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Abstract

In this paper, we describe a new multiscale model for characterizing positive-valued and long-range de-
pendent data. The model uses the Haar wavelet transform and puts a constraint on the wavelet coefficients
to guarantee positivity, which results in a swift O�N� algorithm to synthesize N -point data sets. We elu-
cidate our model’s ability to capture the covariance structure of real data, study its multifractal properties,
and derive a scheme for matching it to real data observations. We demonstrate the model’s utility by
applying it to network traffic synthesis. The flexibility and accuracy of the model and fitting procedure
result in a close match to the real data statistics (variance-time plots) and queuing behavior.

1 Introduction

Fractals models arise frequently in a variety of scientific disciplines, such as physics, chemistry, astronomy, and
biology. In DSP, fractals have long proven useful for applications such as computer graphics and texture modeling
[1]. More recently, fractal models have had a major impact on the analysis of data communication networks such as
the Internet. In their landmark paper [2], Leland et al. demonstrated that network traffic exhibits fractal properties
such as self-similarity, “burstiness,” and long-range dependence (LRD) that are inadequately described by classical
traffic models. Characterization of these fractal properties, particularly LRD, has provided exciting new insights into
network behavior and performance.

Fractals are geometric objects that exhibit an irregular structure at all resolutions. Most fractals are self-similar;
if we “zoom” (in or out) of the fractal, we obtain a picture similar to the original. Deterministic fractals usually have
a highly specific structure that can be constructed through a few simple steps. Real-world phenomena can rarely be
described using such simple models. Nevertheless, “similarity on all scales” can hold in a statistical sense, leading to
the notion of random fractals.

As the pre-eminent random fractal model, fractional Brownian motion (fBm) has played a central rôle in many
fields [2, 3]. FBm is the unique Gaussian process with stationary increments and the following scaling property for all
a � �

B�at�
fd
� aHB�t�� (1)

with the equality in (finite-dimensional) distribution. The parameterH , � � H � �, is known as the Hurst parameter.
It rules the LRD of fBm, as we will see later, but it also governs its local “spikiness.” In particular, for all t

B�t� s��B�t� � sH � (2)

meaning that, for � � H � �, fBm has “infinite slope” everywhere.
The statistical self-similarity (1) of fBm has proven most useful for signal modeling, since it efficiently captures

signal features such as burstiness and LRD, while still allowing tractable theoretical analysis [2]. Nevertheless, models
based on fBm can be too restrictive to adequately characterize many types of signals.
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First, strictly self-similar scaling behavior is not always realistic. For example, H in (1) may vary when measured
over different values of a, or H in (2) may depend on t. Second, fBm models are inherently Gaussian. Many signals
have positive increments and, hence, are non-Gaussian.

For applications such as network traffic [4, 5] and turbulence analysis [6], the statistics of such signals can be more
accurately characterized using a multifractal analysis, which describes how the signal’s scaling behavior varies across
the signal. In this paper, we develop a multifractal signal model especially suited to positive-valued data with LRD.
Modeling of such data is not only vital for networking [2, 4], but it also provides key insights into a host of other
applications such as turbulence and geophysics [6].

We call our model the multifractal wavelet model (MWM) because of its wavelet-domain formulation. With its
simple Haar-wavelet construction (Figure 1), the MWM is simple to apply, yet it can characterize LRD and a number
of different multifractal properties. Since we cannot treat the MWM in full detail in this paper, we refer the interested
reader to [7] for a more in-depth treatment.

2 FBm and LRD

Although we analyze fBm from a continuous-time point of view, for practical computations and simulations, we often
work with sampled continuous-time fBm. The increments process of sampled fBm

X �n� 	� B�n��B�n� �� (3)

defines a stationary Gaussian sequence known as discrete fractional Gaussian noise (fGn) with covariance behavior [1]

rX �k� � jkj�H��� for jkj large� (4)

For ��
 � H � �, the covariance of fGn is strictly positive and decays so slowly that it is non-summable (i.e.,P
k rX �k� ��). This non-summability, corresponding to positive, slowly-decaying covariances over large time lags,

defines LRD.
The LRD of fGn can be equivalently characterized in terms of how the aggregated processes

X�m��n� 	�
�

m

kmX

i��k���m��

X�i� (5)

behave. It follows from (1) that X�n�
fd
� m��HX�m��n��

Hence, a log-log plot of the variance of X �m��n� as a function of m — known as a variance-time plot — will have
a slope of 
H � 
. The variance-time plot can characterize LRD in non-Gaussian, non-zero-mean data as well [2].

3 Wavelets and LRD

The discrete wavelet transform is a multi-scale signal representation of the form [8]

x�t� �
X

k

uk 

�J��� �

�

�J�t� k

�
�

J�X

j���

X

k

wj�k 

�j�� �

�

�jt� k

�
� j� k � ZZ

with J� the coarsest scale and uk and wj�k the scaling and wavelet coefficients, respectively. The scaling coefficients
may be viewed as providing a coarse approximation of the signal, with the wavelet coefficients providing higher-
frequency “detail” information.

Wavelets serve as an approximate Karhunen-Loève transform for fBm [3], fGn, and more general LRD signals
[9]. Thus, highly-correlated, LRD signals become nearly uncorrelated in the wavelet domain. In addition, the energy
of the wavelet coefficients of continuous-time fBm decays with scale according to a power law [3]. While for sampled
fBm the power-law decay is not exact [3], the Haar wavelet transform of fGn exhibits power-law scaling of the form�

[9]
var�Wj�k� � 	� 
��H����j��� �
� 
�H���� (6)

where 	� is the variance of the fGn process.
�We use capital letters when we consider the underlying signal X (and, hence, its wavelet and scaling coefficients) to be random.
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Figure 1: (a) Haar scaling function � and (b) Haar wavelet function �.

4 The MWM

The basic idea behind the MWM is simple. To model non-negativity, we use the Haar wavelet transform with special
wavelet-domain constraints. To capture LRD, we characterize the wavelet energy decay as a function of scale.

4.1 Haar Wavelets and Non-Negative Data

Before we can model non-negative signals using the wavelet transform, we must develop conditions on the scaling and
wavelet coefficient values for x�t� in (6) to be non-negative. While cumbersome for a general wavelet system, these
conditions are simple for the Haar system. In a Haar transform (see Figure 1), the scaling and wavelet coefficients can
be recursively computed using [8]

uj���k � 
�����uj��k � uj��k��� and wj���k � 
�����uj��k � uj��k���� (7)

Solving (7) for uj��k and uj��k�� we find

uj��k � 
�����uj���k � wj���k� and uj��k�� � 
�����uj���k � wj���k�� (8)

For non-negative signals, uj�k � � � j� k, which with (8) implies that

jwj�kj � uj�k� � j� k� (9)

4.2 Multiplicative Model
The positivity constraints (9) on the Haar wavelet coefficients lead us to a very simple multi-scale, multiplicative
signal model for positive processes. (See [10] for a similar model used as an intensity prior for wavelet-based image
estimation.) Let Aj�k be a random variable supported on the interval ���� �� and define the wavelet coefficients
recursively by

Wj�k � Aj�k Uj�k� (10)

Together with (8) we obtain

Uj��k � 
������ �Aj���k�Uj���k and Uj��k�� � 
�������Aj���k�Uj���k� (11)

The above construction can be visualized as a course-to-fine synthesis (see Figure 2(a)). Starting from the coarsest
scale j � J�, we can synthesize a realization of a process by iteratively applying (10) to obtain the wavelet coefficients
at scale j and then applying (8) to obtain the scaling coefficients at the next finest scale j � �. When we reach the
finest scale j � J� we obtain the desired process X , which is given by

X �k� � 
J���UJ��k for k � �� � � � � 
J��J� � �� (12)

In essence the above algorithm simultaneously synthesizes the wavelet coefficients and inverts the wavelet trans-
form, requiring only O�N� operations to create a length-N signal.
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Figure 2: (a) MWM construction: At scale j, we form the wavelet coefficient as the product Wj�k � Aj�kUj�k. Then, at scale
j � �, we form the scaling coefficients Uj����k and Uj����k�� as sums and differences of Uj�k and Wj�k (normalized by ��

p
�).

(b) Probability density function of a ��p� p� random variable A. For p � ���, A resembles a binomial random variable, and for
p � � it has a uniform density. For p � � the density appears like a truncated Gaussian density, and as p increases, the density
resembles a Gaussian density more and more closely.

4.3 � multipliers
We need to choose an appropriate distribution for the multiplierAj�k. We will assume that Aj�k is independent ofUj�k.
Second, we will assume that Aj�k is symmetric about 0; it is easily shown this symmetry is necessary for the resulting
process to be stationary [7].

Because of its simplicity and flexibility, we will use a symmetric beta distribution, 
�p� p� (see Figure 2 (b)) for
the Aj�k’s and christen the resulting model the 
MWM. The variance of a random variable A � 
�p� p� is

var�A� �
�


p� �
� (13)

4.4 Covariance matching
Since we assume the multipliers are identically distributed within scale (i.e., Aj�k � 
�pj � pj�), for our Haar wavelet
construction we can control the wavelet energy decay across scale via

var�Wj���k�

var�Wj�k�
�


 var �Aj���k �

var �Aj�k� �� � var �Aj���k ��
� (14)

Thus, to model a given process with the 
MWM, we can select the parameters pj via (13) and (14) to match the
signal’s theoretical wavelet-domain energy decay, such as (6). Or, given training data, we can select the parameters to
match the sample variances of the wavelet coefficients as a function of scale.

To complete the modeling, we only require to choose the coarsest scaling coefficients UJ��k and the parameter
p�J�� of the model. From (10) and (13) we obtain

var�WJ��k� 	 �
p�J�� � �� � IE�U�
J��k�� (15)

We choose a coarsest scale J� and obtain p�J�� from estimates of IE�U�
J��k

� and var�WJ��k� using (15). We then
synthesize b blocks of data, each with coarsest scale J� and finest scale J� (see Section 4.2) and concatenate them to
obtain a synthetic data trace of b 	 
J��J� data points. To ensure the non-negativity of our process, we would have
to model UJ��k (k � �� ��� b � �) using multivariate densities with strictly non-negative support. However, IE�UJ��k�
will often so greatly outweigh var�UJ��k� that the probability of a negative value will be negligible, even for a jointly
Gaussian model.

Interestingly, the wavelet coefficients of the MWM are uncorrelated. This is easily deduced from the fact that the
Aj�k’s are zero mean and independent, and from the dependency of wavelet coefficients across scale

Wj��k � 
����
Aj��k

Aj���k
�� �Aj���k�Wj���k (16)
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Figure 3: Interarrival times of packets of (a) Bellcore August 1989 [2], (b) one realization of the beta multifractal wavelet model
(�MWM) synthesis and (c) one realization of an fGn model. The �MWM trace resembles the Bellcore data closely, while the fGn
data does not.

and their dependency within scale

Wj��k�� �
Aj��k��

Aj��k

��Aj���k

� �Aj���k
Wj��k � (17)

[7]. Thus, by matching the variances of wavelet coefficients, the MWM would exactly capture the entire correlation
structure of the wavelet coefficients, if the wavelet coefficients were truly decorrelated. Typically, the correlation
between the wavelet coefficients of LRD processes are small [9], and therefore we can approximate such processes
quite accurately with the MWM.

Of course, this analysis addresses only the second-order statistics of our signal. Higher-order properties of the
MWM are the subject of a multifractal analysis.

5 The MWM is a Multifractal

Multifractals offer a wealth of processes that are novel in many respects. The backbone of a multifractal is typically
a construction where one starts at a coarse scale and develops details of the process on finer scales iteratively in a
multiplicative fashion. It follows from (11) that the MWM is a binomial cascade,� one of the simplest multifractals.
The name binomial cascade is explained by applying (11) iteratively and writing Uj�k as the product of the coarsest
scale UJ��k and the multipliers 
������
Aj���k�.

Multiplicative structures, in particular the product representation of Uj�k, bear various consequences. First, if all
multipliers � 
 Aj���k in (11) are log-normal, then the marginals Uj�k will be log-normal as well. Similarly, if the
�
Aj�k are all identically distributed, Uj�k will be approximately log-normal by the central limit theorem.

Second, interpretingUj�k as the increment of a limiting process Y over the interval �k
�n� �k���
�n�, we find for
Y a local behavior of the type (2). To see this, note that log jUj�kj� log 


j can be written as the sum of approximately j
factors of the form log� 


������
Al�m� normalized by ��j. So, we expect this number to converge to some limiting
value H . It is essential to note, however, that this value H depends now on t — hence the term multifractal for Y .

As a further feature of interest, depending on the moments of the multipliers, the marginals Uj�k of binomial
cascades may have diverging moments of order q larger than some qcrit, where qcrit can be arbitrarily large. This
broadens the realm of “heavy tailed” processes considerably.

The exact multifractal properties of the MWM are studied in detail in [7].

6 Application to Network Traffic
We demonstrate the power of the MWM for a problem of considerable practical interest — network traffic modeling.
The LRD of data traffic can lead to higher packet loss than that predicted by classical queuing analysis [2]. A better
understanding of the LRD data traffic can thus prove invaluable in solving network problems caused by LRD. Synthetic
traffic models are well-suited for this purpose, because the effect of various model parameters on network performance

�For a detailed introduction to binomial cascades and multifractal theory, see [4, 7].
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Figure 4: Variance-time plot of the Bellcore data “�” and one realization of the �MWM synthesis “�”.
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Figure 5: Here we partition the pAug trace into 15 sub-traces of equal number of packets and compare their queueing behavior
with that of 15 synthesized traces of the same length. In (a), observe that the sub-traces have a wide variation in tail queue behavior.
In (b), observe that the synthesized traces display a similar variation in tail queue behavior as the sub-traces.

can be studied through simulation. The 
MWM is one such model because it can capture vital characteristics of real
traffic like LRD and queuing behavior. To show this, we focus on the August 1989 Bellcore Ethernet trace pAug� a
record of one-million interarrival times (Figure 3(a)), as measured by Leland et al. [2]. We model this data using the

MWM. To train the 
MWM, we take a Haar wavelet transform of the Bellcore data. We use (13) and (14) to choose
the 
�pj � pj� distribution used at each scale j so that the theoretical variances of our synthesized wavelet coefficients
match the measured variances of the Bellcore wavelet data. Since we require at least a few wavelet coefficients to get
a good estimate of their sample variance, we cannot reliably fit our model to the coarsest scale wavelet coefficients
of the Bellcore data. Thus, we model only the �� finest wavelet scales of the Bellcore data using the 
MWM, due to
which the trained 
MWM can generate synthetic traces of maximum length 
��.

We analyze the LRD properties of the trace by estimating the variance-time plot, as shown in Figure 4. Although
the data exhibits LRD (average slope corresponding to H � ���), the data does not appear to be strictly second-order
self-similar, as evidenced by the “kink” in the slope. Thus, an fGn model model would be somewhat inaccurate in
modeling the Bellcore data.

Figure 3 compares the Bellcore data with synthetic 
MWM data and data from an fGn model. The fGn model has
mean and variance equal to the sample mean and variance of Bellcore data and H � ���. We observe from Figure 3
that synthetic MWM data closely resembles the real data while fGn data does not. In fact, nearly ��� of the fGn data
points go negative, which reveals that an fGn model is unrealistic for modeling positive data with a low mean and high
variance like the Bellcore data considered here.

In [7], we further provide an empirical multifractal analysis of the synthesized data and show that it is closely
matched by that of the Bellcore data.

To assess the accuracy and usefulness of the 
MWM for traffic modeling, we compare the queuing behavior of
the simulated traffic traces against that of the actual Bellcore data. In our simulation experiments, we consider the
performance of an infinite length single server queue with a constant service rate of 500 packets/sec.
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Figure 6: Comparison of the queuing behavior of the Bellcore pAug with that of 20 synthesized �MWM traces. Displayed are the
tail probabilities of buffer occupancy against buffer size. In (a), observe the variability of the queue performance of the synthesized
traces. In (b), observe that the average queue performance of simulated traces and that of the real trace match closely.

The 
MWM is a stochastic model, due to which different data sets synthesized by it will perform differently when
sent through a queue. An ideal experiment to test the 
MWM would be to compare the average tail queue behavior
of several realizations of the real process with that of several realizations of the 
MWM. Unfortunately, we have
only one realization of the real process, and so try to learn about the queuing behavior of the underlying real process
by partitioning the real data trace into 15 sub-traces of equal length (
�� packets). We assume each sub-trace to be
a different realization of the underlying process and expect the queuing behavior of the sub-traces to resemble that
of different sample functions of the process. We then use the 
MWM to synthesize �� traces each of 
�� packet
interarrival times. The performance of the queue with the real and 
MWM sub-traces as input are shown in Figure 5.
We observe that the sub-traces of the real data have widely varying tail queue behavior, and that the simulation traces
have a similar variation in queuing behavior.

We next compare the queuing performance of the entire real data trace with that of 20 traces of the approximately
the same length (��� points), generated using the 
MWM (see Figure 6). Since the trained 
MWM can generate
traces of 
�� data points, the simulation traces for this experiment were formed by concatenating �� length-
�� traces
generated using the 
MWM. We observe that the simulated traces in Figure 6(a) exhibit a wide variation in tail queue
behavior. The results of the previous experiment indicate that this is to be expected. We also observe that the average
tail queue behavior of the simulated traces matches that of the real trace exceedingly well (see Figure 6(b)). However,
as the previous experiment suggests, the real data can be viewed as just one possible realization of our model, and so
it cannot be expected to always exhibit the same queuing behavior as the average of several simulated traces.

In summary, these queuing experiments demonstrate that our synthesized traffic traces not only match real traffic
in its various statistical properties but also in its queuing behavior. This demonstrates the potential use of our model
for network modeling and simulation.

7 Conclusions

The multiplicative wavelet model (MWM) combines the power of multifractals with the efficiency of the wavelet
transform to form a flexible framework natural for characterizing and synthesizing positive-valued data with LRD.
As our numerical experiments have shown, the MWM is particularly suited to the analysis and synthesis of network
traffic data. In addition, the model could find application in areas as diverse as financial time-series characterization,
geophysics (using 2-d and 3-d wavelets), and texture modeling. The parameters of the MWM are simple enough to be
easily inferred from observed data or chosen a priori. Computations involving the MWM are extremely efficient —
synthesis of a trace ofN sample points requires onlyO�N� computations. Finally, several extensions to the MWM are
straightforward. The choice of 
-distributed wavelet multipliers Aj�k is not essential. Alternatively, we can employ
mixtures of 
’s or even purely discrete distributions to fit higher-order multifractal moments.
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