
IEEE�SP INTERNATIONAL SYMPOSIUM ON TIME�FREQUENCY AND TIME�SCALE ANALYSIS�

PITTSBURGH PA� OCTOBER ����

A MULTIFRACTAL WAVELET MODEL FOR POSITIVE

PROCESSES

Matthew S� Crouse� Rudolf H� Riedi� Vinay J� Ribeiro� and Richard G� Baraniuk
Department of Electrical and Computer Engineering�

Rice University� Houston� TX �����

ABSTRACT
In this paper� we describe a new multiscale model for char�
acterizing positive�valued and long�range dependent data�
The model uses the Haar wavelet transform and puts a con�
straint on the wavelet coe�cients to guarantee positivity�
which results in a swift O	N
 algorithm to synthesize N �
point data sets� We elucidate our model�s ability to capture
the covariance structure of real data� study its multifrac�
tal properties� and derive a scheme for matching it to real
data observations� We demonstrate the model�s utility by
applying it to network tra�c synthesis� The �exibility and
accuracy of the model and tting procedure result in a close
match to the real data statistics 	variance�time plots
 and
queuing behavior�

�� INTRODUCTION

Fractals models arise frequently in a variety of scientic
disciplines� such as physics� chemistry� astronomy� and bi�
ology� In DSP� fractals have long proven useful for applica�
tions such as computer graphics and texture modeling ����
More recently� fractal models have had a major impact on
the analysis of data communication networks such as the
Internet� In their landmark paper ���� Leland et al� demon�
strated that network tra�c exhibits fractal properties such
as self�similarity� �burstiness�� and long�range dependence
	LRD
 that are inadequately described by classical tra�c
models� Characterization of these fractal properties� partic�
ularly LRD� has provided exciting new insights into network
behavior and performance�

Fractals are geometric objects that exhibit an irregular
structure at all resolutions� Most fractals are self�similar�
if we �zoom� 	in or out
 of the fractal� we obtain a picture
similar to the original� Deterministic fractals usually have a
highly specic structure that can be constructed through a
few simple steps� Real�world phenomena can rarely be de�
scribed using such simple models� Nevertheless� �similarity
on all scales� can hold in a statistical sense� leading to the
notion of random fractals�

As the pre�eminent random fractal model� fractional
Brownian motion 	fBm
 has played a central r�ole in many
elds ��� ��� FBm is the unique Gaussian process with sta�
tionary increments and the following scaling property for
all a � �
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with the equality in 	nite�dimensional
 distribution� The
parameter H� � � H � �� is known as the Hurst parameter�
It rules the LRD of fBm� as we will see later� but it also
governs its local �spikiness�� In particular� for all t
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meaning that� for � � H � �� fBm has �innite slope�
everywhere�

The statistical self�similarity 	�
 of fBm has proven most
useful for signal modeling� since it e�ciently captures sig�
nal features such as burstiness and LRD� while still allow�
ing tractable theoretical analysis ���� Nevertheless� models
based on fBm can be too restrictive to adequately charac�
terize many types of signals�

First� strictly self�similar scaling behavior is not always
realistic� For example� H in 	�
 may vary when measured
over di�erent values of a� or H in 	�
 may depend on t�
Second� fBm models are inherently Gaussian� Many signals
have positive increments and� hence� are non�Gaussian�

For applications such as network tra�c ��� �� and tur�
bulence analysis ���� the statistics of such signals can be
more accurately characterized using a multifractal analy�
sis� which describes how the signal�s scaling behavior varies
across the signal� In this paper� we develop a multifractal
signal model especially suited to positive�valued data with
LRD� Modeling of such data is not only vital for networking
��� ��� but it also provides key insights into a host of other
applications such as turbulence and geophysics ����

We call our model the multifractal wavelet model
	MWM
 because of its wavelet�domain formulation� With
its simple Haar�wavelet construction� the MWM is simple
to apply� yet it can characterize LRD and a number of dif�
ferent multifractal properties� Since we cannot treat the
MWM in full detail in this paper� we refer the interested
reader to ��� for a more in�depth treatment�

�� FBM AND LRD

Although we analyze fBm from a continuous�time point of
view� for practical computations and simulations� we often
work with sampled continuous�time fBm� The increments
process of sampled fBm

X�n� �� B	n
�B	n� �
 	�


denes a stationary Gaussian sequence known as discrete
fractional Gaussian noise 	fGn
 with covariance behavior ���

rX �k� � jkj�H��� for jkj large� 	�


For ��� � H � �� the covariance of fGn is strictly
positive and decays so slowly that it is non�summable 	i�e��P

k
rX �k� � �
� This non�summability� corresponding to

positive� slowly�decaying covariances over large time lags�
denes LRD�

The LRD of fGn can be equivalently characterized in
terms of how the aggregated processes
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Figure �� �a� Haar scaling function � and �b� Haar wavelet
function ��

behave� It follows from 	�
 that X	n

fd
� m��HX�m�	n
�

Hence� a log�log plot of the variance of X�m�	n
 as a
function of m � known as a variance�time plot � will have
a slope of �H � �� The variance�time plot can characterize
LRD in non�Gaussian� non�zero�mean data as well ����

�� WAVELETS AND LRD

The discrete wavelet transform is a multi�scale signal rep�
resentation of the form ���
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with J� the coarsest scale and uk and wj�k the scaling
and wavelet coe�cients� respectively� The scaling coe��
cients may be viewed as providing a coarse approximation
of the signal� with the wavelet coe�cients providing higher�
frequency �detail� information�

Wavelets serve as an approximate Karhunen�Lo�eve
transform for fBm ���� fGn� and more general LRD signals
� �� Thus� highly�correlated� LRD signals become nearly un�
correlated in the wavelet domain� In addition� the energy
of the wavelet coe�cients of continuous�time fBm decays
with scale according to a power law ���� While for sampled
fBm the power�law decay is not exact ���� the Haar wavelet
transform of fGn exhibits power�law scaling of the form� � �

var	Wj�k
 � 	� ���H����j��� 	�� ��H��
� 	�


where 	� is the variance of the fGn process�

�� THE MWM

The basic idea behind the MWM is simple� To model non�
negativity� we use the Haar wavelet transform with special
wavelet�domain constraints� To capture LRD� we charac�
terize the wavelet energy decay as a function of scale�

���� Haar Wavelets and Non�Negative Data

Before we can model non�negative signals using the wavelet
transform� we must develop conditions on the scaling and
wavelet coe�cient values for x	t
 in 	�
 to be non�negative�
While cumbersome for a general wavelet system� these con�
ditions are simple for the Haar system� In a Haar transform
	see Figure �
� the scaling and wavelet coe�cients can be
recursively computed using ���

uj���k � �����	uj��k � uj��k��


wj���k � �����	uj��k � uj��k��
�
	�


�We use capital letters when we consider the underlying signal
X �and� hence� its wavelet and scaling coe�cients� to be random�
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Figure �� �a� MWM construction� At scale j� we form the
wavelet coe�cient as the product Wj�k � Aj�kUj�k� Then�
at scale j � �� we form the scaling coe�cients Uj����k and
Uj����k�� as sums and di�erences of Uj�k andWj�k �normal�

ized by ��
p
��� �b� Probability density function of a 
	p� p


random variable A� For p � ���� A resembles a binomial
random variable� and for p � � it has a uniform density� For
p � � the density appears like a truncated Gaussian den�
sity� and as p increases� the density resembles a Gaussian
density more and more closely�

Solving 	�
 for uj��k and uj��k�� we nd

uj��k � �����	uj���k � wj���k


uj��k�� � �����	uj���k � wj���k
�
	 


For non�negative signals� uj�k � � � j� k� which with 	 

implies that

jwj�kj � uj�k� � j� k� 	��


���� Multiplicative Model

The positivity constraints 	��
 on the Haar wavelet coef�
cients lead us to a very simple multi�scale� multiplicative
signal model for positive processes� 	See ���� for a similar
model used as an intensity prior for wavelet�based image
estimation�
 Let Aj�k be a random variable supported on
the interval ���� �� and dene the wavelet coe�cients recur�
sively by

Wj�k � Aj�k Uj�k� 	��


Together with 	 
 we obtain

Uj��k � �����	� �Aj���k
Uj���k

Uj��k�� � �����	��Aj���k
Uj���k�
	��


The above construction can be visualized as a course�to�
ne synthesis 	see Figure �	a

� Starting from the coarsest
scale j � J�� we can synthesize a realization of a process by
iteratively applying 	��
 to obtain the wavelet coe�cients
at scale j and then applying 	 
 to obtain the scaling coef�
cients at the next nest scale j � �� When we reach the
nest scale j � J� we obtain the desired process X� which
is given by

X�k� � �J���UJ��k for k � �� � � � � �J��J� � �� 	��


In essence the above algorithm simultaneously synthe�
sizes the wavelet coe�cients and inverts the wavelet trans�
form� requiring only O	N
 operations to create a length�N
signal�



���� 
 multipliers

We need to choose an appropriate distribution for the multi�
plier Aj�k� We will assume that Aj�k is independent of Uj�k�
Second� we will assume that Aj�k is symmetric about �� it
is easily shown this symmetry is necessary for the resulting
process to be stationary ����

Because of its simplicity and �exibility� we will use a
symmetric beta distribution� 
	p� p
 	see Figure � 	b

 for
the Aj�k�s and christen the resulting model the 
MWM�
The variance of a random variable A � 
	p� p
 is

var�A� �
�

�p� �
� 	��


���� Covariance matching

Since we assume the multipliers are identically distributed
within scale 	i�e�� Aj�k � 
	pj � pj

� for our Haar wavelet
construction we can control the wavelet energy decay across
scale via

var	Wj���k


var	Wj�k

�

� var �Aj���k�

var �Aj�k� 	� � var �Aj���k�

� 	��


Thus� to model a given process with the 
MWM� we
can select the parameters pj via 	��
 and 	��
 to match the
signal�s theoretical wavelet�domain energy decay� such as
	�
� Or� given training data� we can select the parameters
to match the sample variances of the wavelet coe�cients as
a function of scale�

To complete the modeling� we only require to choose the
coarsest scaling coe�cients UJ��k and the parameter p�J��
of the model� From 	��
 and 	��
 we obtain

var	WJ��k
 	 	�p�J�� � �
 � IE�U�
J��k�� 	��


We choose a coarsest scale J� and obtain p�J�� from es�

timates of IE�U�
J��k

� and var	WJ��k
 using 	��
� We then
synthesize b blocks of data� each with coarsest scale J� and
nest scale J� 	see Section ���
 and concatenate them to
obtain a synthetic data trace of b 	 �J��J� data points� To
ensure the non�negativity of our process� we would have to
model UJ��k 	k � �� ��� b � �
 using multivariate densities
with strictly non�negative support� However� IE�UJ��k� will
often so greatly outweigh var�UJ��k� that the probability of a
negative value will be negligible� even for a jointly Gaussian
model�

Interestingly� the wavelet coe�cients of the MWM are
uncorrelated� This is easily deduced from the fact that the
Aj�k�s are zero mean and independent� and from the depen�
dency of wavelet coe�cients across scale

Wj��k � �����
Aj��k

Aj���k
	� �Aj���k
 Wj���k 	��


and their dependency within scale

Wj��k�� �
Aj��k��

Aj��k

��Aj���k

� �Aj���k
Wj��k� 	��


���� Thus� by matching the variances of wavelet coe��
cients� the MWM would exactly capture the entire corre�
lation structure of the wavelet coe�cients� if the wavelet
coe�cients were truly decorrelated� Typically� the correla�
tion between the wavelet coe�cients of LRD processes are
small � �� and therefore we can approximate such processes
quite accurately with the MWM�

Of course� this analysis addresses only the second�order
statistics of our signal� Higher�order properties of the
MWM are the subject of a multifractal analysis�
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Figure �� Inter�arrival times of packets of �a� Bellcore Au�
gust 	
�
 �� and �b� one realization of the beta multifractal
wavelet model �
MWM� synthesis � The two traces look
similar at higher aggregation levels also�

�� THE MWM IS A MULTIFRACTAL

Multifractals o�er a wealth of processes that are novel in
many respects� The backbone of a multifractal is typically
a construction where one starts at a coarse scale and de�
velops details of the process on ner scales iteratively in a
multiplicative fashion� It follows from 	��
 that the MWM
is a binomial cascade�� one of the simplest multifractals�
The name binomial cascade is explained by applying 	��

iteratively and writing Uj�k as the product of the coarsest

scale UJ��k and the multipliers �����	�
Aj���k
�
Multiplicative structures� in particular the product rep�

resentation of Uj�k� bear various consequences� First� if
all multipliers � 
 Aj���k in 	��
 are log�normal� then the
marginals Uj�k will be log�normal as well� Similarly� if the
�
Aj�k are all identically distributed� Uj�k will be approx�
imately log�normal by the central limit theorem�

Second� interpreting Uj�k as the increment of a limiting
process Y over the interval �k��n� 	k � �
��n�� we nd for
Y a local behavior of the type 	�
� To see this� note that
log jUj�kj� log �j can be written as the sum of approximately

j factors of the form log� �
����	�
Al�m
 normalized by ��j�

So� we expect this number to converge to some limiting
value H� It is essential to note� however� that this value H
depends now on t � hence the term multifractal for Y �

As a further feature of interest� depending on the mo�
ments of the multipliers� the marginals Uj�k of binomial cas�
cades may have diverging moments of order q larger than
some qcrit� where qcrit can be arbitrarily large� This broad�
ens the realm of �heavy tailed� processes considerably�

The exact multifractal properties of the MWM are stud�
ied in detail in ����

	� APPLICATION TO NETWORK TRAFFIC

We demonstrate the power of the 
MWM for a problem of
considerable practical interest � network tra�c modeling�
The LRD of data tra�c can lead to higher packet loss than
that predicted by classical queuing analysis ���� A better un�
derstanding of the LRD data tra�c can thus prove invalu�
able in solving network problems caused by LRD� Synthetic
tra�c models are well�suited for this purpose� because the
e�ect of various model parameters on network performance
can be studied through simulation� The MWM is one such
model because it can capture vital characteristics of real
tra�c like LRD and queuing behavior� To show this� we
focus on the August � � Bellcore Ethernet trace pAug� a
record of one�million inter�arrival times 	Figure �	a

� as
measured by Leland et al� ���� From Figure �	a
� it is clear

�For a detailed introduction to binomial cascades and multi�
fractal theory� see ��� 	��
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Figure �� Variance�time plot of the Bellcore data ��� and
one realization of the 
MWM synthesis ����
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Figure �� Comparison of the queuing behavior of the Bell�
core pAug with that of � synthesized 
MWM traces� Dis�
played are the tail probabilities of bu�er occupancy against
bu�er size� In �a�� observe the variability of the queue per�
formance of the synthesized traces� In �b�� observe that the
average queue performance of simulated traces and that of
the real trace match closely�

that the data has non�Gaussian marginals contradictory to
the hypothesis of an fBm or fGn model�

We analyze the LRD properties of the trace by estimat�
ing the variance�time plot� as shown in Figure �	a
� Al�
though the data exhibits LRD 	average slope correspond�
ing to H � ���
� the data does not appear to be strictly
second�order self�similar� as evidenced by the �kink� in the
slope� Again� an fBm or fGn model would be somewhat
inaccurate�

We modeled this data using the 
MWM� To train the

MWM� we split the Bellcore inter�arrival times into a se�
ries of ��� length blocks� took a ���scale Haar DWT for each
block 	truncating any leftover data
� and calculated statis�
tics for the scaling and wavelet coe�cients� We used 	��

and 	��
 to chose the 
	pj � pj
 distribution used at each
scale j so that the theoretical variances of our synthesized
wavelet coe�cients matched the measured variances of the
Bellcore wavelet data�

In Figures � and �� we see that the synthesized data cap�
tures much of the gross structure of the Bellcore data� both
in terms of marginal densities 	denitely non�Gaussian
 and
of LRD� as evidenced through the variance�time plot� In ����
we further provide an empirical multifractal analysis of the
synthesized data and show that it is closely matched by
that of the Bellcore data�

To assess the accuracy and usefulness of the 
MWM
for tra�c modeling� we compare the queuing behavior of
the simulated tra�c traces against that of the actual Bell�
core data� In our simulation experiments� we consider the
performance of an innite length single server queue with
a constant service rate of ��� packets!sec� The queuing
behavior of �� simulated traces is depicted in Figure �	a
�
On comparing average queuing behavior of the �� simulated

traces with that of the real trace 	Figure �	b

� we observe
that they are almost identical�	 which demonstrates the po�
tential usefulness of the 
MWM for network modeling and
simulation�


� CONCLUSIONS

The multiplicative wavelet model 	MWM
 combines the
power of multifractals with the e�ciency of the wavelet
transform to form a �exible framework natural for charac�
terizing and synthesizing positive�valued data with LRD� As
our numerical experiments have shown� the MWM is partic�
ularly suited to the analysis and synthesis of TCP network
tra�c data� In addition� the model could nd application
in areas as diverse as nancial time�series characterization�
geophysics 	using ��d and ��d wavelets
� and texture model�
ing� The parameters of the MWM are simple enough to be
easily inferred from observed data or chosen a priori� Com�
putations involving the MWM are extremely e�cient �
synthesis of a trace of N sample points requires only O	N

computations� Finally� several extensions to the MWM are
straightforward� The choice of 
�distributed wavelet mul�
tipliers Aj�k is not essential� Alternatively� we can employ
mixtures of 
�s or even purely discrete distributions to t
higher�order multifractal moments�
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	A real trace can be assumed to be a single realization of our
model and so its queuing performance cannot always be expected
to closely match that of the average of several simulated traces
�see �	� for more queuing experiments��


