to show that \(\mu \) is centered (see Fig. 3.13). Observing \(d_{	ext{Haus}}(K^{(i)}) = 1 \), one obtains the (grid-regular) singularity exponents \(T^{(i)}(q) = T^{(j)}(q) = 1 - q \). From this \(\gamma^* = \gamma^\gamma \). The particular tests in the definition \(T^\Gamma \) and \(T^\Gamma^* \) coincide and read as

\[
T(q) = \begin{cases}
 \gamma^+ = 3 - 2q - \log (\sqrt{1 + 2^{2\gamma^+} - 1})/\log 2 & \text{if } q \leq 1 \\
 \gamma_0 = 4/3 \cdot (1 - q) & \text{otherwise.}
\end{cases}
\]

In particular

\begin{itemize}
 \item The grid-regular \(T \) is \(C^1 \) but not \(C^2 \) (see Fig. 3.14).
 \item \(\Gamma = \gamma_0 \iff \gamma^+ > T^{(i)} + T^{(j)} \iff \gamma > 1 \) (compare lemma 3.18).
 \item The (grid-regular) spectrum \(F \) comes to a sudden stop at \(\alpha = D_3 = D_{\mu} = 4/3 \).
\end{itemize}

This rises the question, where the ‘most probable points’ can be found.

We take the opportunity and calculate explicitly. Let \(\lambda_i = \nu_i^\gamma \) and take \(\xi \in \mathcal{J}_{\alpha^*} \), i.e. \(\lambda_i \geq \nu_i = \nu^\gamma \). Due to the special entries of the maps \(w_i \) the set \(V_\xi \) fits into the \(\delta_\gamma \)-grid. Subdividing it into squares of side \(\nu^\gamma \) yields indeed \(\delta_\gamma \)-boxes. On the other hand, every \(\delta_\gamma \)-box with nonvanishing measure lies in some \(V_\xi \) with \(\xi \in \mathcal{J}_{\alpha^*} \). Moreover, since \(\mu^{(i)} \) and \(\mu^{(j)} \) are homogeneous and measure just the length in \([0, 1[\), all boxes

The first two iterns in the construction of the ‘circular’ multifractal (see Ex. 3.3).

Figure 3.13: The first two iterns in the construction of the ‘circular’ multifractal (see Ex. 3.3).

 obtains the (grid-regular) singularity exponents \(T^{(i)}(q) = T^{(j)}(q) = 1 - q \). From this \(\gamma^* = \gamma^\gamma \). The particular tests in the definition \(T^\Gamma \) and \(T^\Gamma^* \) coincide and read as

\[
T(q) = \begin{cases}
 \gamma^+ = 3 - 2q - \log (\sqrt{1 + 2^{2\gamma^+} - 1})/\log 2 & \text{if } q \leq 1 \\
 \gamma_0 = 4/3 \cdot (1 - q) & \text{otherwise.}
\end{cases}
\]

In particular

\begin{itemize}
 \item The grid-regular \(T \) is \(C^1 \) but not \(C^2 \) (see Fig. 3.14).
 \item \(\Gamma = \gamma_0 \iff \gamma^+ > T^{(i)} + T^{(j)} \iff \gamma > 1 \) (compare lemma 3.18).
 \item The (grid-regular) spectrum \(F \) comes to a sudden stop at \(\alpha = D_3 = D_{\mu} = 4/3 \).
\end{itemize}

This rises the question, where the ‘most probable points’ can be found.

We take the opportunity and calculate explicitly. Let \(\lambda_i = \nu_i^\gamma \) and take \(\xi \in \mathcal{J}_{\alpha^*} \), i.e. \(\lambda_i \geq \nu_i = \nu^\gamma \). Due to the special entries of the maps \(w_i \) the set \(V_\xi \) fits into the \(\delta_\gamma \)-grid. Subdividing it into squares of side \(\nu^\gamma \) yields indeed \(\delta_\gamma \)-boxes. On the other hand, every \(\delta_\gamma \)-box with nonvanishing measure lies in some \(V_\xi \) with \(\xi \in \mathcal{J}_{\alpha^*} \). Moreover, since \(\mu^{(i)} \) and \(\mu^{(j)} \) are homogeneous and measure just the length in \([0, 1[\), all boxes

\[
\begin{align*}
 \text{in } V_\xi \text{ have the same measure. Letting } m = [1/k] \text{ and } k = \# \{ i : \nu_i = \nu \} \text{ one finds } m + k = 2n \text{ due to } \nu = \nu^\gamma \text{ and }
 \\
 \mu(B) = \mu(B/
u, \nu) = 2^{-2n-k}
\end{align*}
\]

for every \(\delta_\gamma \)-box in \(V_\xi \). Observing \(\nu_i \geq \nu \) this value is found to be maximal for \(k = m/2 = 2m/3 \). But then \(\lambda_i = \nu_i \) and \(V_\xi \) is a \(\delta_\gamma \)-box by itself. Since \(\nu_i \) was arbitrary

\[
\text{max} \{ \mu(B) : B \in G_i \} = 2^{-m/3} = (\delta_\gamma)^{\nu_i} = \delta_\gamma^{\nu_i}.
\]

There are as many \(\delta_\gamma \)-boxes of this kind as words \(\xi \) with \(\lambda_i = \nu_i \). Observing \(m = 4n/3 \), Stirling’s formula leads us to

\[
\log \# \{ B \in G_i : \mu(B) = \delta_\gamma^{\nu_i} \} = \frac{\log \left(\begin{array}{c} 2n \\ m/2 \end{array} \right) }{n \log 4} \approx \frac{\log \left(2^{2n} \text{/} \sqrt{2\pi} \text{/} 2^{2n} \text{/} n \log 4 \right) }{n \log 4}
\]

which converges to \(4/3 = F(D_{\mu}) \). This agrees with the intuitive understanding of \(F(D_{\mu}) \). But the equations (3.30) and (3.32) are not satisfied. To get a better understanding where the ‘most probable’ points lie, follow the words \(\xi \) which contribute to the heavy boxes’ above: at the first stage of the construction the C-SAMF seems to be perfectly symmetric giving no reason for more or less probable parts. Only when regarding \(\mu \) as the invariant measure \((w_i, \nu_i) \), differences appear and the equation (3.30) selects exactly the words \(\xi \) with \(\lambda_i = \nu_i \). See figure 3.13 for \(t = 2 \).

The equation (3.32) reads then as

\[
\sum \lambda_i^{-t} \nu_i^{-t} \mu^{\mu} = 2 \left(\frac{1}{\nu} \right) \left(s(2)^{2\gamma} \right)^{\Gamma} = 1
\]

and \(\gamma_i \rightarrow F(D_{\mu}) \) as above. Moreover, one may consider the invariant sets \(L_k \) \(\{ \text{in even} \} \) generated by the IFS \(\{ w_i : 1 \leq i \leq 4 \} \). These sets are in fact self-similar and of dimension \(\gamma_i \) by (2.13). The union \(\mathcal{R}_i \) of the increasing sequence of compact sets \(L_k \) has the dimension

\[
d_{\text{Haus}}(K_i) = \sup_{t \in \mathbb{R}} d_{\text{Haus}}(L_k) = F(D_{\mu}).
\]
3.5. CENTERED SELF-AFFINE MULTIFRACTALS

3.5.5 Homogeneous Self-Affine Multifractals

A first and simple group of homogeneous SAMFs are the products of two homogeneous multifractals on \mathbb{R}. This is immediate from corollary 3.10. In particular in this case

$$p_k = \lambda_k^{\alpha_k} / \beta_k$$

for all k, analogous to the self-similar case. However, this condition is not necessary for a SAMF to be homogeneous, as the next example will show.

Example 3.4 (A Homogeneous SAMF) Take

$$w_i(x, y) = \left(x/3, y/4 + (u_i, v_i) \right) \quad (i = 1, \ldots, 6)$$

with the following entries (u_i, v_i) in rising order

$$(0, 0) \quad (2/3, 0) \quad (0, 2/4) \quad (1/3, 2/4) \quad (2/3, 2/4) \quad (1/3, 3/4).$$

This IFS has self-similar projections and lemma 3.8 applies. Choosing $p_i = 1/6$ results in $p_1^* = 1/3, p_2^* = 1/3, p_3^* = 1/2, p_4^* = 1/6$,

$$T^{(1)}(q) = 1 - q \quad T^{(2)}(q) = \frac{\log (3^8 + 4^8 + 6^8)}{\log 4}$$

and the grid-regular

$$T(q) = \frac{3}{2}(1 - q).$$

From this example and an earlier one (3.2):

- A homogeneous SAMF need not be a product measure.
- The projections of a homogeneous SAMF do not have to be homogeneous. On the other hand, both projections may be homogeneous but μ itself not.

3.5.6 Applications

Now that our theory has been developed we would like to present contemporary research which is closely related. We content ourselves with a narrative language and close with an interesting example of our own.

First, [M2] presents results of the same kind as our theorem 3.7. The box dimension of the graph of certain vector valued functions is obtained as the maximum of numbers 'measuring' the graph in different directions. The technique used for the proof are different from ours, essentially the connectedness of the invariant set.
Furthermore, Koh, [4] rises the question of differentiability and tries to explain irregularities. Our examples and proposition 3.17 give some answers.
The work of Falconer [Falc3, Falc5] was already mentioned. Here we contribute a simple formula for the 'almost sure' dimension (see theorem 3.6).
Furthermore, corollary 3.9 is related to [Mu, Bold1, GI].
Remember also section 2.4 which embeds the results of chapter 2 in the field of recent publications.
Finally our theorem 3.3 covers parts of recent results, i.e. it provides the box dimension of investigated invariant sets, which are in many cases special kinds of C-SAMFs.
One such family arises from fractal interpolation: in [Bar] a new kind of interpolation functions was introduced: given $N + 1$ data points (x_i, y_i) one may consider a set of affine maps

$$w_i(x, y) := \left(\begin{array}{cc} a_i & 0 \\ b_i & c_i \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} d_i \\ e_i \end{array} \right) \quad i = 1 \ldots N$$

with $w_i(x_0, y_0) = (x_0, y_0)$ and $w_i(x_1, y_1) = (x_1, y_1)$. The compact invariant set G of this IFS is then the graph of a continuous function which interpolates the data. Referring to section 2.2 an illuminating picture is provided by considering the straight line segment joining (x_0, y_0) with (x_1, y_1) and its iterated images under the set map W. Only four entries of w_i are determined by the condition above. Usually c_i is considered as a parameter controlling the dimension of G [BEHM]:

If $\sum_{i=1}^N |e_i| > 1$ and the interpolation points do not lie on a straight line, then $d_{\text{box}}(G)$ is the unique solution D of

$$\sum_{i=1}^N |e_i| D^{p+1} = 1,$$

otherwise $d_{\text{box}}(G) = 1$.

However, if $y_0 = 0$ and $|b_0 - x_0| < |b_1 - x_1|$ one may choose $b_1 = 0$, freezing the c_i. Then the affinities are diagonal and the IFS is vertically centered. Moreover, $D_0 = D_0$ and hence $D^* = D$ and $D^* = 1$. In this situation

$$d_{\text{box}}(G) = \Delta(w_1, \ldots, w_N) = \max(1, D)$$

without any further assumptions on the geometrical situation, in agreement with theorem 3.7.

While we are able to give the generalized dimensions of G, many authors relate $d_{\text{box}}(G)$ to other constants describing the geometry of G, such as the Hölder exponent [Bed3], the Hausdorff dimension [BU, K, U, GM] or the topological pressure [Bed1, Bed2]. Some among them confine the diversity of w_i to C-SAMFs by setting $b_i = 0$ [GM, GH1, Ma1, Ma2, Ma3, BU].

Example 3.5 (Bold Play) This example is a particular self-affine interpolation function appearing in probability theory.

Imagine a game where the chance to double the stake is p and the probability to lose it is $1 - p$. Then $M(x)$ represents the probability to win the amount 1 starting with the capital x and observing the following strategy: if the momentary stake is $x < 1/2$, then the player wagers all, if $x \geq 1/2$ he wagers $1 - x$. What makes $M(x)$ interesting is its comparison with the probability to win with 'timid play', which means to wager the same small amount e each time. While the latter promises a rather long stay at the casino, the chance to leave the place with the desired amount of money is incredibly larger when applying the first one [Fed, p 190]: betting 'black' in ordinary American roulette, p is given as $18/38$. Trying to reach the goal of 20000 with an initial capital of $800 by wagering 1 each time, the probability of success is approximately $3 \cdot 10^{-26}$; wagering less 'timidly' 10 each time increases the chance to 10^{-41}—still completely negligible. But the chance to win with 'bold play' is 0.003!

However, the function M satisfies

$$M(x) = \begin{cases} p \cdot M(2x) & \text{if } x < 1/2, \\ p + (1 - p) \cdot (2x - 1) & \text{if } x \geq 1/2, \end{cases}$$

and its graph G is invariant under the two diagonal contractions $w_i(x, y) = (x/2, p \cdot y + y)$, $w_0(x, y) = (x/2 + 1/2, (1 - p) y + y)$. The IFS is centered vertically as well as horizontally with respect to the open sets $[0, 1/2) \times [-1, -3]$ and $[1, 3) \times [0, 1]$. Supplying the IFS with the 'natural' probabilities $p_1 = p$, $p_2 = 1 - p$ leads to

$$\gamma^+ = T^{[0]}(q) = \log \left(\frac{p^2 + (1 - p)^2}{p^2} \right) / \log 2$$

$$\gamma^- = T^{[0]}(q) = 1 - q$$

Thus $\gamma^+ \leq T^{[0]}(q) + T^{[0]}(q)$ if $T^{[0]}(q) \geq 0$, hence if $q \leq 1$. Furthermore, $\gamma^+ \leq \gamma^-$.

![Figure 3.10](image-url)
Since T is not differentiable at zero there is a gap in the α-interval where the spectrum is not determined by T.

The invariant set G is the graph of the continuous function M and of total length 2. Moreover, M is almost everywhere differentiable with slope zero [Fed, p. 191]. For $p = 1/2$ the spectrum reduces to a point and M to a linear function. In this sense $F(\alpha)$ reveals the 'non-differentiability' of the invariant function M. This is due to the choice $p_1 = p_4$, interweaving geometry and measure. \hfill \Box

The last example provides an ordered SAMF for which $T(q)$ can explicitly be calculated for $q \geq 0$, although its projections are not self-similar.

Example 3.6 (Rosette)

Consider the maps

\[
\begin{align*}
 w_1(x, y) &= (x/2 - 1/2, y/4) \quad w_2(x, y) = (x/2, y/2 - 1/2) \\
 w_3(x, y) &= (x/2 + 1/2, y/4) \quad w_4(x, y) = (x/2, y/2 + 1/2)
\end{align*}
\]

with the round set $O = \{(x, y) : |x| + |y| < 1\}$. Choose $p_1 = p_3 = 1/4, p_2 = p$ and $p_4 = 1/2 - p$.

![Rosette diagram]

Figure 3.17: The construction of the rosette (see Ex. 3.6).

First $\mu^{(1)}$ is investigated. Since $w_2^{(1)}$ and $w_4^{(1)}$ coincide lemma 3.3 implies

\[
\mu^{(1)} = (w_1^{(1)}, w_2^{(1)}, w_3^{(1)}, p, p_2 + p, p_4) = (x - 1/2, x + 1/2, 1/4, 1/2, 1/4).
\]

This allows the normalization Lebesgue measure of \mathbb{R}^2 restricted to O by π. $\mu^{(1)}$ is recognized as the projection $\pi^{(1)}|_{\mathbb{R}^2}$ of μ just note that π is invariant under $w(x, y) = (x/2, y/2) + (u_i, v_i)$ with entries $(u_i, v_i) = (-1/2, 0), (0, -1/2), (1/2, 0), (0, 1/2)$ and

with probabilities $p_j = 1/4$. Consequently the singularity exponents of $\mu^{(1)}$ are identical with the one of $\pi^{(1)}$.

Let $\delta_1 = 2^{-n}$ and take $B = \left[j \cdot \delta, (j + 1)\delta \right]$ with an integer $j \in \{-2^n, \ldots, 2^n - 1\}$. These sets B are the δ_j-boxes with nonvanishing $\mu^{(1)}$-measure. For $0 < \delta < 2^{-n} - 1$

\[
\mu^{(1)}((B_1)) = \mathbb{P}\left(\left[j \cdot \delta, (j + 1)\delta \right] > B \right) = 3\delta_s \cdot (1 - (j + 1/2)\delta) = 3\delta_s^2 (2^{-n} - 1/2),
\]

for $j = 0$: $\mu^{(1)}((B_0)) = 3\delta_s^2 (2^{-n} - 2/3)$ and for $j = 2^n - 1$: $\mu^{(1)}((B_1)) = 2\delta_s^2$. For negative k replace k by $|k|$. First we observe that $\delta_s^2 < \mu^{(1)}((B_1)) \leq 3\delta_s^2$. Thus the semispectra are trivial for α outside $[1, 2]$. Omitting the three boxes corresponding to $k = -2^n, 0, 2^n - 1$ will not affect the rest of this calculation. For $\alpha \in [1, 2]$ one finds

\[
\mu^{(1)}((B_k)) < \delta_s^\alpha \Leftrightarrow 2^n - 2\alpha2^{-n}/3 - 1/2 < |k| < 2^n - 1
\]

which is satisfied by $2 \cdot \left[2^n - 2\alpha2^{-n}/3 - 2 \right]$ integers k. Thus

\[
(F^{(1)})^\alpha (\alpha) = \lim_{n \to \infty} \frac{\log M_n(\alpha)}{\log \delta_s} = 2 - \alpha.
\]

Similar $\mu^{(1)}((B_0)) \geq \delta_s^\alpha$ is satisfied by approximately $2^n - 2\alpha2^{-n}/3$ integers k leading to

\[
(F^{(1)})^\alpha (\alpha) = \lim_{n \to \infty} \frac{\log N_n(\alpha)}{\log \delta_s} = 1.
\]

Proposition 1.10 implies

\[
F^{(1)}(\alpha) = \lim_{n \to \infty} \frac{\log \left(N^{(1)}(\alpha + \varepsilon) - N^{(1)}(\alpha - \varepsilon) \right)}{-\log \delta} = \begin{cases} 2 - \alpha & \text{if } \alpha \in [1, 2], \\ -\infty & \text{otherwise} \end{cases}
\]

3.5. CENTERED SELF-AFFINE MULTIFRACTALS

Figure 3.18: The rosette as defined in example 3.6 on the left. To emphasize the concentration of this measure near the horizontal parts, a multifractal k provided on the right, which is based on the same IFS but with probabilities p_j according to the Jacobians of the maps (i.e. $p_1 = p_3 = 1/6, p_2 = p_4 = 1/3$). This results in a 'homogeneous' distribution.
CHAPTER 3. SELF-AFFINE MULTIFRACTALS

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.19.png}
\caption{The generalized dimensions and the spectrum of $\mu^{(3)}$ of the ‘rosette’ multifractal (see Ex. 3.6).}
\end{figure}

By lemma 1.16 $T^{(i)}$ is grid-regular satisfying

$$T^{(i)}(q) = \begin{cases} 1 - q & \text{if } q \geq -1, \\ -2q & \text{otherwise.} \end{cases}$$

The spectrum of $\mu^{(i)}$ is not strictly concave and so $T^{(i)}(q)$ carries not all the information about the singularities of $\mu^{(i)}$ (see Fig. 3.19). Now let us turn to μ itself. Straightforward calculation yields

$$\gamma^+ = \begin{cases} 3 - 3q + \log \left(\sqrt{h(q) + 2^{2q} - h(q)} \right) / \log(1/2) & \text{if } q \geq -1, \\ 2 - 4q + \log \left(\sqrt{h(q) + 2^{2q} - h(q)} \right) / \log(1/2) & \text{otherwise,} \end{cases}$$

where $h(q) = \rho^p + (1/2 - \rho)^p$ for short. Since μ is an ordered SAMF corollary 3.2 and proposition 3.10 yield

$$T(q) = \gamma^+ \quad (q \geq 0), \quad T(q) \leq \gamma^+ \quad (q < 0)$$

and T is at least grid-regular for $q \geq 0$. Theorem 1.1 gives the increasing part of the spectrum $F(\alpha)$ including the maximal value (see Fig. 3.20).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.20.png}
\caption{On the left the function $\Gamma(q)/(1 - q)$ and on the right its Legendre transform for the ‘rosette’ with $p = 1/4$. They equal the generalized dimensions for positive q resp. the spectrum in the rising part.}
\end{figure}

3.6. CONCLUSIONS. OUTLOOK.

Our conclusions are summarized in a short survey.

- The generalized dimensions d_α introduced and applied in [Fal94, Gr1, HJKPS, HP] usually take the irrelevant value ∞ for negative α (see Ex. 1.1). Since certain multifractals develop interesting generalized dimensions only for negative α (Ex. 3.5), it is important to have a new method of measuring the singularities of a multifractal.

- One essential relation in multifractal formalism is the connection of spectrum and generalized dimensions through the Legendre transformation. However, the formalism in [Fal94] requires the existence of the double lines $f(\alpha)$ for all α. Even with the most simple multifractal (Ex. 1.1) this double lines fails to exist for large α. To solve this problem we introduce the semispectra: they are easy to handle and have almost the same properties as the spectrum itself (Prop. 1.8, 1.10 and 1.15). Moreover, it is possible to obtain the spectrum from the singularity exponents without assuming anything about it in advance (theorems 1.1 and 1.2).

- As is demonstrated with most of the examples, the semispectra as well as the singularity exponents very often allow to compute the whole spectrum F. In particular examples, however, F may carry more detailed information (Ex. 2.15 and 2.16).

- The new formalism allows to give a rigorous proof for the well known formula for the singularity exponents of self-similar measures, including negative α.

- The self-affine multifractals presented under the name C-SAMF reveal features of multifractal spectra different from the ones of self-similar measures. Hence they provide a greater diversity as models for objects found in nature. Moreover, we consider C-SAMFs to be important, since they allow the study of several topics such as the product of self-similar measures, local Hölder exponents and other features. See section 3.5.
We provide multifractals with atypical spectra. They show that \(F \) need not be concave and that it may possess wedges or linear parts. Furthermore, \(T(q) \) is not necessarily differentiable, or can be once but not twice continuously differentiable (Ex. 2.15, 2.16, 2.17, 3.3, 3.5 and 3.6). Finally, infinite singularity exponents are found for all negative \(q \) with the left-sided spectra (Ex. 2.14). For further examples of this kind as well as for observations in nature see [MEH, ME, CJVP]. Exponential dimensions (GA), carefully defined in order not to reflect wrong measurement (Ex. 1.1) may turn out to be the rightly chosen formalism here.

The interpretation of \(F(\alpha) \) as the dimension of the set ‘with Hölder exponent \(\alpha \)’ is valid for certain self-similar measures (Ex. 2.10 and 2.11). For general multifractals, however, this matter is far from trivial. At least we are able to provide evidence especially for the ‘most rared’ and the ‘most probable’ points (section 3.5).

As a straightforward generalization of the present work we mention the IFS consisting of contractive affinities in \(IR \), which leave two given, complementary subspaces invariant and which reduce to similarities therein. Such IFS are applied to obtain fractal interpolation surfaces [GH2, BEHM].

Finally, the present work may influence the investigations of randomly generated measures [A, Falc2, Z, Graf] and of Recurrent IFS [B, BEH, Bed2, GH2].

Amount of Curriculum vitae

18. Juni 1961
geboren in St.Gallen

1974 - 1980
Besuch des humanistischen Gymnasiums an der Kantonschule St.Gallen

September 1980
Maturität Typus B

1980 - 1981
Industriepraktikum und Militärdienst

1981 - 1986
Studium an der Abteilung IX für Mathematik und Physik an der ETH Zürich

Oktober 1986
Diplom in Mathematik

1986 - 1987
Praktikum in einer Lebensversicherungs-Gesellschaft

seit April 1987
Assistent am Departement für Mathematik der ETH Zürich und Doktorand in fractaler Geometrie

März - August 1988
Aufenthalt in den U.S.A. und in Asien
Dank

Bibliography

BIBLIOGRAPHY

[Sa] Ernst Saar and Veikko Saar Large-scale Pattemes Manuscript (Cambridge, Institute of Astronomy).

[Sch] Andreas Schief OSC and SOSC are Equivalent Preprint Department of Mathematics Ludwig-Maximilans-Universität Munich.

Index

Notions
adic, r-adic, 31
admissible, 8
atom, 55
basic open set, 40
bi-Lipschitz, 8
box dimension, 2
box, δ-box, 2
C-SAMF, 77
Cantor Multifractal, 33
capacity, 52
carpet, 104
cascade, 32
CMF, 33
coarser IFS, 77
codespace, 32
conceave, 18
contractive, 34
corner, 18
coordinate map, 32
cylindrical sets, 33
degenerate, 54
deterministic algorithm, 38
diagonal, 68
Diuse measure, 39
dist, 38
diagonal, 68
dist, 38
empty word, 32
generalized dimensions, 17
gemmetrical multifractal, 53
grid, δ-grid, 1
grid-regular, 8, 12
Hausdorff dimension, 52
Hausdorff measure, 52
Hausdorff metric, 38
homogeneous, 52
IFS, 38
iterated Function System, 38
left-sided spectrum, 60
Legendre transform, 18
length, 31
Lip, 37
local Hölder exponent, 2, 57
Lyapunov dimension, 53
most probable, 48, 57
most rarefied, 48
multifractal, 2
multiplicative cascade, 33
nonatomic, 55
open set condition, 40
ordered, 82
OSC, 40
piecewise linear, 46
probability vector, 32
quasi increasing, 15
random algorithm, 38
ratio, 40
rectangle, 69
round open set, 68
SAMF, 68
secure, 35

Labels
A_k, 18
b, 69
$(B_k)_n$, 8
c_i, 82
C^∞, 57
C^1_{∞}, 57
d, 1
diam(K), 2
d$^c(\mu)$, 52
d$, 84$
diam(E), 52
$diam(\mu)$, 52
d*, 99
d*, 90
D, 40
D_0, 17
D^1_0, 71
D_1, 17
D_a, 20
$D_{a, 26}$
f(α), 2
$f^+(\alpha)$, 3
f^+, 12
$f^-(\alpha-)$, 12
$f^-(\alpha)$, 3
f^+, 12
$F^0_{n, 105}$
G_0, 2
$G_{0, k}$, 59
$\hat{\gamma}$, 31
$\hat{\lambda}$, 32
$\hat{\lambda} + k$, 31
$[\hat{\lambda}_{n+k}]$, 32
I, 31
I_m, 32
I_m, 32
I_m, 34, 69
$I_{k, l}$, 42
J^H, 72
J^H, 72
K, 1, 32
K^0_{n}, 71
K^+, 71
K_{n}, 32
K_{n}, 57
K_{∞}, 57
k, 82
$\log(0)$, 2
$M(t)$, 85
μ_0, 82
μ^*, 52
$\mu_{0}(\alpha)$, 3
$M_{\alpha}(\alpha)$, 12
n, 32
$N_0(K)$, 2
$N_0(\alpha)$, 2
$N_{0, n}$, 12
O, 37, 40, 68
P, 32
P^+, 83, 97
self-affine, 68
self-similar, 40
Self-similar Multifractal, 40
semispectrum, 12
Sierpinski carpets, 105
similarity, 10
singularity exponents, 8
SMF, 40
SOSC, 45
spectrria, 12
strong OSC, 45
symbolic dynamics, 33
tailored, 33
tight, 34
touching point, 18
uniform, 32
word, 31