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Abstract

In the study of the involved geometry of singular distributions the use of fractal and multifractal
analysis has shown results of outstanding signi�cance� So far� the investigation has focussed on
structures produced by one single mechanism which were analyzed with respect to the ordinary
metric or volume� Most prominent examples include self�similar measures and attractors of
dynamical systems� In certain cases� the multifractal spectrum is known explicitly� providing
a characterization in terms of the geometrical properties of the singularities of a distribution�
Unfortunately� strikingly di�erent measures may possess identical spectra� To overcome this
drawback we propose two novel methods� the conditional and the relative multifractal spectrum�
which allow for a direct comparison of two distributions� These notions measure the extent to
which the singularities of two distributions �correlate�� Being based on multifractal concepts�
however� they go beyond calculating correlations� As a particularly useful tool we develop the
multifractal formalism and establish some basic properties of the new notions� With the simple
example of Binomial multifractals we demonstrate how in the novel approach a distribution
mimics a metric di�erent from the usual one� Finally� the provided applications to real data
show how to interpret the spectra in terms of mutual in�uence of dense and sparse parts of the
distributions�

��




��� R� H� Riedi � I� Scheuring

� Introduction
Many nonlinear phenomena in physics� chemistry
and biology are of a fractal and multifractal nature
��
� 
�� ��� Prominent areas of application include�
among many others� turbulence ��
� ��� ��� and the
study of protein surfaces ���� In physics� it is natu�
ral to study the geometry and dynamics of one kind
or category of objects� This situation� however� is
rarely found in the most chemical� geological and bi�
ological systems� Many di�erent components take
part in chemical reactions� many di�erent materials
are dispersed in the soil� and a huge number of di�er�
ent plant and animal species live in a given habitat�
As these components are not independent of each
other� their interplay will be re�ected by geometri�
cal patterns of such systems� In vegetation science�
e�g� a question of considerable importance is the as�
sociation and dissociation of the di�erent elements
as well as the scale dependence of these relations�
In this paper we propose two extensions of multi�

fractal analysis which apply to geometrical objects
consisting of di�erent categories of points� In a pre�
vious paper �
��� the authors have described a �rst
algorithm which provides a conditional multifractal
spectrum� Here� this notion will be compared with a
more sophisticated approach� the relative multifrac�
tal spectrum� This procedure generalizes the usual
multifractal analysis in providing information on the
geometrical manifestation of complex dynamical re�
lations among the two distributions� Since our ap�
proach involves all the moments of the distributions�
we go beyond computing correlations� With the rela�
tive spectrum we touch on ideas which come close to
original works by Caratheodory �
�� and Billingsley
�
��

The structure of the paper is as follows� In Sec�
tion � we introduce multifractal analysis and recall
some simple properties� Section 
 is devoted to the
novel notions which are discussed in a simple situa�
tion �Subsection 
�
	 as well as in general �Subsec�
tion 
��	� In Section � we introduce numerical algo�
rithms and compare them� In addition� we elaborate
on the geometrical interpretation of the new notions�
An Appendix gives further mathematical details�

� Multifractal analysis� Pre�

liminaries�

��� The Binomial Measure

Purpose and techniques of multifractal analysis are
best explained in the most simple situation� the bi�

nomial measure�
This probability measure � is constructed by split�

ting I �� ��� �� into two subintervals I� and I�
of equal length and assigning the masses m� and
m� � � � m� to them� With the two subintervals
one proceeds in the same manner and so forth� at
stage two� e�g� the four subintervals I��� I��� I��� and
I�� have masses m�m�� m�m�� m�m�� and m�m� re�
spectively� At stage n� the mass of � is distributed
among the �n intervals I������n according to all pos�
sible products� ��I������n	 � m�� � � � � �m�n � By con�
struction� the restrictions of � to the intervals I�
and I� have the same structure as � itself� Thus� �
is self�similar in a very strict way�
Another way of de�ning � is the following� Let x �

����� � � � be the dyadic representation of a point in
��� ��� Here� we don�t have to care about points with
multiple expansions since our results concern �almost
all points x�� Imagine that the digits �k are picked
randomly such that P ��k � i� � mi independently of
k� Then� � is the law�or probability distribution�
of the corresponding x on ��� ���
This distribution clearly has no density� unless

m� � m� � ���� More precisely� M �x	 � ����� x�	
has zero derivative almost everywhere� Neverthe�
less� any coarse graining of �� e�g� through dyadic
intervals I������n as above� will naturally result in a
distribution with density� It is� therefore� essential
to understand the limit behavior of such an approx�
imation�
Let I�n��x	 denote the unique dyadic interval of

order n containing x� Set

�n�x	 ��
log�

�
I�n��x	

�
log jI�n��x	j

� �
�

n
log� �

�
I�n��x	

�
�

For the binomial measure as introduced above� the
Law of Large Numbers implies for �Lebesgue	 almost
all x�

�n�x	 � �
�

n

nX
k��

log�m�k � IE��� log�m�i �

� �
�

�
log�m�m� � ��

hence� M ��x	 � � indeed� For ��almost all x� i�e� for
almost all points x picked randomly according to the
probability distribution �� the LLN gives

�n�x	 � IE��� log�m�i �

� �m� log��m�	 �m� log��m�	� ��	

More precise information on limits ��x	 �
limn�� �n�x	 is provided by so�called large devia�
tion theorems ����� Consider the sequence of random
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variables Yn � log�
�
I
�n�
K

�
where the dyadic interval

I
�n�
K of order n has been chosen randomly with uni�

form distribution� i�e� Pn�I
�n�
K��� � I

�n�
k � � ���n for all

k � �� � � � � �n� In order to apply Ellis� theorem ����
Thm �� one has to calculate the asymptotic behavior
of its moment generating functions�

IEn�exp�qYn	� � ��n
�nX
k��

�
�
I
�n�
k

�q

� ��n
�
mq
� �mq

�

�n
�

Thus�

c�q	 �� lim
n��

�
�

n
log� IEn�exp�qYn	�

� �� log�

�
mq
� �mq

�

�
�

Since c is a di�erentiable� concave function� we con�
clude with Ellis� theorem on Large Deviations that

�

n
log� Pn

h ��

n log �
Yn � ��� �� �� �	

i
� c���	

�n��� �� �	� ��	

Here� c� denotes the Legendre transform as usual�
i�e�

c���	 � inf
q
�q�� c�q		� �
	

Noting that the distribution Pn essentially reduces
to counting� and that

��

n log �
Yn �

log�
�
I
�n�
K

�
log jI

�n�
K j

�� ��I
�n�
K 	

is in fact the coarse H�older exponent of the dyadic
intervals of order n we may interpret this results in
terms of a coarse graining approach to a description
of the multiplicative structure of the measure ��
It is worthwhile looking more carefully into the

Large Deviation result� Its proof involves a �change

of probability� meaning that the intervals I�n�k are
chosen randomly according to a law �q which insures

the almost sure convergence of ��I
�n�
k 	 towards some

value �q� This distribution �q is de�ned in the same
way as � but with probabilities m� �� mq

��
� and

m� �� mq
��

� with m� �m� � �� i�e�

	�q	 �� � log�

�
mq
� �mq

�

�
�

Choosing the digits �k of the dyadic expansion of
a point x such that P ��k � i� � mq

i �
� amounts to

picking x randomly with law �q� Then� �q�almost
surely

�n�x	 � IE�q �� log��m�i 	�

� �

�X
i��

mi log�mi � 	��q	

by the LLN� whence the claimed almost sure conver�
gence with �q �� 	��q	�
Moreover� we �nd that

log�q
�
I�n��x	

�
log jI�n��x	j

�
��

n
log� �q

�
I�n��x	

�

� q�q � 	�q	 � 	���q	

�q almost surely� In other words� �q is essentially
equivalent to the 	���q	�dimensionalHausdor� mea�
sure ���� on the �set of H older exponent �q�� Thus�
	���q	 is the dimension ���� of this set�
In summary� we veri�ed that in this simple situa�

tion three approaches are closely linked� one through
a �partition function�� one through �counting� and
one using the concept of �dimensions�� In a notion
which we are about to introduce this reads as

	���	 � fG��	 � fh��	�

This relation� sometimes called the multifractal for�
malism� has been the object of intense study ��� ��


��

��� The multifractal spectra

A distribution of points in d�space is usually given
in form of a measure �� the probability for a point
to fall in a set E is ��E	� If this distribution is sin�
gular one cannot describe it by means of a density
and multifractal analysis proves useful in character�
izing the complicated geometrical properties of ��
The basic idea is to classify the singularities of � by
strength� This strength is measured as a singularity
exponent ��x	� Usually� points of equal strength lie
on interwoven fractal sets K	�

K	 ��
�
x � IRd � ��x	 �� lim

B�fxg

log��B	

log jBj
� �

�
�

Here� B � fxg means that B is a ball containing x�
and that its diameter jBj tends to zero� The geom�
etry of the singular distribution � can then be char�
acterized by giving the �size� of the sets K	� more
precisely� their Hausdor� dimension �����

fh��	 �� dim�K		�
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In applications� however� one considers a coarse
grained version fG which was in fact introduced prior
to fh ��
� ��� �
� ��� ��� ��� ����

fG��	 �� lim
���

lim sup

��

logN
��� �	

log ��


Here N
 denotes the number of �cubes of size 
 with
coarse H older exponent ��C	 roughly equal to ���
More precisely� let G
 be the set of all cubes C �
�l�
� �l� � �	
	� � � �� �ld
� �ld � �	
	 in d�dimenional
space with integer l�� � � � � ld and with ��C	 �� �� i�e�
C contains at least one point of the distribution� Let
C� �� ��l���	
� �l���	
	� � � �� ��ld ��	
� �ld ��	
	
denote the concentric cube of triple size and de�ne

��C	 ��
log�

�
C�
�

log jCj
�

Then�

N
��� �	 � !fC � G
 � ��C	 � ��� �� �� ��g�

As was described earlier in �

� ��� the straightfor�
ward way of de�ning ��C	 by log��C	� log jCj gives
poor results in theory as well as in numerical ap�
plication� In particular� it is inevitable to perform
some averaging� Among the various possible im�
provements ���� 
�� 
� we favor the given one for
its simplicity and accuracy�
Though tempting it is wrong to interpret fG as

the box dimension of K	� This function is better ex�
plained in statistical terms� Pick a cube C out of G


randomly and determine its coarse H�older exponent
��C	 �� log��C�	� log 
� Then� the probability of
�nding ��C	 	 � behaves roughly like

N
��� �	�N
 � P
���C	 	 �� 	 
D�fG�	�� ��	

Here� N
 denote the total number of 
�cubes which
contain a point of the distribution �� D denotes the
box dimension of the support of �� i�e� N
 	 
�D�
Hence� fG��	 
 D� We conclude with ��	 that in
the limit 
 � � the only H older exponent which is
observed with non�vanishing probability is ��� where
f���	 � D�

For self�similar measures� the existence of �� can
be viewed as a simple consequence of the Law of
Large Numbers �LLN	� Write

��x	 � lim
n��

�
�

n
log� ��C

�
n�x		

� lim
n��

�

nX
k��

�

n
log�

��C�
n�x		

��C�
n���x		

where Cn�x	 is the unique cube in G���n contain�
ing x� The assumption of self�similarity implies that
log� ��C

�
n�x		���C

�
n���x		 is of equal distribution for

all n� �Compare Subsection ��� and �

��	 Letting ��
denote the common expected value� the LLN implies
that almost surely ��x	 � �� when picking points x
randomly with �uniform� distribution�
It is clear� on the other hand� that �� is in gen�

eral not the only limiting H older exponent ��x	 that
can occur� More precisely� on every �nite level of
approximation one will have a whole histogram of

coarse H�older exponents ��I
�n�
k 	� The probability of

�nding ��I
�n�
k 	 	 � �� ��� however� will decrease ex�

ponentially to �� This is in essential the content of
the theory of large deviations� The theorem of Ellis
���� �compare also ��		� e�g� implies that

Pn��
�

n
log� ��C

�
n�x		 	 �� 	 �nc

��	�

with c���	 � � unless � � ��� The rate of conver�
gence c���	 is obtained as the Legendre transform of
the "moment generating function#

c�q	 �� lim
n��

��

n
log� IE�expfq log� ��C

�
n�x		g�

The better known partition function � �q	

� �q	 � lim

��

log
P

C�G�
��C�	q

log 


equals c up to a constant� Indeed� since D � �� ��	
by de�nition� we �nd

c�q	 � � �q	� � ��	�

Combining this with ��	� �
	 and ��	 we obtain what
is called the multifractal formalism �provided Ellis�
theorem applies	�

fG��	 � ����	�

The similarity to the well�known thermodynamical
formalism �
�� 
�� is immediate�

��� The multifractal formalism

One of the powers of Ellis� theorem on Large Devi�
ations is that it holds for very general sequences of
random variables Yn� as compared to the LLN� It
assumes� however� that � �q	 is di�erentiable� If so�
we �nd that fG is the Legendre transform of � �q	 as
above� and the multifractal formalism holds� In gen�
eral� however� � �q	 is not di�erentiable everywhere�
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as examples prove� The opposite relation� on the
other hand�

� �q	 � f�G�q	 � inf
	�IR

�
q�� fG��	

�
��	

holds always as has been shown in �

�� This answers
a question raised in ���� As a consequence� fG���	 �
D � �� ��	 and �� � � ���	� Though there are simple
and convincing counterexamples �

� 
�� 
��� fG��	
is concave in a typical point and can be computed
from � �q	� In particular� we have �
���

fG���	 � q�� � � �q	 �q � �	
fG���	 � q�� � � �q	 �q � �	

��	

where �� �� � ��q�	 and �� �� � ��q�	 denote the
one�sided derivatives of � �q	�

Since � �q	 is obtained by averaging� it depends
more regularly on the data than fG��	 and is eas�
ier to compute� Therefore� the so�called generalized
dimensions

D�q	 ��
� �q	

q � �

have been of major interest in numerical approaches
to multifractal analysis� Besides D � D�� a notable
H older exponent is �� � � ���	 � D�� It has been
termed information dimension ���� ��� ��� ���� With
respect to the given distribution � we have ��x	 �
�� � D� almost surely� For a binomial measure ��
is given by ��	�

Finally� we are in the position to explain our choos�
ing the enlarged and concentric cubes C� in our nu�
merical approach� First of all� the enlarged cubes C�

provide a better approximation of a ball centered in
a point of the distribution than the cube C itself� A
cube C which contains only one or a few points close
to its boundary has a mass ��C	 which is unnatu�
rally small with respect to its size 
� For negative q�
these undesired terms will in�uence the asymptotic
behavior of the partition sum� and thus� the numer�
ical estimate of � �q	 and D�q	� In particular� for a
partition sum which uses C instead of C� the mul�
tifractal formalism breaks down for q � �� Indeed�
as is explained in more detail in �

� ��� this is the
major source for numerical instability�

� Multifractal analysis with ar�

bitrary reference measure

It would be possible to introduce our new notions
mentioning only D�q	� In particular� we will extend
the multifractal notions only for the coarse graining

approach� especially since fh does not generalize so
easily� We feel� however� that including fG provides
a deeper understanding�

��� Conditional multifractal
spectrum

Assume now that a second distribution  is given
which we will address as reference distribution� In�
stead of performing a multifractal analysis of � as
described above one would like to study how the sin�
gular behavior of � and  correlate� if at all� Such
a knowledge could� e�g� provide information on how
two growing systems depend on one another�
In a �rst attempt� �
�� introduced the conditional

partition function which di�ers only slightly from
� �q	�

�C�q	 �� lim inf

��

log
P

��C����

�
��C�	�T


�q
log 


�

This de�nition means that we consider only cubes
C which contain at least one point of the refer�
ence distribution � Note� that we normalize by
dividing � by the total mass of these cubes T
 ��P

��C���� ��C
�	�

This procedure is simple and� yet� has been shown
to yield signi�cant information �
��� As one partic�
ular result we mention that �C�q	 is the Legendre
transform of a properly de�ned spectrum� i�e� a rela�
tion analogous to ��	 holds� Consequently� �C�q	 is
convex and the conditional multifractal dimensions

DC�q	 ��
�C�q	

q � �

are monotonous as a function of q� As is demon�
strated in ��� there is a method for proving the
monotony ofD�q	 without using the Legendre trans�
form� The same argument applies also to DC�q	� as
is easely seen� but not to DR�q	 �see corollary �	�
Unfortunately� this notion re�ects the geometry of

 only in a very crude way� and it is not sensibly to
the �ne details� Therefore� it is desirable to intro�
duce a second notion which is closer related to fG�

��� Relative multifractal spectrum

The second and more involved notion bound to quan�
tify the in�uence of two distributions on the geome�
try of each other touches on an idea as simple as the
�rst one� The idea is to replace the diameter � or
��d�th power of the volume � jBj in the usual de�ni�
tion of H older exponents by a general measure� More
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precisely� given an arbitrary reference distribution 
we study the relative H�older exponents

�����x	 �� lim
B�fxg

log��B	

log�B	
�

The two measures � and  have equal rights� since
���� � �������

Persuing the idea of replacing j � j by  conse�
quently� the coarse grained version uses a partition of
space into sets of equal �measure instead of equal
size� Though this procedure is clear as long as we
work on the line and as long as the reference mea�
sure  is non�atomic� more care is needed in the gen�
eral case� Therefore� let us begin by mentioning that
the usual scaling law

P
��C�	q 	 
 can be rewrit�

ten as
P

��C�	qjC�j� 	 constant� In this form�
the generalization is straightforward� Consider the
�partition sum�

S
�q� t	 ��
X

��C���� ����C�� C�H�

��C�	q�C�	�t

and de�ne the relative partition function �R�q	 and
the relative multifractal dimensions DR�q	 through

�R�q	 �� sup ft � IR � S
�q� t	� � as �
 � �	g

DR�q	 ��
�R�q	

q � �
�

Notice that we did not specify the partition H
� As
the general approach of Caratheodory �
�� shows�
this does not matter as long as a reasonable notion
of �size� $�C	 goes to zero for all C � H
 as 
 � ��
Moreover� �R�q	 can be fairly called a dimension�

With regard to our substituting j � j by  as the
reference measure we divide each cube C repeatedly
into �d subcubes until the �measure drops the �rst
time below 
� This leads to a partition H
 of space
into cubes of �mass approximately equal to 
� Cer�
tainly� $�C	 � �C	 is a �reasonable notion of size��
It is clear that the usual partition G
 is recovered if
 happens to be �volume�� or equivalently j � j� The
choice of the partition H
 has advantages in the nu�
merical estimation of �R�q	 as is elaborated in Sec�
tion ��

The coarse grained relative multifractal spectrum
fR��	 is de�ned in a similar way as fG��	�

fR��	 �� lim
���

lim sup

��

logM
��� �	

log ��


with

M
��� �	 � !fC � H
 �

�C�		�� 
 ��C�	 � �C�		��g�

We postpone a general� but more sophisticated def�
inition to the Appendix A� There� we also demon�
strate that �R�q	 and fR��	 are related in the same
fashion as � �q	 and fG��	 �see ��		�

Lemma �

�R�q	 � fR
��q	 � inf

	�IR

�
q�� fR��	

�
�

As special cases we mention

� � � �	 � The relative spectrum fR of a measure
with respect to itself is trivial and consists only
of the point ��� D	� The conditional spectrum�
on the other hand� coincides with the usual mul�
tifractal spectrum � fC � fG�

� � � j � j	 � If the reference measure happens

to be �volume��d� we fall back onto the classical
de�nition � fG � fC � fR�

� �� � j � j	 � To compute the relative or condi�
tional spectrum of Lebesgue measure with re�
spect to a measure  can be interpretated in
two ways� First� it means to compute the ��xed
mass spectrum� �
�� of this measure � provided
 is continuous and non�vanishing� Secondly� for
measures on the line it amounts also to comput�
ing the spectrum of the �inverse measure� of 
���� 
�� 
���

At this point� it is due to refer to J� Lvy Vhel and
R� Vojak ���� who independently developed a theory
of a �mutual multifractal analysis� based on similar
ideas� Their interest lies in discovering H older ex�
ponents of a measure hidden by the exponents of
another� superposed measure� as well as in prov�
ing that virtually any function can be observed as
the spectrum fh of so�called sequences of �Choquet
capacities�� As they point out in addition� chang�
ing the reference measure may improve the conver�
gence of multifractal spectra� Functions similar to
our S
�q� t	 have also been used by Brown� Michon
% Peri&ere ��� and can be found in works as early as
Caratheodory �
�� and Billingsley �
�� however� with
a di�erent object�
Next� we present an example where calculations

can be carried out explicitly� This allows to demon�
strate the main features of the approach in clear
light� The general case will be discussed in Sub�
section 
�� and Section ��

��� The binomial measures revisited

Let us illustrate the new notions in the simple sit�
uation of two binomial measures � and � As de�
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scribed in Subsection ��� these measure are con�
structed by splitting I �� ��� �� into two subintervals
I� and I� of equal length and assigning massm��m��
resp� p�� p� to them �m� � m� � �� p� � p� � �	�
At stage n� the mass of �� resp�  is distributed
among the �n intervals I������n according to all pos�
sible products� ��I������n	 � m�� � � � � � m�n and
�I������n 	 � p�� � � � � � p�n � respectively�

In order to determine the multifractal spectrum
it is easiest to think of the points x � ��� �� as be�
ing representated by dyadic expansion x � ����� � � ��
This sequence of digits determines which subinterval
Bn�x	 �� I������n at stage n contains x� Therefore�
we �nd the H older exponent of x to be

�����x	 � lim
n��

log��Bn�x		

log�Bn�x		

� lim
n��

logm�� � � � � �m�n

logp�� � � � � � p�n

� lim
n��

���n	
nX

k��

logm�k

���n	
nX

k��

log p�k

�

If we pick x uniformly� i�e� �k equals � and �
with equal probability� then� we �nd by the LLN
�����x	 � log�m�m�	� log�p�p�	 almost surely� To
obtain results of the kind of large deviations� one has
to change the probability of picking x such that the
limit

�����x	

takes other values than the �expected� one�
In analogy with Subsection ���� pick �k � i with

probability mq
i p
��
i where q is a free parameter and

where
mq
�p
��
� �mq

�p
��
� � �� ��	

Denote the corresponding distribution of x by �q�
Applying the LLN simultaneously to the random
variables mi and pi yields that for �q�almost every
x

�����x	 �
IE�q �logmi�

IE�q �logpi�

�
mq
�p
��
� logm� �mq

�p
��
� logm�

mq
�p
��
� logp� �mq

�p
��
� logp�

� 	��q	� �	

This establishes the large deviation result and�
consequently� a whole range of possible ��values� In
addition� having explicitly constructed �q allows a

rigorous computation of the Hausdor� dimension of

K
���
	 � the set of ���H older exponent ��

K���
	 ��

�
x � IRd � lim

B�fxg

log��B	

log�B	
� �

�
�

We will not do so here� but rather furnish a sim�
pler but less rigorous argumentation� It starts with
the observation that �����x	 is formally equal to the
H older exponents observed for a more general con�
struction of a �binomial measure� �� We start again
with J �� ��� �� and choose two subintervals J� and
J� with lengths in the proportion p� � p�� At stage
two� the four subintervals J��� J��� J��� and J��
of this construction have� thus� lengths p�p�� p�p��
p�p�� and p�p� respectively and ��masses m�m��
m�m�� m�m�� and m�m� respectively� At step n
there are �n intervals J������n of length jJ������n j �
p�� � � � � � p�n and mass ��J������n	 � m�� � � � � �m�n �
The classical spectra fh and fG of � are then well

known ��� �� 

�� fh � fG � 	� where 	 is de�ned
through ��	� This allows to study ���� �
First� let us comment on the coarse graining ap�

proach� Consider the intervals J������m of length
jJ������m j 	 
� more precisely� with m such that
p�� � � � � � p�m � 
 
 p�� � � � � � p�m�� � Denote by N
��	
the number of such intervals with �coarse H older ex�
ponent� log��J	� log jJ j approximately equal to ��
i�e�

m�� � � � � �m�n

p�� � � � � � p�n
	 �� ��	

Then �

��
N
��	 	 
��

��	�� ���	

Here� a�t	 	 b�t	 means � � c� � a�t	�b�t	 � c� ��
for some constants c�� c�� It is important to note
that equation ���	 can be viewed as a property of
words �� � � � �n� More explicitly� N
��	 is simply the
number of words �� � � � �n such that ��	 and p�� � � � � �
p�n 	 
 hold simultaneously�
In the contex of our multifractal analysis of � with

respect to � words �� � � � �n encode dyadic intervals
I������n with length jIj � ���n� ��I	 � m�� � � � � �
m�n � and �I	 � p�� � � � � � p�n � Hence� ���	 describes
the asymptotic behavior of the number of intervals
I������n with �I	 	 
 and log��I	� log�I	 	 ��
This translates to

fR��	 � 	���	�

Secondly� if one wants to conclude on the Haus�

dor� dimension of the set K
���
	 some caution is re�

quired concerning the �size� of sets� The most ef�

�cient covers of K���
	 are clearly provided by the
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Figure �� The relative multifractal dimensions DR calculated via random and deterministic algorithms�
and by solving ��	 �solid line	 in the case of two binomials �see Subsection 
�
	� The parameters we used
are m� � �
 m� � �� and p� � ��� p� � ���� In order to add a slight complication we generalized the
geometrical construction in choosing subintervals of relative length l� � ���� and l� � ��� for both� � and
� While this procedure certinaly in�uences the usual spectrum D�q	� it will not a�ect DR� and ��	 still
holds� As the measures have identical support� DC will not provide any information other than D�q	� The
order of approximation we used was n � �
� i�e� ��� data points�

dyadic intervals I������n with ��	� Having a scaling
law ���	 in terms of �I	 	 
 instead of the usual
jIj 	 
 is again a simple consequence of the fact
that we replace diameters of sets by ��	� So� ���	
provides information not on the usual �Hausdor�	
dimension but on the more general ��Hausdor�	 di�
mension� In simple terms� the �dimension dim�E of
a set E is the critical exponent � for which

P
�Ij	

�

remains bounded away from zero and in�nity as
fIjgj forms an �e'cient� cover of E of smaller and
smaller diameter� �See Billingsley �
� for an intro�
duction to general dimensions� For �I	 � jIj the
usual Hausdor� dimension is recovered�	 Covering

the set K���
	 with dyadic intervals I������n with ��	

and �I������n	 	 
 we �nd
P

�I������n 	
� 	 N
��	


�

and conclude with ���	 that

dim�K
���
	 � 	���	�

This formula has been found independently by Lvy
Vhel and Vojak ����� Note that its implicit formula
��q	 � 	��q	� 	����q		 � q��q	 � 	�q	 �nds an ex�
plicit form by setting ci � logpi � � logmi�

	���	 �

c� log��c�	 � �c� � c�	 log�c� � c�	� c� log�c�	

log�� log p� � log�� log p�
���	

for � �����	� ����	�� where we assumed without
loss of generality that ���	 � logp�� logm� �
logp�� logm� � ����	�
In order to compute the usual �Hausdor�	 dimen�

sion one uses that for �most� intervals I������n with
��	 we have

log�I������n	

log jI������n j
�
��

n
log� �I������n	 	

���q	 � �mq
�p
��
� log� p� �mq

�p
��
� log� p��

This follows actually from �	 and the fact that

K
���
	 concentrates the mass of �q � Then�

P
jIj j

�
	

N
��	jI������n j
�

	 N
��	�I������n	
��	��q� 	

�I������n	
���	������	� which is bounded exactly for

� � ���q	 � 	���	� the �usual	 dimension of K
���
	 �

In summary� with � � ��q	 � 	��q	�

dim�K
���
	 � 	���	 dim�K���

	 	 � 	���	 � ���q	�

Finally� the relative partition function is easely es�
timated�

S
�q� t	 �
X
C�H�

��C�	q�C�	�t
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X

�m�� � � � � �m�n 	
q�p�� � � � � � p�n	

�t�

In the last sum the ��nite	 sequences �� � � � �n encode
the various C � H
� It is easy to verify that this sum
equals exactly � when setting t � 	�q	� Thus�

�R�q	 � 	�q	� ���	

For a typical graph see Fig� � where DR�q	 �
�R�q	��q � �	 is plotted �solid line	� In summary�

Theorem � In the simple case where � and  are
binomial measures the multifractal formalism holds�

dim�K
���
	 � fR��	 � �R

���	� ��
	

In addition� the implicit formulas ���	 and �
	 can
be made explicit ���	�

The fact that the multifractal formalismholds shows
again that the �dimension is more natural in this
context than the usual Hausdor� dimension�

In addition� the di�erence between condi�
tional and relative spectrum becomes clear� Still
in the binomial case we have

fC��	 � fh��	 � fG��	 � ����	�

where �� is the Legendre transform of � �q	 �
� log��m�

q �m�
q	� Thus� the conditional spectrum

of � coincides here with the usual multifractal spec�
tra and provides no information about the reference
measure� In particular� the pi are not involved�
To the contrary� with the relative spectrum fR��	

which reveals to what extent the geometries of � and
 coincide� This spectrum reduces to a point if and
only if the singularities of � and  are identical� i�e� if
mi � pi� The wider the graph of fR��	 is� the more
the two distributions di�er� More precisely� if it is
scewed to the left� i�e� if the minimal � is closer to
� than the maximal one� then the two distributions
match better in the dense parts than in the sparse
parts� and vice versa�

One may argue that it is unnatural to consider dis�
tributions which are �manifesting� in the same points
as is the case with the binomial measures� Before
commenting on the general case in Subsection 
��
we would like to mention an example where exactly
this situation is met� the tra'c load on a network
����� Here� the number of bytes in a packet and its
arriving time are recorded� Letting � be the amount
of work arriving and  the time between arrivals we
have a string of data which we may consider as being
given in the dyadic points of some order n� It is nat�
ural� then� to be interested in the di�erence of the

spectra when analyzing the workload with respect
to arrival time �i�e� the number of packets having
already arrived� which corresponds to j � j	 and with
respect to real time �which corresponds to 	�

Moreover� the purpose of this section was to show
the main features of the new approach on a simple
example without adding unneccessary complication�
Without going into detail we mention the more gen�
eral discontinuous self�similar measures which may
consist of atoms located in the dyadic points� say
�� or in the triadic points� say  �for details see
���� 
�� 
��	� This is a more natural assumption�
Since the dyadic and the triadic points are dense�
the same conclusion as above holds� The conditional
spectrum of � with respect to  coincides with the
usual spectrum while the relative spectrum provides
information on the mutual dependence of the two
distributions � and �

fC��	 � fG��	 �� fR��	�

��� Presence of gaps

So far we have discussed the new notions for two
measures � and  which are supported on the same
set� an assumption we are going to drop now�

Overlapping supports� As a �rst step con�
sider two b�nomial measures � and � These mea�
sures are constructed similarly as the binomial mea�
sure in Subsection ��� with the only change that we
distribute mass now among b subintervals of equal
length instead of just among two� Thus� at �rst stage
we have b intervals �i�b� �i��	�b� with � massmi and
 mass pi �i � �� � � � � b� �	� etc�

In the �rst case we consider the reference measure
 lives on a Cantor set with dimension strictly less
than �� This is equivalent to saying that some of the
probabilities pi are �� Since the support of � is the
interval ��� ��� it contains the support of the reference
measure  which is a Cantor set� For convenience we
write spt��	 � spt�	� In this case it is easy to verify
that all results of Subsection 
�
 are still valid given
the convention �q �� � in ��	�

With the roles exchanged� i�e� � living on a b�adic
Cantor set and the reference measure  being sup�
ported on the whole interval �spt��	 � spt�		� the
same is still true for the spectrum of dimension of

K
���
	 � The approach via partition function needs�

however� special attention� We will address numeri�
cal implications in Section � which provides the ap�
propriate context� Here� we mention a closely related
�integral version��
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Instead of coarse graining� i�e� subdividing space
into boxes� multifractal analysis may also follow an
approach relying on ideas of �dynamical systems��
The generalized dimensions can then be directly ob�
served from the longtime behaviour of orbits as de�
scribed in ��
� ���� In order to approximate a distri�
bution one follows a generic trajectory of the sys�
tem� In our situation this is obtained by setting
xn�� � xn�b � i where i is picked with probabil�
ity pi� One takes a ball Bn of diameter 
 around xn
and averages ��Bn	

q�Bn	
�t�� over some N sample

points xn�

S
�q� t	 �
NX
n��

��Bn	
q�Bn	

�t��

�
X
B

��B	q�B	�t ���	

This approach is naturally very closely related to
the �integral version� of S
�q� t	 which is of impor�
tance in the theory of dynamical systems ���� 
�� 

��

S
�q� t	 �

Z
��B
�x		

q � �B
�x		
�t��d�x	�

This integral� unfortunately� does not converge for
q below some negative threshold qbottom in the case
spt��	 � spt�	 �
��� The integral

S
�q� t	 �

Z
��B
�x		

q � �B
�x		
�t��d��x	�

on the other hand� does converge under the same as�
sumption spt��	 � spt�	� Therefore� the two mea�
sures � and  can not be used equivalently with the
integral approach�
Distinct supports� As the supports of � and 

become more distinct� general results are not avail�

able at this time� The de�nition of K
���
	 makes cer�

tainly no sense if the supports of � and  have no
points in common� If the supports of � and  come
close enough� however� coarse graining methods will
still show most of the features described above since
numerical analysis always has to stop before the ac�
tual limit 
 � ��

For a more rigorous argument consider two distri�
butions where we assume that the sum of the dimen�
sions of the supports of these measures is larger than
�� Then it is known that we �nd two points from
the di�erent distribution at arbitrary small distance�
Consequently� for every 
 we can �nd a cube C in
the grid G
 which contains at least one point from
each distribution� Now� rewrite the H older exponent

of C� as

��C�	 �
log��C�	� log 


log�C�	� log 


and use the fact that � �� D���	 is the small�
est� resp� (� �� D����	 the largest H older ex�
ponent of �� �This follows from the multifrac�
tal formalism� in particular Corollary �� which we
establish in the appendix	� Thus� we �nd that
D���	�D����	 
 ��C�	 
 D����	�D���	� In
particular� DR��	 � infDR�q	 � inf ���� and
DR���	 � supDR�q	 are not degenerate� The de�
viation ofDR��	� resp� DR���	 from the theoreti�
cally smallest� resp� largest possible value �� resp� (�
gives information on the correlation of sparse parts
of � and dense parts of � and vice versa �compare
Subsection ��
	�
It is in this context with a presence of gaps where

the more straightforward conditional spectrum DC

becomes meaningful since it pro�ts from the similar
e�ects as the ones we just described forDR� We refer
in particular to Fig� � and 
� as well as to Section ��

� Numerical aspects

We are now describing the algorithms used and
give an interpretation of the various spectra through
some numerical simulations�
The numerical situation is simple as long as both

measures � and  are supported on the whole inter�
val ��� ��� The presence of gaps causes� however� two
kinds of numerical problems which call for di�erent
solutions for DC and DR� After elaborating on this
essential issue in Subsection ��� and ��� we close by
interpreting some numerical simulations�

��� Numerical stability

The presence of gaps causes two kinds of numerical
problems� First� the cubes C chosen from a grid G


may be �misplaced�� More precisely� C may be a very
poor approximation of a ball centered in points of the
distribution it contains� Consider for instance the
analysis of a 
�nomial measure � with respect to a
��nomial reference measure � Then� it is impossible
to chose grid�sizes to match the geometry of both
measures� �In any case� a numerical method which
requires knowledge on the distribution � in advance
is worthless�	
Such �misplaced� cubes result in unnaturally large

contributions ��C	q� resp� �C	�t for negative q re�
spectively positive t� This is the major cause of nu�
merical instability in that regime� It has been shown



Conditional and Relative Multifractal Spectra ��


Different Cantor Sets

deterministic

random

D(q) x 10-3

q
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

-4.00 -2.00 0.00 2.00 4.00

Figure �� The relative multifractal dimensions DR estimated by the deterministic and the random algo�
rithms in the case of di�erent supports for � and � The parameters are l� � ����� l� � ���� m� � ����
m� � ���� for the analyzed measure �� and �� � ��
� �� � ��

� p� � ���� p� � ��
 for the reference measure
�

�

� ��� that this problem can be removed by simply
imploying the enlarged cubes C� introduced earlier�

��� Partitioning� deterministic ver�
sus random algorithm

As a second problem caused by gaps we would like
to address the partition into sets C of roughly equal
mass �C	 	 
 instead of equal diameter� This
method has advantages in particular when comput�
ing the relative multifractal dimensions DR�q	� with
the term �C�	 being roughly independent of C� the
de�nition of �R�q	 reduces to the usual

P
C ��C�	q 	


R � Thus� �R�q	 can be obtained as the slope of a
log�log plot of

P
C ��C

�	q against 
�

For a computation of DC � on the other hand� such
a procedure is not necessary� The only information
draw from the reference measure  is whether or not
�C	 � �� So� a usual partition G
 into intervals of
equal size 
 is su'cient here�

Remark� Partitions H
 with �C	 	 
 are also
imployed with the so�called ��xed mass algorithm�
which is bound to compute the ordinary fG spectrum
for  itself� In our approach� on the other hand�
H
 is used in order to provide a fast algorithm for
computing DR�

Di'culties arise when trying to �nd such a parti�
tion with �C	 	 
�

Working on the line one might order the points
fxng

N
n�� which constitute the reference distribu�

tion and consider partitions �xnk� x�n���k� �n �
�� � � � � �N � �	�k	 with 
 � k�N �k � �	� We call
this method the deterministic algorithm� While
it works certainly well when  has full support or
when � and  have identical support� it can lead to
wrong results in the presence of gaps�

For numerical evidence we put forward Fig� �
and�� For a theoretical argumentation consider a

�nomial measure with p� �� � � p� �� p� as the
reference measure � Then� certain triadic intervals�
such as ���
� ��
�� will contain no �reference point�
xn� Unless we are very lucky� for every k one of the
intervals �xnk� x�n���k� will contain the whole interval
���
� ��
�� one will contain ����� ����� one ����� ���
etc� Since it is very unlikely that the points xnk fall
exactly on the critical points ��
� ��
� ��� etc� The
intervals obtained by such a �deterministic� partition
are� again� very poor approximations of balls cen�
tered in points of the distribution � To make this
statement more rigorous we o�er the following rea�
soning� The distribution �� in contrary to � will in
general have a considerable amount of mass inside
these gaps� For a ��nomial measure � with m� � ��
i�e� mass m� in ��� ����� m� in ����� ����� no mass in
����� 
��� and mass m� in �
��� ��� the whole interval
������ ���� with mass m� �m� will be contained in
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���
� ��
�� This means that intervals with fewer and
fewer reference points contain a ��mass which does
not tend to zero but remains larger than m� � m��
As a consequence�

P
C ��C�	q is basically constant

in 
 for large q� which is a considerable loss of infor�
mation� This is most strikingly demonstrated with
Fig� ��

Another method of constructing a partition with
�C	 	 
 was introduced withH� in Subsection 
���
With this approach� we �nd di'culties when the ref�
erence measure is atomic�

Finally� the random approach which we intro�
duced with ���	 was found to be most fruitful and
reliable in the presence of gaps and with distinct sup�
ports �see Fig� �	�

��� Numerical simulations

According to Subsection ��� we estimated DC using
the classical �equal length� partition G
� This means
in practice that we divide the line into intervals of
length 
 and take into account the mass only of such
intervals which contain at least one point from the
reference distribution too� For the estimation ofDR�
on the other hand� we applied the random method�
While the three spectra produce about the same val�
ues for negative q� the di�erences become meaningful
for positive q �dense parts of the distribution	�
As Fig� � demonstrates� the numerical result of

DR�q	 gives a slight overestimation of the exact re�
sult� If q is nearby one� however� the simulated re�
sults are essentially di�erent from the expected the�
oretical value� This is a consequence of the normal�
ization ���� which becomes necessary due to our use
of C�� For large jqj� on the other hand� we have very
good results� which is notable in particular for q � ��
In Fig� � the measures � and  have identical sup�

port� Here� the deterministic algorithm is slightly
more accurate� Fig� �� on the other hand� demon�
strates very well� how a deterministic method of
chosing a partition can be very misleading in a gen�
eral situation�

Before proceeding to a comparison between DC

and DR let us recall some fundamental features of
these novel multifractal notions� The following state�
ments follow from the discussion in Subsection 
�
� in
particular from ��	� as well as from the multifractal
formalism Corollary � �see the appendix	�

� If DC equals the usual multifractal dimensions
D�q	� not much can be said� The support of
� is contained in the support of the reference
measure �

� The more DC di�ers from D�q	 the more de�
pends its geometry on the mere presence of ref�
erence points�

� If DR equals D�q	 then the reference measure is
equivalent to �volume� on the support of ��

� As with DC � a deviation of DR from D�q	 for
q�� gives information on howmuch the ref�
erence measure di�ers from uniform distribution
�or �volume�	 in the dense� resp� sparse parts of
��

� If DR is a constant � the value of which is nec�
essarily � � then the analyzed measure and the
reference measure can be considered to be equiv�
alent from multifractal point of view�

� The wider the range of DR the more complex
the mutual dependence of the geometries of the
two distributions� A small DR��	 implies the
existence of dense ��parts with only sparse ref�
erence points and vice versa ifDR���	 is large�

In summary� both� DC and DR are most conve�
niently compared with D�q	 for q � �� In ad�
dition� DR has an interpretation in absolute terms�
i�e� in its deviation from a constant �compare Sub�
section 
��	�
Let us now interpret the conditional spectrum and

the relative spectrum for the instructing example in
Fig� 
�
Looking �rst at DC � which is simpler to interpret�

we conclude that the mutual dependence is much
stronger in the dense parts of � than in its sparse
parts�
From the shape ofDR we deduce that the distribu�

tions � and  are rather di�erent from multifractal
points of view� In addition� in the sparse parts of �
we �nd that  behaves like the uniform distribution�
while there are places where the ��points fall rather
dense and where reference points fall less dense than
compared with uniform distribution or �volume��
This we deduced fromDR���	 	 D���	 and from
DR��	 being essentially smaller than D��	�
Although not displayed in the �gure it is generally

true that the standard errors of estimated relative
dimensions DR are roughly half as big as the ones of
conditional dimensions DC for negative q�
In summary

� The deterministic method works well when 
has full support or when � and  have identical
support�
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Figure 
� A comparison of the relative multifractal dimensionsDR �estimated with random algorithm	 and
the conditional multifractal dimensions DC �estimated with deterministic algorithm	 in a situation similar
to Fig� �� The parameter values are as in Fig� � with the sole exception that the geometrical parameters ��
and �� of  have been interchanged� The solid line refers to the classical multifractal dimensions D�q	 of ��
estimated numerically from the same data as DR and DC � rather than solving the transcendent equation
mq
�l
�
� �mq

�l
�
� � �� Comparing the dimensions for q ��� �sparse parts of the distribution	 and q��

we may conclude that the mutual dependence is much stronger in the dense parts�

� The random algorithm has to be applied in the
presence of gaps�

� While DC provides a fast algorithm and is more
easy to interpret� DR is in general more infor�
mative�

� As a general rule the standard errors for DC

are twice as large as the ones for DR� at least
for negative q�

� Useful information is obtained from comparing
the various spectra� in particular the extremal
values at q � ��

Conclusions�

We introduced two novel multifractal notions DC�q	
and DR�q	 which are helpful in describing the rela�
tion and dependence of the fractal geometry of two
distributions of points on each other� As was pointed
out� special information can be gained from q � �
and q � � as well as from comparing DC �q	 and
DR�q	 with the usual generalized dimensions D�q	�
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Appendix

Coarse grainingmethods for general reference
measures

For the coarse grained version of the relative mul�
tifractal spectrum in full generality one uses similar
ideas as for the partition function �R�q	 de�ned in

Subsection 
��� One has to replace the simple �count�
ing� of the boxes C with ��C�	 � jC�j	 by

N
����� �	 ��
	X

��

�C�	�

where the sum
P	


�� runs over all C � G
 with

�C�		�� 
 ��C�	 � �C�		��� In other words� one
does not count the boxes C with the desired prop�
erty but the sample points of the reference measure
 which can be found in such boxes C�
Then� one de�nes the relative coarse grained spec�

trum as

fR��	 �� lim
���

inf f� � N
����� �	� � as 
 � �g

which generalizes the usual notion as given in Sub�
section 
��� We have�

Lemma 


�R�q	 � inf
	�IR

�
q�� fR��	

�
�

Proof
Fix q� Note �rst that we may estimate

S
�q� t	 �

	X

��

��C�	q�C�	�t

�

	X

��

�C�	q	�jq�j�t

� N
����� q�� jq�j � t	�

Now� assume that t � q��fR��	 for some �� Choose
� small enough so that q�� jq�j � t � fR��	� Then�
by making � even smaller if neccessary� there is a
sequence 
n � � and c � � such that N
n����� q��
�	 � t	 � c� This yields

S
n �q� t	 � c

hence� �R�q	 
 t� We conclude that �R�q	 
 q� �
fR��	� Since �was arbitrary� �R�q	 
 inf q��fR��	�
The opposite estimate is obtained with similar meth�
ods� but writing more carefully

S
�q� t	 �
X
k

	kX

��

��C�	q�C�	�t

with �k � k�� For details see ���� 

� 
��� �

Since �R�q	 is concave we �nd �



�� R� H� Riedi � I� Scheuring

Corollary � The relative multifractal dimensions

DR�q	 ��
�R�q	

q � �

are monotone as a function of q�

Corollary 
 �Multifractal formalism� The rel�
ative multifractal spectrum fR��	 can be obtained
from �R�q	 as in ��	� Moreover� DR��	 and
DR���	 are the minimal and the maximal relative
H�older exponent �����


