An improved multifractal formalism and
self-affine measures
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It has been recognized that most fractals K in nature are actually composed of an
infinite set of interwoven subfractals. This structure becomes apparent when a particular
measure j of total mass 1 supported by K is considered: To every singularity exponent
a belongs a set C, of all points of K, for which the measure of the balls with radius
p roughly scales as p* for p — 0. These sets are usually fractals, giving p the name
multifractal.

The complexity of the geometry of C, is measured by the spectrum f(a) which can be
thought of as representing the box dimension of C',. However the singularities of ;1 may
also be measured through the generalized dimensions d,.

Spectrum and generalized dimensions are very helpful when comparing multifractals
appearing in nature with analytically treatable measures. One central fact of the multi-
fractal formalism is the close relation between d, and f(«): the convex 7(¢q) = (1 — ¢)d,
is the Legendre transform of the concave f(a). This allows to reduce the somewhat
tedious, if not impossible computation of f(a) to the simpler one of d,.

Though widely used, the various definitions of f(«) and d, differ only slightly. A math-
ematically precise definition as well as the important relation 7(¢) = sup f(«) — ga can
be found in [F]: But unfortunately this concept turns out to be unsatisfactory for two
reasons.

First of all Falconers f(«) is defined through a double limes, which usually does not
exist for great a. Secondly the generalized dimensions usually take the irrelevant value
d, = oo for negative ¢. More concretely, for as simple multifractals as the middle third
Cantor measure half of the spectrum is lost and proposition 17.2 in [F] concerning the
Legendre relation cannot be applied.

The concept we propose meets the two mentioned problems by a simple improvement.
Instead of B = [][lx0, (I + 1)0[ taken from a grid G of size d, we use a kind of parallel
body By := [1[(lx — 1), (Ix + 2)0[. This renders a measurement of the singularities of p
which depends more regularly on §:

T(q)

| B;)1?
T(g) = lim sup 282 (BV) - 19
—dq

D, :

510 — log ) 1
This method will especially lead to regular spectra for self-similar measures: Adopting
the definition of Falconer [F] let Ns(«) denote the number of boxes B € G with p(B) # 0
and p((B);) > 0 and set

log(V, — N, —
F(«) := limlim sup og(Ns(a +¢) (o 6))
0 550 —logd
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Note that F'(«) always exists. However, we will call F'(«) resp. T'(q) §-regular, whenever
the respective lim sup;_,, = lim inf;_,o. The superiority of our concept is reflected in the
following facts, for which we provide rigorous proofs:

e [, is invariant under bijective mappings ®, which are lipschitzian together with
their inverse. Moreover its computation may be performed by considering any
sequence 0, with §, > d,,1 > vd, for some constant v. Essentially the same holds
for F(«a) as well.

e D, = d, for positive ¢ and F(a)=f(c) in the rising part.

e The Legendre connection holds. Especially, the function T'(q) := (1 — ¢)D, is
convex, and, assuming that 7T is differentiable at ¢ then

F(=T"(q)) = T(q) — qT"(q). (1)
If T is in addition continuously differentiable and strictly convex near ¢, then F'
is continuous and strictly concave near « = —T"(¢). On the other hand if T is

differentiable and d-regular on all of R, then F(«) is d-regular on all of IR too.
Thus there is a lot to derive from D, about the spectrum without assuming any-
thing about it.

e The new concept allows to give a rigorous proof of the well-known implicit formula

SN =1 (2)
i=1
for the generalized dimensions of self-similar measures with ratios A1,..., A, (see

below). Moreover T is in fact d-regular for all ¢. Concerning the proof of (2) we
are so far only aware of arguments [HP] valid for positive ¢ and for similarities
respecting a particular grid, as it is the case for the middle third Cantor measure.
Finally we provide an explicit formula for F'(«) in the case r = 2:

e log(—e2) + (¢1 — ¢2) log(er — ¢2) — ¢11log(eq)
log A1 log po — log A5 log py

F(a) = (@€]Dy, D_s))-
where we set ¢; = log p; — alog \; and where we assumed without loss of generality
that Do, = logp;/log A < logpy/logls = D_.

e Since we use the measure of B; instead of the one of B, a related result of Collet
et al [CLP] can be transformed to read as: For totally disconnected self-similar
multifractals on IR, such as the middle third Cantor measure, define C, to be the
set of all points x for which

i 08 UE) _
im ———= =
E|—0 log |E)|
z€int(E)

Then the Hausdorff dimension of C,, equals F'(«). This is important for the intu-
itive interpretation of the spectrum.



Our approach assumes nothing about the spectrum, neither about its concavity or dif-
ferentiability nor about the existence of any particular limes . To support this attitude
we provide two examples presented in figure 1.

Finally we apply the new concept to certain self-affine multifractals of the plane. One
way to set up the construction of a multifractal is to use a set of contractions (wy, ..., w,)
of R with Lip(w;) < 1 and a set of positive numbers p; with p; + ... +p, = 1. Then
there is a unique invariant measure p, which may be explicitely constructed using the
fixpoint-lemma [Hut]:

r

= Di- Wi and supp(p) = K = | wi(K).
i—1

=1

The measure p is called self-similar, when |w;(z) — w;(y)| = \i - |2 — y| Vavy € R
(i =1,...,r) and when the open set condition is satisfied, i.e. the sets w;(O) are mutually
disjoint and contained in O for some bounded open set O. The spectrum of p in this
case is given by (2) and (1).

Now take w; ("), 2) = (9; Nz + u;, Griz® + v;), where ¥; and ¢; are from {—1, 41}
and J\;, v; from |0, 1[. When the open set condition is satisfied by a polyederon O with
angles greater or equal to 7/4, then we call p self-affine multifractal, for short SAMF.
The generalized dimensions of p are in this case determined by the projections onto
the respective axes. So let u® = 7® . where 7 (), 2(2)) = 2 and denote the
generalized dimensions of u¥) by D,®). Furthermore to deal with negative ¢ even more
control on the measure is required. When 7®*)(w;(0)) N 7®)(w;(O)) # 0 implies that
7 o w; = 7®) 0wy, then the sets Vj; := w;(w;(0)) are arranged in rows and columns.
Now if in addition every such row or column contains at least one V;; which does not
touch the boundary of O, we call i a centered self-affine multifractal, C-SAMF for short.
Now define the ‘characteristic functions’

x(a,7,9) =3 pI\“v"™ and  ¥(b,7,q) = > piwi" AT

=1 =1

For fixed ¢ there are unique numbers 7= and = satisfying x(T™(q),v",q) = 1, resp.
V(TP (q),v~,q) = 1. Provided \; > v; and Aj < v; for some ¢ and j, there is a unique
pair (ag, ) satisfying the simultaneous equations x/(ao,v0,q) = 1, %X(ao,%,q) = 0.
Otherwise set vy := —oo for all q. Define

1—‘+( ) R /y+ lf %X(T(1)77+aQ) Z 07 1—\7( ) L ’-}/_ lf % (T(2),"}/_,q) Z O,
= 7o otherwise, 9= Yo otherwise.

Theorem 1 Let p be a C-SAMF. Then T is §-regular on all of IR and

T(q) = max (I'"(q), ' (q)).

The assertion holds also for arbitrary SAMF provided that ¢ > 0 and that T™"(q) and
T (q) are 6-regular.



Note that I'* resp. '~ are continuously differentiable near ¢ provided T (q) resp. 7 (q)
are. This may import in (1). Moreover, assuming only that 71 and T® are C' near 1,

we have
1) = Tim sup > u((B)1)log pu((B)1)
Dr=inPe= T =m0t su®@)

For applications it may be useful to know (writing a = T (q), b = T (q) for short)

Y <a+bes vy <a+bs T =max(y",7 )< T(q) <a+b.

This occurs certainly for ¢ = 0, since T'(0) equals the box dimension of K. So it is easy
to compare 7'(0) with the almost sure box- and Hausdorff dimension A of the self-affine
set K given in [F88], for which we provide the formula: A = max(A*, A7), where

ZW if YA <1, SUAT Yy <,
and il B
Z \ivE "1 otherwise, .21 viAS 1 otherwise,

One special kind of C-SAMF are a generalization of the so-called Sierpirniski carpets
[Mu, Bed], defined by the property \; = A > v =y; fori =1,...,r. See figure 2 for an
example. Since max (I'"(¢),I'"(¢)) = 7" (¢g) in this case, T'is C'*° and so is F'(«) by (1).
Moreover F'is d-regular. Denoting the sum of all p; with w;(O) in the i-th column by
p; we have

T(g) = (— — — )log(z( 1) -

logr  log A

log(Zp, )

We add two explicitely solvable examples. For the ‘circular’ C-SAMF (see figure 3)

log v

wi(z,y) = (x/2+1/4,y/4) we(z,y) = (x/4+3/4,y/2+1/4)
wi(z,y) = (v/2+1/4,y/4+3/4) wy(z,y) = (x/4,y/2+1/4)
with p; = ... = py = 1/4 one finds TW(q) = T@(q) = 1 — ¢ and
)yt =3-2¢—log(V1+2+9—-1)/log2 ifg<1
Tlg) = { 10 =4/3- ((]1 — q% ° ot;]lerwise.

So T is C' but not C?. However, F(a) is §-regular.
Consider the maps

wi(z,y) = (#/2=1/2,y/4) walw,y) = (v/2,y/2-1/2)
ws(z,y) = (®/2+1/2,y/4) walz,y) = (2/2,y/2+1/2)
with the open set O = {(z,y) : |z|+ |y| < 1}. Choosing p; = 1/4 we have

L 2—q—log(\/1—|—22+‘1—1)/log2 if g > —1,
T 1—2q—10g(\/§—1)/log2 otherwise.

Since \; > v; for all 4, max(I'",'") = 4. But this ‘rosette’ is only a SAMF. So
T(q) < v*(gq) with equality only for ¢ > 0. See figure 4.

The explicit formulas above enable one to study the set of the most probable resp. most
rarefied points, resulting in interesting insights concerning the geometric properties of
self-affine measures.
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Figure 1: On the right: The linear combination i := iy, + po of two multifractals with
disjoint support may possess a nonconcave spectrum, since the latter is the maximum
of the spectra of yy and us. The dashed parts show the internal bisector of the axes
and the spectra of py and ps. On the right: The spectrum of the graph of the fractal
interpolation function through the points (0,0), (1/2,1/4) and (1,1). The dashed part
shows the internal bisector of the axes.
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Figure 2: The construction of a Sierpinski carpet. The labeled rectangles show the
images w;([0,1]?) and the assigned probabilities.
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Figure 4: On the left the ‘rosette’. On the right the Legendre transform of a formaly
deduced T'(q)/(1 — q), which equals the spectrum of the ‘rosette’-multifractal at least in
the rising part.



