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Abstract
New statistical methods are needed to analyze data in a multi-scale
way. Some multi-scale extensions of standard methods, including novel
visualization using dynamic graphics are proposed. These tools are used
to explore non-standard structure in internet traffic data.

1 Introduction

A topic of keen current interest in many areas of mathematical modelling, is
integrating models across a broad range of scales. There are serious challenges
in this area, because reasonable models exist for most single scale phenomena,
however they often do not interface well with each other across wide ranges
of scale. In particular, critical and useful approximations made at one scale
frequently break down completely at other scales.

The major research effort underway in multiscale mathematical modelling
spawns the need for statistical research in very wide scale settings. There is
a strong need for both exploratory and confirmatory multiscale methodologies.
This paper proposes some wide scale extensions of the standard time series
method of autocorrelation analysis, and of the newer exploratory data analysis
method of SiZer.

Dynamic graphic visualization is the key to the methods proposed in this
paper. Internet traffic data analysis provides an excellent testbed for the illus-
tration of this methodology, because large amounts of data are available, and
there is interest in the structure of the data across a wide range of scales. The
data set used in this paper is described in Section 2. In Section 3, the zooming



autocorrelation method is developed, and used to highlight some non-standard
(from the viewpoint currently accepted in that area) structure in the internet
traffic data. This unexpected structure is explained by some simple covari-
ance calculations. A complementary analysis, illustrating the zooming SiZer
method, is done in Section 4.

A much different approach to multiscale time series analysis is using wavelets.
See Percival and Walden (2000) for an introduction to that literature.

2 Internet Traffic Data

A major challenge for engineers, for computer scientists, for statisticians and for
probabilists is the analysis and modelling of internet traflic data. The problem
is of central importance because the present protocols were not designed with
today’s massive scale of the world wide web in mind, which results in large
inefficiencies. A major research effort is under way to find improvements.
For both the developmental and the confirmatory phases of this work, traffic
models and analysis tools are vital. Really new ideas and models are needed
because heavy tailed distributions and long range dependence (both appearing
at a number of different points) render standard methods, such as classical
queueing theory, unusable.

Interesting and important behavior has been observed at a wide variety of
points on the internet. The first data set analyzed in this paper, consists of
traffic measured on the main internet link to the University of North Carolina
in 1998. Similar data sets are available online at the National Laboratory for
Applied Network Research, at the web address http://moat.nlanr.net/PMA/.
The data considered here are a series of time stamps, representing the arrival
times of individual packets, for one million packets. In 1998, the traflic on this
link was such that it took about 3 minutes to gather this data set.

The first models considered for internet traffic data were the standard queue-
ing theory models, based on independent Poisson arrival times, and exponential
waiting times. It was natural to try these first, as they were very successful
for modelling e.g. telephone call traflic. But in a landmark paper, Paxson
and Floyd (1995) made it clear that such models are inappropriate for internet
traffic. This started a wide ranging search for more appropriate models.

An important difference between observed internet traffic and predictions
from the Poisson process is the presence of long range dependence in the data,
which is studied carefully in this paper. Cao, Cleveland, Lin, and Sun (2001)
made the interesting observation that at small time scales, on a main internet
link, the packet interarrival process is well approximated by independent expo-
nential random variables (as for a Poisson process). They correctly argue that
for studying queueing behavior, small time scale behavior is the critical driving
factor.

At first glance, this latter work seems to be in contradiction with the above
observed long range dependence. FExact Poisson processes maintain their in-
dependent increment structure, regardless of the scale of aggregation. But



Cao, Cleveland, Lin, and Sun (2001) point out that they have only a small
scale model, and acknowledge the presence of long range dependence at larger
time scales. Many of the long range dependent models being mentioned above,
e.g. those in Feldman, Gilbert and Willinger (1998), Riedi, et. al. (1999) and
Riedi and Willinger (1999), allow the accommodation of scaling behavior which
changes with scale, but they do not explore the actual auto-correlation over a
range of scales.

Deeper understanding of internet data can come from a widely cross scale
analysis which includes both of these time scales. This is done in a simple way
for the UNC arrival process data, by analyzing bin counts, for a wide range of
binwidths. In this paper, linear binning, as described in Fan and Marron (1994)
is used at all points. The binwidth m (measured in seconds) will parametrize
the scale under consideration.

The autocorrelation structure of the time series of bin counts, is considered
in a multiscale way in Section 2. The multiscale behavior of the autocorre-
lation function is quite different from what could be expected assuming that
particularly strong dependence was present around round trip time. Thus the
autocorrelation should be large at lags corresponding to round trip time. When
the scale is increased, these lags move from right to left, so it is expected that a
“lump of large correlation” will move from right to left. Instead a far different
multiscale behavior is observed. In particular, there is a “constant lifting” of
the autocorrelation across lags, showing that the concept of “long range depen-
dence occurring at certain scales” is fallacious, and needs reconsideration. This
apparent, contradiction is explained by some heuristic calculations.

For some large scales, it is seen that sampling variability is an issue. Hence,
a second larger data set, gathered over a longer time scale of nearly one hour
will be considered. Here the data are separately binned over a range of time
scales that increase by a factor of 2 each time. Each successively larger scale
uses the previous data, plus an equal amount of new data.

SiZer provides a different type of exploratory data analysis, based on smooth-
ing the data (using a family of scatterplot smoothers on the bin counts) to study
local trends. This analysis is done in Section 4, where a similar cross scale be-
havior is observed.

3 Zooming Autocovariance

Given a time series, {X; : t = 1,...,n}, the autocorrelation function, at lag I =
0,...,m—1is

_cov(X,, Xe )
pll) = var (X,)
where
cou (Xe, X ) = S (X% - X) (X - X).

t=I



and

As noted in any time series text, e.g. Brockwell and Davis (1991), the auto-
correlation function is a standard method for quantifying dependence in the
statistical analysis of time series. In the case of mean zero Gaussian processes,
the autocorrelation function p(I) completely determines the distribution of the
time series.

The best way to study how the autocorrelation function, of the bin counts
time series, changes across scale is to view a movie (i.e. a dynamic graphical
representation). Such a movie is internet available as the file ZoomStatFigl.mpg
in the web directory

http://www.unc.edu/depts/statistics/postscript/papers/marron/ZoomStat/
If at all possible, it is recommended that this movie be viewed now. For
discussion here, some frames of this movie are shown as Figures la-d.
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FIGURE 1A: Smallest scale, m = 1073, autocorrelation plot of 3 minute
Internet traffic data set. Shows bin counts not far from independent.

Figure la shows the smallest scale binwidth, m = 10™2 sec considered here.
The blue horizontal line is the z-axis, included because it highlights the fact that
the autocorrelation is always positive for the range of lags [ that are shown. The
autocorrelation is “generally quite low”, which fits with the observations of Cao,
Cleveland, Lin, and Sun (2001). However, the red dashed line, which is the 95th
percentile of the autocorrelation for a Gaussian white noise process, shows that
the autocorrelation is significantly different from that of a truly independent
process.
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FIGURE 1B: Intermediate scale, m = 1072, autocorrelation plot of 3 minute
Internet traffic data set. Shows bin counts with large positive autocorrelation.

Figure 1b shows the same analysis (the colored lines have the same meaning
as in Figure 1a) for the larger scale of m = 10~2 sec. The blue bar is included
to graphically represent the scale (especially important in the movie version).
This is now in the time scale neighborhood of one TCP round trip time (the
scale at which long range dependence has been reported), so it is expected that
long range behavior is encountered. But a careful look at the movie reveals a
surprising feature: the long range dependence does not “move in from the right”
as expected. This is expected because the time span corresponding to lag I, at
scale m, is I x m (sec). Thus if “dependence occurs at time scale mg”, then as
m is increased, the “hump of dependence”, should move into the picture from
the right. However instead the autocorrelation function just “lifts vertically in
a level fashion” to the point shown in Figure 1b.
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Figure 1c
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FIGURE 1¢: Intermediate scale, m = 0.05, aulocorrelation plol of 3 minute
Internet traffic data set. Shows positive autocorrelation moving towards the

left.

Figure lc show another intermediate scale of m = 0.05 sec. At this scale
the autocorrelation looks similar to what might be expected from say a standard
ARMA process. Studying the transition, using the movie, from Figure 1b, it
looks now more as expected, with the “dependence moving towards the right”.
Note also that at larger lags the long range dependence becomes obscured by the
large sampling variability from too few terms in the autocovariance estimate.
Finally observe that the red line has increased in height, because at this scale
there are fewer bins, resulting in noisier covariance estimates.
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Figure 1d
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F1GURE 1D: Large scale, m = 1, autocorrelation plot of 3 minute Inlernet
traffic data set. Shows large sampling variability.

Figure 1d shows the autocorrelation at scale m = 1 sec. At this scale there
are only about 300 bins, so the autocorrelation function is severely subject
to sampling variability. The absence of the dashed red line shows that the
Gaussian White Noise quantile is completely above the range shown. Because
of the large apparent variability, little reliance should be placed in these results.

Hence, the larger data set was gathered, as indicated in Section 2. A similar
analysis to that of Figure 1 is shown in Figures 2a-d. Again, viewing the movie
version of this, available in the file ZoomStatFig2.mpg in the same web directory,
is highly recommended.
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Figure 2a
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FIGURE 2A: Smallest scale, m = 0.0003, autocorrelation plot of 10,000 bin
window, from one hour Internet traffic data set. Shows autocorrelations very
similar to a Gaussian White Noise process.

Figure 2a shows the smallest scale m = 0.0003 sec. Note that this autocor-
relation function appears to be very similar to that of a Gaussian White Noise.
In particular, roughly 5 percent of the values cross above the red dashed line.
The reason this is noticeably different from Figure la, is that a longer series of
bin counts was used for Figurel.
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FIGURE 2B: Medium scale, m = 0.01, aulocorrelation plot of 10,000 bin
window, from one hour Internet traffic data set. Shows strong positive
aulocorrelation.

Figure 2b shows the scale m = 0.01sec. Here there is strong dependence

at all lags shown. As for Figure 1b, the increasing correlation from Figure 2a
does not “move in from the right”, but instead “rises up vertically”.
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Figure 2c
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FI1GURE 20: Medium scale, m = 0.08, aulocorrelation plot of 10,000 bin
window, from one hour Internet traffic data set. Shows strong positive
autocorrelalions.

Figure 2¢ shows the intermediate scale m = 0.08sec. This is similar to
Figure 1c for small lags but the positive correlation is much higher here for
larger lags. This suggests that the larger lag structure in Figure 1c was driven
by the data being too sparse.
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Figure 2d
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FIGURE 2D: Large scale, m = 0.32, autocorrelation plot of 1000 bin window,
from one hour Internet traffic data set. Shows even stronger positive
aulocorrelation.

Figure 2d, at the scale m = 0.32 sec, suggests that the apparent white noise
like structure in Figure 1d was probably due to working with a too small time
series. Instead there is very strong positive correlation present for all lags shown
at this scale.

A possible explanation for the surprising behavior in the small to medium
scale transition, i.e. Figures la to 1b and Figures 2a to 2b, could be that too
small a range of lags is considered. These pictures are reproduced, now with
2000 lags (vs. the 100 shown in Figures 2a-d) in Figures 3a-d. The vertical
dashed line shows the previous upper limit of 100 lags. The “time changing
intuition” of changing scales is also useful to view. For this some vertical red
solid lines have been added to indicate several time scales (which is especially
helpful in the movie version).
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Figure 3a
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Figure 3a shows that the pattern of Figure 2a extends to a much wider
range of lags. Here (and in Figures 3b - 3d) the vertical dashed blue line shows
the corresponding boundary of Figure 2a. Again, this appears similar to the
structure expected from white noise data, in that about 5% of the values cross
above the dashed red line. This fits well with the structure found by Cao,
Cleveland, Lin, and Sun (2001).
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Figure 3b
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F1GURE 3B: Medium scale, m = 0.01, aulocorrelation plot of 10,000 bin
window, from one hour Internet traffic data set. Shows strong positive
autocorrelations fall off for larger lags.

Figure 3b shows that the strong positive correlation behavior, present in
Figure 2b, falls off for larger lags. However, the movie version shows that
the transition is still “vertical rise”, not the “coming in from the right” that is
expected from the usual internet traffic scaling observations which report strong
correlations especially at round trip times.

14



Figure 3c
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F1GURE 30: Medium scale, m = 0.08, aulocorrelation plot of 10,000 bin
window, from one hour Internet traffic data set. Continues to show strong
positive autocorrelations falling off for larger lags.

Figure 3c is for the scale m = 0.08 sec. Again for very large lags, the
positive dependence falls off. The movie shows that for this transition, there is
a definite impression of “dependence coming in from the right side” (e.g. focus
carefully on the “10 sec” line).
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Figure 3d
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FIGURE 3D: Medium scale, m = 0.32, autocorrelation plot of 10,000 bin
window, from one hour Internet traffic data set. Continues to show strong
positive autocorrelations falling off for larger lags.

Figure 3d continues the trend shown for Figure 3c. Studying the movie
continues to show that in the transition, there is definite “right to left movement
of the dependence”.

In summary, the large scale behavior appears to correspond to the usual
intuition (of Internet traflic researchers) that long range dependence happens
at large scale, but the small scale behavior is quite diflerent.

Some simple calculations can be used to understand this. Let Xé;n) denote
the 2{-th bincount at scale m. When we shift to the coarser scale 2m, this
bincount (at the same time location) is replaced by

2m m m
Xt( )= Xét )+X§t+)1'

16



The corresponding autocovariance becomes

cov (X-(Qm)’X.(zj?)) = cov (Xé-m) + X5, X{, +X§-ﬂz)2l+1) =

cov (Xé_m),Xé@m) + cov (Xévaé@zlﬂ) +
+cov (Xéﬁ)l,Xéﬁ)Ql) + cov (Xéﬁ)l,Xé@ng) ;

where, letting n,, denote the number of bins at scale m (so that no,, = nm/2),

MN2m
cov (X£2m>, X§2j7>) - L ( xCm) _y(zm) ( X&) _Ymm))’
N2m =l
“ m 1 KR m - (m) m —(m)
cov (Xé. )7X2(.2k) = <X2(t )X ) (Xétf)k X ) 7
o=y
1 M2m

m =7(m) m ~(m)
LS (g X (g - X,

cov (Xéﬁ)p Xz(:njkk) g
o=l

for k = 21 —1, 21, 2141, where X' i the mean at scale m, with X —

2Y(m). Using the change of index t’ = 2¢, note that the second summation is
over even t' = 2,...,n,,. Similarly, using the change of index ' = 2t + 1, the

third summation is over odd t' = 1,...,n,,. Thus putting both together gives
the scale m covariance,

cov (Xg(_m),Xgﬁ)Ql) + cov (Xéﬁ)17X2(ﬁ)172l) = 2cov (X.(m),X_(Z)) )

where the factor of 2 comes from # = ni The remaining two covari-
- -

ance terms are offset by £1.  So when the autocorrelation function p(™) (1) is
“smooth”, i.e. doesn’t change rapidly in [, (usually true in the above Figures),
then the sum of the remaining terms is well approximated by

cov (Xé_m),Xgﬁ)QlH) + cov (Xéﬁ)lvxéﬁ)kzlq) a2 2cov (X.(m),X_(Z)) .

This “smoothness of the autocorrelation” is typical of most of the classical linear
time series models such as ARMA (Auto Regressive Moving Average) processes,
see e.g. Brockwell and Davis (1991). It follows that

cov (X.(2m),X.(2j7)) 7= dcov (X.(m),X_(Z)) )

Using a similar analysis, the scale 2m variance can be written in terms of
scale m quantities as

var (X.(Qm)) = cov (Xgn) —l—XQ(T‘_)l,Xé@ -l—XéT‘_)l)
= var (Xg(m)) + 2cov (Xém),Xéﬁ)l) + var (XQ(T‘_)I) =

= 2 [Ucw“ (X.(m)) + cov (X.(m),X_(rl))] .
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Combining the above results, we see that the autocorrelation scales approx-
imately as:

P = =T )
2 [Um“ (X.(m)) + cov (X.(m), X_(fl))} L+ptm(1) 14 plm)(1)

A first consequence of (1) is that the autocorrelation scales approximately like
a constant multiple over m. This explains the“constant horizontal increase”
that was puzzling in the transitions from Figures la to 1b and from Figures
2a to 2b. Essentially the “small but positive and constant” autocorrelations
are all scaled in nearly the same way. A second consequence of (1) is that
the lag one autocorrelation, p(m)(l), is critical to the cross scale behavior of
the autocorrelation. If this is quite small (e.g. in figures la and 2a), then
the ratio #m)(l) =2 2, so this scaling effect is quite large, which explains the
rapid increase observed in the movie in those regions. On the other hand, when
p™)(1) is close to 1, e.g. as in Figures 2c and 2d, the ratio #m)(l) =~ 1, so
this effect is negligible. In the latter situation, other considerations, such as
“dependence coming in from the right” drive what is seen in the movie.

A challenging and interesting problem for future research is to find stochastic
models with this type of scaling dependence structure. Classical ARMA models
are inappropriate, since they have exponentially decreasing tails, while some
“nearly constant, but small” correlation is needed for this type of behavior. The
Poisson process structure suggested by Cao, Cleveland, Lin, and Sun (2001) for
small scales also will not scale up appropriately, since in that case p(m)(l) =
0, so even though the ratio #m)(l) s 2, 2 times O is still 0. While the
autocorrelations in Figure 2a appear to be essentially zero, a simple hypothesis
test shows that in fact the mean of the autocorrelations is significantly positive.
This slight positivity is what drives the increasing trend seen in the transition
to Figure 2b, as predicted by (1).

Another viewpoint for zooming autocovariances: instead of fixing the lag I,
as the scale changes, fix time. In particular rescale the z-axis in the Figure
3 plots so that the time points, represented by the solid vertical lines, remain
constant. The results of this appear in Figure 4. Again the movie version in the
file ZoomStatFigd.mpg is recommended. A smaller scale frame of that movie,
for m = 0.025, is shown in Figure 4a. The same important times are highlighted
with vertical red lines as in Figures 3a-d. Note that now a logarithmic time
scale is used.

18
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Figure 4a
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FIGURE 4A: Time fixed zooming aulocorrelation of inlternetl dala. This again
shows that for small scales the autocorrelation is not far from white noise.

This shows dependence similar to that demonstrated above. But the im-
portance of this rescaling comes from looking across scales, as in the movie. A
larger scale, m = 0.04 frame is shown in Figure 4b. Note that in Figure 4b,
the time axis, and the vertical red lines stay in the same position.

Figure 4b shows how the above described “lifting of the dependence” appears
on this scale. This, and especially the movie, show that on this scale the depen-
dence “moves towards the right”. This again is contrary to the usual internet
traffic intuition of “dependence existing at certain scales”. Under that model,
the heights should stay roughly constant in this view of the autocorrelations.
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Figure 4b
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FI1GURE 4B: Larger scale time fized zooming autocorrelation of internet data.
This shows dependence “rises”, instead of “coming in from the right”.

An interesting open problem is to find effective models for this unusual long
range dependence. This analysis makes it clear that at small scales a very small,
but positive (and nearly constant) autocorrelation is needed. Then aggregation
will give appropriate auto-correlation structure.

4 Zooming SiZer

SiZer (Significance of Zero crossings of the derivative), is an exploratory data
analysis tool proposed by Chaudhuri and Marron (1999). A straightforward
application of SiZer, for the same data set as in Figure 1, is shown in Figure
5a. As for the above figures, Figure 5a is one frame of a movie. This movie is
in the file ZoomStatFigh.mpg, in the same web directory, and its viewing while
reading this is strongly recommended.
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Figure 5a
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FIGURE 5A: Largest scale (convential) SiZer analysis of the 3 minute Internet

traffic data set. Shows rich structure, caused by the “burstiness” of internet
traffic data.

The “raw data” that is input to SiZer in Figure 5a, is bin counts, from 400
equally spaced bins, over the full time range (about 180 secs). The top figure
is a family of local linear smooths, see e.g. Fan and Gijbels(1996) or Wand
and Jones (1994) for access to the literature on this method. The family of
smooths uses the range of bandwidths shown as the y-axis in the bottom panel,
h € [-0.4,1.3]. In the top panel, there does not seem to be any important
structure, or trends in the data. However the bottom panel shows that in fact
there is a great deal of structure that can not be explained as “random noise”.
The bottom panel is the SiZer map, which assesses the statistical significance
of the slope of the smooth, for each time (shown on the horizontal axis) and for
each bandwidth A, (shown on the vertical axis). At locations where the slope
is significantly increasing (i.e. the hypothesis of O slope can be rejected in this
direction, i.e. a confidence for the slope is completely above 0), the color blue
is used. Similarly the color red is used in areas of significant decrease. The
intermediate color of purple is used in locations where there is no significant
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slope (i.e. a confidence interval for the slope contains 0). The dashed white
lines give an intuitive idea of the amount of smoothing being done, representing
the “effective width of the Gaussian window function” by the center plus and
minus two standard deviations.

If these data came from a homogenous Poisson process, so the wiggles ob-
served in the top panel were just spurious sampling noise artifacts, then the
SiZer map would be entirely purple. The large number of red and blue regions
that are visible here indicate the existence of strongly changing trends in this
time series, that appear at a wide range of scales. This is a new view of the
“burstiness” that has been found by others. A “burst of data” passing through
the link appears as blue near the beginning of the burst (when the traffic level
is sharply increasing) followed by red at the end of the burst (when the traffic
level tapers off).

Note that the significant red and blue regions appear even at the smallest
scales, i.e. the bottom of the SiZer map. This suggests that there may be
interesting structure at finer scales, which is not surprising since there are 1
million data points, and only 400 bins. Zooming SiZer provides a cross-scale
visualization that shows clearly and continuously how the SiZer map changes
across a wide range of scales.

Zooming SiZer is a sequence of pictures of the type shown in Figure 5a,
where in each succeeding picture, only about the first 84% of the data in the
previous picture is used. The scale factor is actually 271/ ~ 0.84 so that 4
steps gives a factor of 2. The yellow line in the top panel of Figure 5a shows
this boundary (for the next picture). Since a smaller bandwidth range is used
in the next picture, the bandwidth range is reduced by the same factor. This
results in a new SiZer map, where the upper and right hand boundaries are
marked in yellow on the lower panel of Figure 5a, together with some new area
at the bottom (to give a corresponding bandwidth range). The next picture in
the series is shown in Figure 5b.
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Figure 5b
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FIGURE 5B: Nexl smaller scale in the zooming SiZer analysis of the 8 minute
Internet traffic data set. This represents the area inside the yellow box in
Figure 5a, plus some new area al the boltom.

Note that the overall pattern in Figure 5b is very similar to that inside the
yellow box in Figure 5a, except near the edges where boundary effects dominate.
At this point it is quite helpful to download that movie, and view it in that way.
The reason is that the red and blue regions move nicely as the zooming SiZer
progresses down through the scales. A much finer scale is shown in Figure 5c.
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Figure 5c
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FIGURE 50: A smaller scale part of the zooming SiZer analysis of the 3
minute Internet traffic data set. Shows a smaller amount of structure that can
be distinguished from random.

Here the scale is an order of magnitude smaller. There is much more purple
on this SiZer map, indicating that most of the structure apparent in the family
of smooths in the top panel could be explained by random variability. However,
there are still a few regions of significant change, indicating that also at this time
scale, there occasional bursts in the data.

The finest scale considered here is shown in Figure 5d.

24



Figure 5d
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FI1GURE 5D: Smallest scale in the zooming SiZer analysis of the 3 minute
Internet traffic data set. The gray represents not enough data for reliable
analysis. This shows nonrandom structure, even at the smallest scale.

Here there is a gray fringe appearing at the bottom. SiZer uses this color
to indicate regions where there is not enough data to do reliable statistical
inference. Note that even at this much smaller time scale (in particular three
orders of magnitude smaller than that of Figure 5a), there are still occasional
significantly bursty locations.
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