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Abstract

Heavy tailed distributions enjoy increased popularity and become more readily
applicable as the arsenal of analytical and numerical tools grows. They play key
roles in modeling approaches in networking, finance, hydrology to name but a
few. The tail parameter is of central importance as it governs both the existence
of moments of positive order and the thickness of the tails of the distribution.
Some of the best known tail estimators such as Koutrouvelis and Hill are either
parametric or show lack in robustness or accuracy. This paper develops a shift
and scale invariant, non-parametric estimator for both, upper and lower bounds for
orders with finite moments. The estimator builds on the equivalence between tail
behavior and the regularity of the characteristic function at the origin and achieves
its goal by deriving a simplified wavelet analysis which is particularly suited to
characteristic functions.
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1 Introduction

Heavy tailed distributions enjoy increased popularity and become more readily appli-
cable as the arsenal of analytical and numerical tools grows. They play key roles in
modeling approaches in networking, finance, hydrology to name but a few applica-
tions. Examples of interest include the stable, the Pareto and certain extreme value
distributions. The tail parameter is of importance in its own right as the central
parameter for several of the mentioned distributions.

In addition, it sets the upper bound for the ordebgyond which momeni&[| X |"]
do not exist. Indeed, recall that a random variaklés calledheavy tailedwith tail
parametery if

P[|X| > x| =2 “L(x) (1)

wherelL is a slowly varying function, i.e L(tz)/L(z) — 1 asz — oo for anyt > 0.
It is called Pareto, ifL(x) is a constant and (1) holds for &it| > 6. For the Pareto
distribution, it is clear that moments are finite exactly up to ordes fact that can be
generalized using standard facts.

The issue of finiteness of moments is particularly pressing in view of the abundance
and usefulness of moment estimators. They are not only important for parameter es-
timation, when the underlying distribution law is known, but also for data fitting and
model selection, i.e., identifying unknown distributions from sample data. To recall
but two instances, the Kurtosis statistic hypothesis test resolves Gaussianity versus
non-Gaussianity, whereas for a Poisson random variable mean and variance should be
equal. In addition, many applications integrate moment estimates as a crucial ingredi-
ent. That is the case in multifractal analysis, wheregth¢h order absolute moments
of the increments (or the wavelet coefficients) of a process hold valuable information
on the local behavior of its paths.

Pathologies emerge when moments are infinite or not defined, such as for the
Cauchy distribution which has infinite second moment and undefined mean. As in-
finite moments may degrade the performance of estimators (possibly introducing some
systematic errors) or reduce the speed of convergence to limiting laws, special atten-
tion must be dedicated to their theoretical existence. We refer once more to multifractal

analysis where infinite moments may indicate phase transitions that are highly infor-



mative about the process regularity.

All this motivates the development of statistical methods to determine the finite-
ness of moments of a distribution given finite sample data (GoasaR000), more
precisely, to determine the (positive and negaturitjcal order A=, A of a distribu-
tion, by which we mean here

At 2 sup{r >0 : IE[|X|"] < oo}

A~ 2 inf{r <0 : E[X|"] < oo}.

2
Related estimators will not only provide useful for the tail parameter, but also for the
analogous parameter governing the distribution around zero, or any center of ghoice
after a translation — X . To this end, we propose an approach that combines two
facts.

First, the characteristic functiof(u) = [E[exp(iuX)], being the Fourier transform
of the distribution ofX, has as many continuous derivatives at zero as the distribution
has finite moments of positive orders. In particular, for ektewe haves*) (0) =
i*IE[X*] whenever one of the two is defined (Papoulis, 1991). A crucial ingredient
to our methodology is a more general relation of this sort. To this end, we resort
to the concept of theharacteristic exponeng™ of a distribution by which we mean
the (generalized) degree of Lipschitz continuity of the real part of the characteristic
function at the origin. Provided™ lies in (0,2) the characteristic exponent can be

written simply as
pt =sup{r >0 : 1—Reg(u) =O0(u") asu — 0*} (3)
It follows from basic known facts that
A=t @)

as long as these values lie betwdrand2. Estimation of the critical exponent can
then be achieved via the regularity ©f Replacing the random variablé by 1/ X we
find p~ and an estimate fox—.

Part of the paper will address the extension of this approach for orders larger than
2 from the estimation point of view; the mathematical foundation of this extensions is
developed in a companion paper (Riedi and Gorgsl2005) and can also be found in
(Gongahés and Riedi, 2002). Effective for model selection, the characteristic exponent

provides an exact estimate of the critical ordet:= A™ (see corollary 6).



Second, having reduced the problem at hand to an estimation of local regularity, it
proves effective to leverage the power of the wavelet transform. In a nutshell, the decay
of the wavelet coefficients of a functioi’ [¢](u, s) (as defined in (14)) fou close to0
provides quite precise information on the local regularity of the fungjiat0. As will
be established, this wavelet analysis becomes particularly simple for a characteristic
function ¢ and requires only the knowledge Bf[¢](0, s).

In summary, the recipe of our estimator fof is dramatically simple:

e From the sample data sgX,,, n = 1,..., N} compute solely the wavelet coef-
ficients at zero of the empirical characteristic functipfu) = N~ > onexpliuX,},
ie., W[@](O, s); as it appears, this amounts to computing the non-parametric un-

biased kernel estimatd¥’ (s):

1 N
NZ\I} s-Xp) (5)
k=1

where the kernell is a the Fourier transform of a semi-definite wavelet (see
text).

e The estimators of the two characteristic exponents,/ﬂef;md;)z are obtained
from simple linear regressions hfg W(s) againsflog s within some predefined
scale intervals. These estimators are scale-invariant, can be made shift-invariant,

and are asymptotically un-biased.

e Since wavelets can not capture regularities higher than their own regulgyity
the procedure should be repeated with wavelets of increasing regularity (reason-

ably up toN,, = 4).

We will demonstrate the effectiveness of this estimator looking at symmetrical sta-
ble distributions in comparison with well established estimators such as Koutrouvelis’.
Recall that stable distributions appear as limiting distributions of properly renormal-
ized sums of iid random variables with (possibly) infinite variance. The symmetrical

stable laws are defined by
¢x (1) = Elexp(iuX)] = exp(—o®[ul® + ipw) (6)

and their heavy tail parameter is known to be equal {(Gamorodnitsky and Tagqu,

1994). Combining this with the fact that their densities, though not explicitly known,



are symmetrical and uni-modal, they possess finite absolute moments of erdetly
forr € (—1, ). On the other hand, the Taylor expansiorop(-) implies readily that
Rep(u) = 1 — o%|ul® + O(|u|>*), which verifies (4).

2 Background

In this section we collect well known facts on the existence of moments as well as the

wavelet analysis of irregular signals.

2.1 Tail Estimators

Most well-known tests for the existence of moments emerge as by-products of tail es-
timators and appear in parameterized settings. For instance, Nolan (2001) proposed a
maximum likelihood estimator for general alpha-stable laws (including Gaussian and
Cauchy) based on a large sample data set. As no closed form exists for these dis-
tribution functions (aside from some particular rational values of the parameters), he
proposes an efficient numerical resolution to find the maximum of the likelihood equa-
tion.

Previously, Koutrouvelis (1980) and McCulloch (1986, 1997), among many oth-
ers, have proposed two different estimators of the parameters-stfable laws, based
either on Pareto approximation far-stables tails, or on the analytic form of the char-
acteristic function.

More recently, Bianchi and Meerschaert (2000) proposed a quadratic estimator of
tail index«, based on the asymptotic of the sample variance. This robust estimator has
the advantage over Hill estimator (Hill, 1975), to be shift and scale invariant, and also
to perform well in situation where the Hill estimator is inefficient, namely for stable
distributions withl.5 < a < 2.

Starting from a closed form for the characteristic function (recall (6)) or in some
cases a numerical approximation of the density function all these methods aim at find-
ing the maximum of the log-likelihood function, given the data. As a result, it is well
known that these approaches are optimal in the sense of minimum variance and achieve
the Crangr Rao bound (Feuerverger and McDunnough, 1981a; Koutrouvelis, 1980;
Nolan, 2001). However, being parametric, these estimators may perform poorly when-

ever the true underlying distributions do not match the model.



In this paper, we proposeren-parametricestimation procedure with convincing
robustness properties for the characteristic exponehtand o~ which do not rely
on any assumption on the density model. In particular, not even the semi-parametric
assumption of heavy tails (1) is made and can be tested via this approach. The resulting
estimates can be used for estimating the tail parameter and the body parameter.
Notably, both exponents are estimated in the same procedure. Indeed, the problem
of existing negative moments could be reformulated with a simple change of variables
x — z~ !, as a positive moment existence problem. Then, we could apply our estimator
to X ~!instead ofX directly, allowing thus for determining a lower negative bound for
the existence of ™ _ |z|~"dF(z), r > 0. However, as we will demonstrate both, the
positive and the negative characteristic exponent can be evaluated at once, using the

same procedure applied to the same data set of i.i.d. safifilés—1, . n.

2.2 Characteristic Function and Moments

Let us recall a well known relation between high order moments of a distribution func-
tion F(z) of a random variableX and its so-callea¢tharacteristic functionwhich is
defined as:

d(u) = Be™* = /ei“mdF(x). (7)

Using simple duality argument between time and frequency (via the Fourier transform
in (7)), the behavior of the characteristic function at the origin relates to the tail be-
havior of the distributior¥” for large|z|. In particular, whenever the integeith order
moment ofF’ exists, thep-th derivative of¢ at the origin exits as well and they simply
relate as follows

dP

o (0) = Tt =X = / 2PdF(z). (8)

u=0
This justifies¢ to be also referred to asmoment generating function

Conversely, whep is even existence of(®) (0) implies existence o[ X?]. No-
tably, pathologies can occur whenis odd. As the following example af(u) =
C~1 3752, cos ju/(j%log j) demonstrates (compare Kawata, 1972, pg. 411), the exis-
tence ofp(!) (0) does not necessarily guarantee the existend@e[af].

As we strive towards a generalization of a relation between moments and charac-

teristic function to non-integer orders> 0, let us first introduce the absolute moments



of orderr € IR:
My 2 X = [ ladF (@) (©)

where we allow the valueo. Let us emphasize th8L[X?] exists if and only ifM,,
is finite, in other words, if and only if botlit[max (X, 0)?] andIE[max(—X,0)?] are
finite.

We first recall the definition ok in (2) and note a simple fact:

Lemma 1 For any distributionF’ we have

AT = sup{r>0: M, < oo}

sup{r >0 :1—F(z)+ F(—z) =O0(z~") asz — oo} (10)

Note that a priori there is no information on the behavior in (10)-fexactly equal
to AT,
Proof

To obtain one half of the lemma recall the Markov inequality which states that
P[IX|>a] <a "E|X|", Vr>0,Va>D0. (11)

Consequently]l — F'(a) + F(—a) is O(a~") for all » > 0 with finite M,.. The other
half of the lemma follows from theorem 11.3.1 in Kawata (1972) which states that
1— F(a) + F(—a) = O(a™") implies thatM,. is finite for all 7’ < r. &

Next, we apply a theorehdue to Binmore and Stratton (1969) (see Kawata, 1972,
e.g.) which relates the Lipschitz regularity ¢fat the origin to the tail decay df for
orders less thaP. Recalling the definition of the Lipschitz exponentgfiven in (3)
we find:

Corollary 2 If either A™ or p™ is known to be strictly less thanthen:
At =pt. (12)

With this in mind, we present wavelet theory in the next section with particular em-
phasis on their natural abilities to detect and estimate the local regularity of a function.

1let0 < r < 2. Then,1 — Re¢(u) = O(u") ifand only if P[| X | > z] = O(z~").



2.3 Wavelets and Local Regularity

A wavelet analysis consists in a linear decomposition of a sigoato a set of analyz-

ing functiong
{Wes(u) 2 [s| 720 ((u—t)/s), (t,s) € R x R} (13)

through the inner product

Wgl(t,5) 2 / 9(u) e.s(u) d (14)

Conceptually, this transform can be viewed as a partitioning of the time-frequency
space, wher&/[g](t, s) measures the correlation betweeand each elementary atom
Yrs. All of these time-frequency cellg, s are time-shifted and scale changed ver-
sions of a unique prototype functiah Therefore, for the time-frequency tiling to be
consistent, the mother wavelet must be localized in the time and in the frequency do-
main simultaneously. Formally, these constraints transpose to the following: We call a
wavelety) admissible of regularityV,, if it has the following three properties:

o [pF() <O+ t))~Ne—tfork =0,... Ny,
o [thy(t)dt=0fork=0,...Ny,—1,and
o IO vdy = [° ¥ (—v)|?/vdy = 1.

Now, because equation (14) conveys information on the local oscillatory behavior
of the analyzed functiom, it is possible to assess the local Lipschitz exponenj of
from the dynamic of wavelet coefficients across scales. A simple fact reads as follows
(see Jaffard (1989, 2001), also Riedi (2001)):

Theorem 3 Consider an admissible wavel€t of regularity V,, > r. Assume that
g(u) — g(0) = O(u") asu — 0. Then, there is a constafit such that

IW[g)(0,s)| < Cs” ass — OF. (15)

2\We restrict ourselves to the case of real continuous wavelet transforms, even though all theoretic results
we present here transpose directly to the discrete framework of real orthogonal wavelets.



Reciprocally, somewhat more precise knowletieg: — 0 of the decay of¥ [g](u, s)
for all » allows to determine the local continuity of the functip@affard, 1995, 2001).
As we will elaborate, a certain type of wavelet analysis of the Lipschitz continuity of
characteristic functions simplifies dramatically due to the fact that the wavelet trans-

form is in this particular case maximal at the origin.

3 Wavelet analysis of Characteristic Functions

We start by demonstrating how the wavelet analysis of characteristic functions can be
simplified tremendously.

3.1 Semi-definite Wavelets

As it turns out it is particularly simple to estimate the wavelet coefficients of a char-
acteristic function provided the wavelgtis semi-definiteby which we mean that its
Fourier transform¥ (v) = [ ¢(t) exp(—itv)dt is real and does not change sign. In
other wordsy) is either positive semi-definite, i.e(-) > 0, or it is negative semi-
definite, i.e.,.¥(-) < 0. Examples of such wavelets are the derivatives of even order of
the Gaussian kernel: set

N i 2,2
Up(t) = cp sy exp(—07t) 17
wherec, is a normalization constant andis a positive integer. One finds the semi-
definite Fourier transform

2

U, (v) = Cp(—1)Pv* exp (;:2) . (18)

Lemma 4 If the Fourier transform¥ of the wavelet) is real, square integrable and
semi-definite then
[W[Re ¢](t, s)| < [W[Re¢](0,s)] (19)

In other words, for fixed scalethe modulus of the wavelet transform of the real part

of a characteristic function is maximal#t= 0 for semi-definitel.

3For a simplified version considér < r < 1. The following condition implies thag(u) — g(0) =
O(u™) (Jaffard, 1989, 2001, 1995): there exist numhi&randq < r such that

|ul?

log |ul

[W(u,s)| < C (s’" + ) , fors — 07. (16)



Proof
Recall that|s| =2+ ((u — t)/s) and ¥ (sz) exp(—itx) form Fourier pairs, as well ag
andF'. Applying Parseval’s identity yields

wmmmﬁzlkﬂﬁww—wwwm

Re / U(sx) exp(—itx)dF(x) (20)

Using the simple estimat®e x| < |z| as well as the fact thak is semi-definite and

does not change its sign we obtain

W[Red)}(t,s)‘ < /|\I/ sz) exp(—itz)| dF (x /|\I/ sz)| dF (z

- ‘/ U(sz)dF(z)| = ‘W[Re 310, s)’ (1)

as desired. o
As a corollary from (20) we note

WiRed)(0,5) = [ W(se)dF (@) = B¥(sX)) (22)

3.2 Critical orders smaller than 2

We are now in a position to combine the above results into the anticipated tight con-
nection between a wavelet analysis and the critical okderWe will then extend this
connection to orders larger thar(see Section 3.3).

Theorem 5 Consider an admissible, semi-definite wavetedf regularity N, > 2.
Then,

AT =pt =sup{r >0 : [W[Res](0,s)| < Cs" fors — 07}, (23)
provided that either term is known a priori to be strictly less ti2an

From a wavelet point of view we can not stress enough that the above result owes
its simplicity to the fact that the wavelet coefficientsRd ¢ are maximal af. Also,
At = pT was noted earlier.
Proof

Due to lemma 4, the condition (16) of footnote 3 follows trivially fré#(0, s) < C's".

10



The extension t® < r < 2 exploits the symmetry oRe ¢ to conclude that the best
polynomial approximation oRe ¢ of degreel is still constant (for a full argument see
the companion paper Riedi and Gonga\(2005) or Gongabs and Riedi (2002)).

¢

3.3 Critical orders higher than 2

Attempting to extend the appealing three-fold connection of theorem 5 to orders higher
than2 we face two hurdles, one surmountable due to special properties of the charac-
teristic function, the other more profound.

For a better understanding, we need to extend the concept of Lipschitz continuity
to higher orders. To this end, we define the Taylor rest-term of &dat zero as:

¢<2’“ (24)

M@

Qgp( ) Regb 717

k=1

whenever it exists. Thus, the general definitiopbfreads then as
pT =sup{r >0 : Qa(u) = O(u") asu — 0%, for2p <r <2(p+1)} (25)

Also, we require a more general version of corollary 2. The higher order extension
of Binmore and Stratton (1969) is found in Kawata (1972) and relates the finiteness of
moments, i.e., the value of" to a smoothness condition &k,

The first hurdle concerns the fact the wavelet analysis is a powerful tool for assess-
ing the local degree of regularity, but does in general not allow to make conclusions
on differentiability of the analyzed function. To make the point, functions which be-
have at zero ag- |>® (modulo a polynomial) but have only one derivative are easily
constructed. In other words, the corrective polynomial does not have to be the Taylor
polynomial as in (24). This difficulty is overcome by proving existence of moments
directly via monotone convergence from the decay of appropriate wavelet coefficients.
Finite moments imply then that was indeed differentiable and that wavelet analysis
indeed reflects the regularip/ of Q2.

The second hurdle stems from the fact that Kawata’s smoothness cofititioh

4Assume thaty(2P) (0) exists. ThenM,. exists if and only if (Kawata, 1972)

/ Q2 (0] dt < oo, (26)
0

11



allows to compute\t) is in terms of an integral and weaker than the Lipschitz condition
(25) (which is the one resulting from wavelet analysis). However, using results on the
expansion of characteristic functions by Lukacs (1983) we are able to obtain exact
bounds. We state only the final result and leave mathematical details to a companion
paper (Riedi and Gongadg, 2005).

Corollary 6 In general, the Lipschitz regularity of a characteristic function (25) is
related to the critical order of moments (2) via

pt = AT =sup{r >0 : [W[Re¢](0,s)] < Cs" fors— 07}. 27)

3.4 Negative Critical Orders

We are now interested in estimating the negative critical oddedefined in (2), of
a random variableX with densitydFx (x). Let us define a new random variatife
using the one to one mapping fralR to R: ¥ = g(X) = X! FixingY =y,

equationy = g(x) has only one root: = y~!, and|g’(z)| = v, from which we
deduce the distribution df , dFy (y) = y~2dFx(y~!). The negativeth order of X

simply corresponds to the positivejth order of random variabl¥:

E[X|] = E[1/Y]7] = E[]Y]). (28)

Therefore, to estimate™ (X) of X, we can directly apply general results obtained
in Section 3.3 for positive higher orders, to get

AT(X) = -1 (1/X) (29)
4 Estimation procedure

In this section, we elaborate on the implementation of our estimator'foin partic-
ular the choice of wavelet and scales to consider, its bias, robustness and optimality
properties.

12



4.1 Implementation

GivenX;, (: =1,...,N) aset ofN observed i.i.d. samples of the distributiof'(z),

we use the empirical estimator for the characteristic function

N
o(u) 2 on(u) 2 % 3 expliuXy} (30)
k=1

For our purpose, we need to evaluate this function on a properly sampled interval
uj =j-ou, j=0,..., K — 1, that we will make more precise later.

We now recall some convergence properties of this empirical characteristic func-
tion (see Feuerverger and Mureika (1977); Feuerverger and McDunnough (1981b) for
details), justifying its use in the rest of our method. Figst;(u) converges almost
surely whenV goes to infinity towards(u) in the L> sense, over some finite interval

T
sup [pn (u) = ¢(u)| — 0. (31)

lul]<T

Second, consider the random procEgsu) = v/ N (¢ (u)—¢(u)) and lety (u) =
Y (—u) be azero mean complex Gaussian process with covariance striExti(teY (v) =
o(u+v) —d(u)d(v). Then, the sequenddy (uq), Y (u2), ..., Yy (uy) convergesin
distribution toY (u1), Y (ug), ..., Y (tm)-

It is also shown in Feuerverger and Mureika (1977) #iatu) converges weakly
towardsY (u) in any finite interval, provided thdE| X |'+9 < oo.

Next to consider is the wavelet decompositiorygf(u) which simplifies to

Wionl(t:s) = [ vrao)on(o)do
= é;/@bt’s(v) exp{iXyv} dv
_ 1 i X ot 1 X
= Nzk:exp{z k }/w(u) exp{iXpsu}
- % Ek: W(s-Xp,) exp{iXyt}.

Two-Step Estimation Procedure
(1) Assuming thatl is real, semi-definite we finally arrive at the surprisingly sim-
ple estimator for the maximal wavelet coefficientR¥ ¢ of scales, which is the main

13



ingredient in our method:
. N
W(s) 2 W[Re én](0,s) = (1/N) > W(s-Xp). (32)
k=1

(2) Finally, according to theorem 5 the characteristic expoperis estimated from
the powerlaw exponent which steers the decaWc(fs). An estimator of the critical
moment order results from either corollary 2 or corollary 6. Taking the logarithmic of

this powerlaw model yields the linear trend
log ﬁ/\(s) ~ ,;I log s + log C, (33)

where;; is simply obtained via a standard (weighted) linear regression procedure of
log W(s) againsts restricted to some scaling inter@hin, smax) t0 be specified.
RobustnessSince we assume nothing on the distribution we obtain thus a non-
parametric estimator. We also note immediately, that the estimation caxadhe shift
invariant by subtracting the sample average from the déatand that it isscale invari-
ant
Indeed, consider the daff; = aX;. Then/VV[X’](s) = /W[X](as). Rewriting
log(s) aslog(as) — log(a) we find that the regression data ®f and X differ merely
by a shift, leading to the same estimated least square slope.

4.2 Statistics of the estimator

Let us study the bias of both, the simple estimator of the wavelet coefficient (32) itself,
as well as the derived estimation of the scaling exponent (33).

Since all observations are drawn from the same distribution, we may write
N
Z U(sX;)] =E[U(s- X)] = / U(sz)dF(z).  (34)

This shows that as an estimator of the wavelet coeffidi€ii®, s) itself, /I/I7(s) is un-
biased. However, as we will show, a bias is introduced as we estimate the powerlaw
decay ofi’ (0, s) through the powerlaw decay ﬁ?(s). This result is similar to the one
obtained in Abry et al. (1995) where it is shown that using log-periodograms (Welch
estimator) to analyze processes with spectra of the Fgp€f) ~ o2|f|~ leads to a

systematic bias on the estimaterofOn the other hand, using a wavelet-based spectral

14



analysis (the frequency marginal of a wavelet decomposition) yields an asymptotically
unbiased estimator for exponetat This is due to the constant relative bandwidth of
wavelets that performs a logarithmic tiling of the time axis. The resuliing-band
analysis has joint time and frequency resolutions that match naturally powerlaw decays

asinI'x (f), orinour case, ip(u) around the origin.

Example: Estimating the critical order To explore the properties of an estimator of
the characteristic exponept™ through the wavelet coefficients we first treat a simple

case where we assume that

e the distribution is Pareto, i.ef’(z) = px(z) = cox~*"! for |[z| > § and

vanishes elsewhere, witlh = ad?;

¢ the wavelet is bandlimited, actually require thiat) = 0 for |v| < v, where

v > 0is some constant.

Such wavelets are known to exist. For instance, by construction, the auto-correlation
function of any admissible and band-limited wavelet is itself a symmetric in time, band
limited and positive definite admissible wavelet.

Inserting the particular form gix (x/s) into the bias formula (34) we can extract
the scales through a substitution. Providedis small enoughi.e., s < v/é, the
remaining integral is independent of the scale due to the band limitatidn dfhis
reads as:

E[W(s)] /;o U(zs)cor™* tdr = s* - /6Oo W(y)coy > 'dy

S

= s%. /00 \If(y)coy*afldy =Cy(a) - s™. (35)

Thus, the exact powerlaw of the density translates into 0@@9‘) thanks to the
band limitation of the wavelet. Apart from this showcase, approximatively the same
decay ofﬁ/\(s) can be observed under much less restrictive assumptions, as we are

about to show.

Estimating the critical order of fat tail distributions ~ We relax the above assump-
tions to the following scenario:

15



e We consider a simple, heavy tailed probability density function which is sym-

metrical, constant around the origin and which follows an exact powerlaw in the

tails:
foon Ja if |z| <4,
F'(z) =px(z) = { 62|$|_O‘_1 if 2| > 4, (36)
where
_1l._e and _ a
7% ato 2T 1Traj
e The wavelet is sufficiently regular:
V() < dylv|™. (37)

Let us comment on this choice. Despite its special form, this distribution will be
sufficient to explore general fat tail distributions. Clearly, it has finite moments of the
orders between~ = —1 and\* = a. Also,v = px(§)/px (0) is the ratio of the tail
amplitude to the constant value around zero. Clearly, the bound (37) is restrictive only
at smallv, asV¥ is integrable and must decay at infinity.

To show tha[E[W(s)] scales as®, we need to generalize (35) and split the integral
of (34) into two parts|z| < ¢ and|z| > ¢. We claim that the first part is of the order
sNv while the second term behavessisplus a term of the ordes’™». In summary,
the wavelet estimator decays indeeds&swith an error term in the ordes’V+, which
may introduce a bias in the estimation)of = «.

Applying (37) we find

s 5
[5 U(sz)px(x)de < ¢ - /ﬂs U(z)de < ¢y - 26 - dyo™Ne - N (38)

as claimed. Next, similarly to (35) we obtain

oo

| voms @ = [ vt/ =5t eer [ w39

5 sd

To the contrary of (35) this integral depends«Thus, we write it a#o‘x’ — 086. The
first term is now a constant, leading to the announced behavigt.ako estimate the

second term, we estimatiein a way similar to (38):

%0 —a—1 0 Ny, —a—1 (Sé)Nw_a
/ U(y)y @S%/‘yw ®=%jf—f (40)
0 0 p
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Collecting (38) - (40) we find tth[W(s)] = As*+O(s"+). Bounding the error
relied on the regularity (37) of the wavelet, while the exact scaling derives directly from
the exact powerlaw (36) of the distribution. We generalize this result as follows:

Proposition 7 Assume tha¥ is positive semi-definite. Assume, the distribution has a

densitypx which can be bounded as follows:

<alz|7*~t for|x| > 6,
px(x){ >blz|7*"t for|z| >4, (41)
<c for || < 4.
Assume that the regularity of the waveleis larger than the critical order, i.e.V, >
«. Then,
i s* 4+ 0(sN) > E[W(s)] > b-s* + O(s™v), (42)
witha/b = a/b.
Proof

Sincey hasN,, vanishing moments we know that (37) holds. Proceeding as before,
we write

- )
Hmm::/wmmmwwf%/ W(ypx(y/s)dy  (43)

-6 ly|>sd

The first term is bounded from above @¢s™V*) as in (38). The second term maybe

framed using the tail bounds g as
ealzs T [ /sy = s b, (44)
ly|>sd

where

sd

I=/| 6‘If(y)\y|‘“‘1dy=/ \I’(y)IyI‘a‘ldy—/ W (y)|y| " dy.
y|>s

—00 —sd

Here, the last term can be boundedHs"+ <) as in (40). It combines with the factor

s* of (44) to aO(s™+). So, only one term behaves &sand we find

E[W(s)] = As®+ BsMv (45)
where
o [ ez Az [T vl (46)
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A more careful computation reveals that

waa
B <2Vt cody 4 2ady . 47
b YN, —a) (47)
¢
4.3 Numerical robustness
Provided that the observatiod§, (k = 1, ..., N) are un-correlated one finds easily
varW (s) = (1/N)var(¥(sX)). (48)

Moreover, under the assumptions of proposition 7 we concludelfigts X ) ~ s®
and, considering’? as a waveletlE¥?(sX) ~ s@. Thus,

var(¥(sX)) = E¥*(sX)— (E¥(sX))’
~ s*E¥(X) - s (E¥(X))>.

To provide a more rigorous error estimate let us assume that we consider the ele-

mentary, yet admissible, wavelet

- —1/2 —1/2
W(a) = Ave TELo =y = gNg vy N (49)
0, otherwise.

This somewhat crude boxcar approximation for the wavelet becomes reasonably
accurate for the derivatives of the Gaussian kethe(17) as we set, = /po/7.
Indeed,| ¥, | reaches its maximal valug,(po? /72)P exp(—p) at thisv,,. Clearly, the
approximation becomes more accurate as the regularity increase¥,i.e:, co.

For the box-car wavelet we get

A A )
varlW (s) = (1/N)var(¥(sX)) = N (px [sX € Iy] — px [sX € 1y]).

Assuming an exact powerlaw for the tail as in (36) we may write, provided the scale is
sufficiently small, i.e.s < (vy — /Ny /2)/9:
(vu+3N; Y2 /s

pPx [SX € Iw] = / ng_a_ldq; = g%. 02/ y—a—ldy.
AN
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1/2

Using the mean value theorem we may rewrite the integr@l}ﬁy_l -N,, '~ wherey,,

is some number if, thus,y,, ~ v,. Finally, giverw) has unit energy, i.ed,, = N;/‘l

varv (s) ~ NVC;H 5° (1 - M) (50)
For small scaless(— 0), the variance behaves like Wr(s) ~ O (s%). Figures 1(a)—
(c) show empirical variance vﬁ?(s) varying with parameterd/, s and NV, attesting
the good agreement between experimental and theoretical results.

Let us now consider the new variabileg W (s). With a central limit theorem ar-
gument, we can say thﬁ(s) is asymptotically normal with meafy, ~ As* and
variances? ~ Cs“. Then, in first approximation, using a result on functions of
asymptotically Gaussian variables (Sirfling, 1980; Papoulis, 1991), we conclude that
log W(s) is asymptotically Gaussian and

Elog W(s) ~ log ]EW(S) ~log A + « - log(s)
. . . (51)
varlog W (s) ~ [IEW (s)| "2varW (s) ~ B/A - s~

See figure 1(d).

To summarize the above, we propose to estimate the characteristic exponent
via the estimator of the scaling exponenibf the wavelet coefficients in (51). For
(asymptotically) Gaussian random variables such as (51), the maximum likelihood es-
timator of « is simply obtained from a linear regressionloﬁW(s) againstlogs, as
already suggested in (33). Asymptotically, the resulting estimate converges to
practice though, the finite size data set limits the regression range to some interval
s € (Smin > 0;8max < 00). The important issue of properly choosing this scaling

region is treated in the next section.

4.4 Choice of the scale range

We have defined an estimator for via a log-log linear fit. While in theory the wavelet
coefficients should decay as a powerlaw of the scale, we are in practice faced with the
fact that the scaling deviates significantly from the theoretical ideal case for both large
and small scales. Here we discuss the reasons for this deviation and explain how to
choose the scaling region.
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(a) Empirical variance vﬁ(s) (b) Empirical variance v@(s)

10° T 107 T

10! 10° 10° 10" 10° 10" 10° 107 10" 10°

log N log s

(c) Empirical variance va//V\(s) (d) Empiricallog IEW(s)

NL/JO(IJ2 log s

Figure 1: Experimental verification of expressions (50) and (51). (a)—(c): Empirical
estimates of va(/i{7(s) estimated over a set of 100 independent realizatiors sthble
processes of lengthV. Evolution of vaW(s) is plotted as a function of: (dpg N

(v = 1.2, Ny, = 4, s = 0.0087); (b) log s (o« = 1.2, Ny, = 4, N = 2); (c) Ny,

(@ = 1.2, s = 0.0087, N = 2'4). (d) Empirical estimation ofog IEWW (s) versus

log s. The error bars correspond to the standard deviatidng)W(s). The dashed
line materializes the theoretical ldag ]EW(s) =a-log(s)+C' (=12, N, =4,

N =24,
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4.4.1 Lower bound of scaling region

We have two different approaches to determine a lower bound for the scale range of
the linear regressiolog /V[7(s) versuslog s in (33).

The first one is based on a Shannon-like theorem. Our estimator estimates the
singularity of the characteristic function at the origin. In practice, we use the em-
pirical estimator for the characteristic function, i.8(u;) = N~ > exp(iugX;).

The maximum variation of is controlled by the maximum value of;. There-

fore sampling¢ at a higher rate than approximately the Nyquist ra&)~! with

X = max{X;, j = 1,--- N}, does not bring any finer information on the regularity
of ¢(u) atu = 0. On the contrary, when the analyzing scale goes below the minimum
bounds,,;, = (X)~!, the measured regularity is overestimated, as the function under
analysis reduces to the sal&° componentxp(iu, X ), oversampled at the vicinity of

the origin. Thus, concordantly with theorem 5, wheis estimated from data below
this minimum scale bound it reflects the regulatiy, of the analyzing wavelet rather
than the targeted regularity of the characteristic function.

The second approach starts from the expression (32). In order to be consistent, we
need to ensure that at least one sandp)dalls inside the equivalent support &f sz).

For smalls, only the largest values ok ; are retained to enter the sum (32). As a
result, if X is the maximum sample of the seri&s, v, /s is thecentralfrequency of
the wavelet at scale We then wantX ~ vy, /s, which leads tG i, ~ vy/X.

In summary, both arguments above lead to the same conclusion that the lower cut-
off scale should be chosen proportionallyltoX. For the numerical analysis in this
paper we adopted:

Smin = 1/X. (52)

Using a stable law with index of stability (or shape parametewye present in fig-
ure 2 the theoretical lower scale bounid,, = (X)~!. Alinear regression dbg W(s)
versuslog s for s > s, Yields an accurate estimate of the characteristic exponent
pT = a. Moreover, on this same plot, we verify that fok s,,;,,, the wavelet estima-
tor /W(s) behaves likes™¥, in accordance with the aforementioned argument that the
function under analysis is now thg* exponentiabxp (iuX).
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4.4.2 Upper bound and negative moments

As we saw, existence of moments is dictated by the tail decay of the distribfdtion

for x — oo. For instance, it is shown in Samorodnitsky and Tagqqu (1994), that the
asymptotic tail behavior of a stable law is Pareto wher « < 2. Defining when
exactly this asymptotic behavior starts seems to be a tough problem (see Nolan, 2001),
as it depends heavily on the parameterization that is used to model the distribution (in
the parametric context). We just pretend here, that the upper cutoff sgaldelow

which W(s) behaves likes® is also determined by this cutoff value &f separating

the tail behavior (as a Pareto law for instance) fromhbey of the distribution. We
illustrate this with a compound distribution, made out of a uniform distribution for
|X| < ¢ anda—stable distribution fotX| > 6. We show with this simple example
(see Figure 2), that the upper cutoff scale is of order:

Smax = 5_1 (53)

whered marks the transition from body to tail behavior in the distribution. In practical
applications one might choogefrom prior knowledge (rendering the estimator semi-
parametric) or estimatgitself from the scaling plots (see Figure 2).

Beyond this upper limit, the wavelet estimafog /W(s) decays with slope-1.
This particular value of the slope depends only upon the distribution we have chosen
for the body of our compound distribution. In our example, the uniform distribution
has negative moments only fpr> A~ (X) = —1. That is precisely this bound that
is estimated in figure 2, when > s,.x. TO support our claim, we simply follow the
same lines as for the tail estimator (35): Giveg(z) ~ |z|*~!,  — 0, then

6 d.s
IEW(S)z/O ‘I’(sm)PX(a:)dx:/o U(x)|s tz[" " s da,

and recalling thafv is band-limited, we get:

EW(s) = 377/ U(x)|z|""dz, Vss.t.7 < s
0
~ Bws’y.
The same value foh~ (X) would have been estimated, if instead Xfdirectly
we had analyzed the new random variablle= X ! as discussed in Section 3.4, and

estimated\*(Y) = —\~ (X)) from the tail decay of the transformed distribution.
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Figure 2: SCALING REGION AND CUTOFF SCALES Choosing the scale too small, the resolu-
tion is fine enough for the wavelet to analyze the individual exponentials that form the estimator
é. According to section 4.4.1 the wavelet coefficients decay (at least) with expdierihoos-

ing the scale too large, the estimator samples the body instead of the tail of the distribution; thus,
the wavelet coefficients adhere to a powerlaw with exponent

This observation bears a convenient consequence as far as negative moments are
concerned: We can fully exploit the behaviorfé\f(s) for s > smax, leading us to a
simple estimator oA~ in (2). To illustrate this, we now choose a compound process
similar to before but replace the uniform distribution féf| < ¢ with a Gamma dis-
tribution of paramete® < +v < 1. The density of the Gamma distribution behaves as
| - |*~1 around the origin, whence negative moments exist exactly for negative orders
p > A~ = —. Therefore, we estimate the slopelof /W(s) for s > Smax = 6! and
compare this estimate against the theoretical value= —v (see table 2).

To summarize, giverk i.i.d. random variable§X,, j = 1,--- K}, the wavelet

estimator (32) behaves like:
o W(s) ~ s, for s < smin = (max;{X;}) ",

—~ . .
o W(s) ~ s, for spmin < 8 < Smax, Wheres.x corresponds to the inverse of

the cut-off value separating the tail from the body of the underlying distribution,
. W(s) ~ 5P fors > Smax.

This is impressively demonstrated in Figure 2. In fine, bathand p~ can be de-
duced from a linear regressionl@gﬁ/\(s) versuslog s, over the corresponding scale

intervals.

23



As elaborated in section 3 choosing an appropriate wavelet and according to corol-

lary 6, we have\™ = p* and\= = p~.

4.5 Choice of the wavelet

The theoretical results of section 3 form the basis of our estimator. For them to hold
the analyzing wavelep is required to have a semi-definite Fourier transform as well
as a number of vanishing momen¥s, larger tharf{r. (0).

In practice, we suggest to start with a low regularity wavelet such as the second
derivative of the gaussian windoy(¢), corresponding tav,, = 2. If the slope;;
obtained from the linear regressionlog ﬁ/\(s) versuslog s is smaller thanV,, = 2,
then corollary 2 immediately posits that the positive critical oriferis equal top™.

Now, if the measured slo@ equalsiVy, = 2, we need to verify whether the regularity
pT is actually larger than two or not.

To this end, we increase the number of vanishing momafts= p of ¢,(?),
and repeat the estimation pf- for increasing integep as long as the sIopE hits
the boundN,,. Once we get a;; < Ny, we should recall corollary 6 which again

guarantees that™ = p+.

5 Applications

Application of particular interest in this context are the parameter estimation of stable
laws as well as the estimation of the multifractal partition function.
5.1 Estimating Stable and Gamma Parameters

To set notation we recall some classes of distributions well known in the literature, that

we will use to illustrate our characteristic exponent estimator.

Pareto. A Pareto densityx is a simple power law function that take on the form

ap®z=* 1 if x> u,
px(x) = { OM else 8 (54)

with « the shape parameter, andhe position parameter. A random variablewith

Pareto distribution, has positive-th order moments existing only for orders< «a,
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while all negative orders moments exist&s> p > 0 almost surely. The median is
p2'/e, and ifa > 1 then the mean exists and equBls = pa/ (o — 1).

Stable. Stable laws form a class of heavy tailed distributions, for which there exists
an abundant literature (see e.g., Samorodnitsky and Taqqu (1994) for a detailed intro-
duction). A random variabl& follows a stable law that we denotg, (o, 3, ), if and

only if its characteristic function reads :

Elexp(iuX)] = exp(—0®u]*(1 - iBuwa (1)) + ipu), (55)

wherew, (t) = tan(rasgn(t)/2) for a # 1 andw; (t) = —(2/7)sgn(t) log |¢].

Although there exists no closed form for stable distributions except for a handful
of special cases, stable laws have a tail behavior that can be approximated as a Pareto
distribution (54). Indeed, Property 1.2.15 in Samorodnitsky and Taqqu (1994) reads
as: If X ~ S, (0,08, p) with 0 < a < 2, then

lm AP[X > )] = Ca#aa
. 1-8
lim APIX < )] = Co—lof (56)

wherel/C, = [;° 2~ sin(z)dz depends only om.

The indexa is sometimes referred to as the characteristic exponent of the stable
law, and for our purpose, it constitutes the most important parameter since absolute mo-
ments of order are finite exactly for € (—1,a) (0 < a < 2). Fora = 2 we recover
the special case of Gaussian distribution, with existing moments at all orders1.

The parametes indicates scale, sinc& ~ S, (o, 3, n), thenaX ~ S, (ac, 3, au)

(a > 0). Fora = 2 we haves? = var(X)/2 while for o < 2 the second moment
IE[X?] is infinite and the variance is not defined. The paramgtdefines position

in the sense that iK' ~ S, (o,8,u) thenX + ¢ ~ S,(0, 3, + ¢). Provided that

a > 1 we may be even more explicit and identjfyas the expected valuE[X] = p.
However, in the case < 1 the mearlE[X] is not even defined; as the most prominent
example we mention the Cauchy distribution. Finally, the parantepeovides a mea-
sure for the skew, more precisely, is symmetrical if and only if3 = 0; moreover, if
this is the case then (55) reduces to (6).
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Gamma. The last case we will comment on is the Gamma distribution. A random

variableX has Gamma distribution if

px (@) = { Sx’y—l exp{—cz} :|Sxe_2 0 (57)
In the above; andc are positive numbers, and= ¢ /T'(y), with I the generalized
factorial function. The special case= n/2, ¢ = 1/2 with n an integer, corresponds
to the Chi-square density with degrees of freedom, and far= 2 it reduces to the
usual exponential density. As far as moments are concerned, thanks to the dominant
exponential decay in (57), all positive order moments exist, and in partiftifar=
v/candlEX? = ~(y + 1)/c2. The negative moments, i.e.,

M, = / Ae" P Lexp{—cz}dz, <0, (58)
0

converge only for > —~.

For the above classes of distributions, Pareto, stable and Gamma, there exist effi-
cient procedures aimed at estimating the different sets of parameters. In most cases,
these estimators are parametric estimators and they turn out to be optimal (in the
sense of maximum likelihood) whenever the specific underlying distribution model
and the analyzed data distribution do match. Our estimator (32) is non-parametric,
and it should not be expected to outperform a parametric estimator on the distribution
it is tailored for. This is for instance very clear on the experiments depicted in Ta-
ble 1. ConsideringV i.i.d. samples of a stable variah¥ ~ S, (o, 3, 1), we compare
our estimates (33) af against two well-known parametric estimators for stable laws :
Koutrouvelis (1980) and McCulloch (1986) procedures.

Superiority of parametric estimators in this appropriate context is not questionable.
However, in most real world applications, the true density underlying the data to be
analyzed is rarely known, and very likely blind application of parametric estimators
will produce aberrant results. A very illustrative example is proposed in Table 2. We
consider a Gamma variahlé with shape parametér< ~ < 1, and form the new vari-
ableY = X~!. From (58) we know that—th order moments of” should only exist
for r < ~. If we now compare the (empirical) densities derived both fiérand from
a stable variable with characteristic exponant v and skewness parameter= 1
(which ensures positivity sinae < 1) it is quite difficult to dissociate them (Figure 3).
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Table 1: Estimation of the characteristic exponewf a stable law, using Koutrouvelis
procedure, McCulloch procedure and our wavelet based procedure, Nisiag2'?
i.i.d. samples of a stable variable. Scale, position and skew parameters are fixdd (

uw =0, 8 = 0), anda varies in(0,2). Empirical means and standard deviations (in
parenthesis) on the estimates are based upon a 1000 realizations set.

e 0.2 0.6 1 1.4 1.8

AT 0.196 | 0.58 1.0 146 | 1.74
(0.084) | (0.134) | (0.187)| (0.257)| (0.141)

a (Koutrouvelis) | ND 0.60 1.0 1.403 1.80
(ND) | (0.084)| (0.095)| (0.114)| (0.11)

a (McCulloch) | 0.59 | 0.605 | 1.0 1.40 | 1.80
(0.042) | (0.095) | (0.095)| (0.127)| (0.148)

Yet, applying crudely stable law designed estimators, like Koutrouvelis or McCulloch,
to the raw dat&’, yields very bad estimates = 7 = X~ In contrast, determin-

ing the characteristic exponekt (Y) = —\~ (X) from our wavelet-based regression
procedure (as described in Section 3.4), provides us with fairly good estimates of shape
parameters for Gamma distributions. Hence, because our non-parametric estimator
does not assume any a priori distribution for the data, it compares favorably as a gen-
eral purpose tool to parametric estimators (see for instance the Hill estimator and its
various improvements (Hill, 1975; Kratz and Resnick, 1995; Resnick, Dress, and Haan,
1998; Bianchi and Meerschaert, 2000), tail estimators (DuMouchel, 1983; McCulloch,
1997), and the comparative study conducted in Akgiray and Lamoureux (1989)).

Discussion and Conclusions

We itemize the three main results we have derived in this paper.

e We have established a theoretical connection between three exponents namely
the critical exponenk™ which fixes the highest order of existing moments for a
random variable, the tail parameter of its probability distribution and the charac-
teristic exponenp™ which captures the Lipschitz regularity of the characteristic

function at origin.

e We proposed a wavelet based estimatondfand A\, that allows for an ex-
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Figure 3: Empirical distributions of the random variables= X! andZ, whereX
follows a Gamma law withy = 0.6, and Z follows a stable law withv = 0.6 and
B = 1. For both cases\* = a = . Axis are in logarithmic scale.

Table 2: Estimation of the shape exponeritom a Gamma variabl&’. Koutrouvelis
procedure, McCulloch procedure and our wavelet based procedure are applied to the
heavy tail transformed variablé = X~!. N = 22 i.i.d. samples of Gamma variable
where used. Parameters= 1 is fixed, andy varies in(0,1). Empirical means and
standard deviations (in parenthesis) on the estimates are based upon a 1000 realizations

set.

07 0.2 0.4 0.6 0.8

e 0204 | 0.395 | 0.589 | 0.793
(0.084) | (0.089) | (0.123)| (0.173)

a (Koutrouvelis)| ND 0.433 0.56 0.67
(ND) | (0.078)| (0.084) | (0.095)

a (McCulloch) | 0.513 | 0.514 | 0583 | 0.72
(0.000) | (0.000) | (0.095) | (0.114)
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traordinarily simple implementation. Moreover, this characteristic exponent es-
timator is non-parametric and does not assume any a priori knowledge on the

underlying distribution, not even Pareto.

e From an application point of view, this estimator shows very useful at character-
izing rare events (often responsible for divergence of moments) and measuring
power law decays of fat tail distributions. We also mentioned a particularly in-
teresting application of this estimator in the context of model selection in multi-
fractal analysis.

References

Abry, P., Gongales, P., and Flandrin, P. “Wavelets, Spectrum AnalysisIgfydpro-
cesses.” In Antoniadis, A. and Oppenheim, G. (edssiture Notes in Statistics:
Wavelets and Statisticgolume 103, 15-29 (1995).

Akgiray, V. and Lamoureux, C. G. “Estimation of stable law parameters: a comparative
study.” J. Bus. Econ. Stat7:85-93 (1989).

Bianchi, K. and Meerschaert, M. “Scale and shift invariant estimators for the heavy
tail index alpha.”AMS 2000 Subject Classification: 62F12, 60K2600).

Binmore, K. G. and Stratton, H. H. “A note on characteristic functio#sin. Math.
Statist, 40:303-307 (1969).

DuMouchel, W. “Estimating the stable index alpha in order to measure tail thickness:
A critique. (Special invited paper)Annals of Statistics11:1019-1031 (1983).

Feuerverger, A. and McDunnough, P. “On Some Fourier Methods for Inferejmer”
nal of the American Statistical Associatiof6(374):379-387 (1981a).

—. “On the efficiency of Empirical Characteristic Function ProcedurdsR. Statist.
Soc. B43(1):20-27 (1981b).

Feuerverger, A. and Mureika, R. A. “The empirical characteristic function and its
applications.”Ann. Statist.55:88-97 (1977).

29



Gongalhes, P. “Existence test of moments: Application to multifractal analysis.” In
Proc. of Int. Conf. on Telecommunications, Acapulco, Me{@€90).

Goncgales, P. and Riedi, R. “Diverging Moments and Parameter Estimation.” Research
Report 4647, INRIA Rbne-Alpes, Grenoble, France (2002).

Hill, B. “A simple general approach to inference about the tail of a distributidnrials
of Statistics3(5):1163-1173 (1975).

Jaffard, S. “Exposants deditler en des points doés et coefficients d’'ondelette<C.
R. Acad. S¢.308:79-81 (1989).

—. “Local behavior of Riemann’s function.Contemporary Mathematic489:287—
307 (1995).

—. “Méthodes d'ondelettes pour I'analyse multifractale de fonctions.” In Abry, P.,
Goncales, P., and évy-Véhel, J. (eds.),ois d’échelle, fractals et ondeletteEraité
Information—-Commande—Communication. Paris, France: idsr&t. Pub. (2001).

Kawata, T. Fourier Analysis in Probability Theory Probability and Mathematical
Statistics. Academic Press (1972).

Koutrouvelis, 1. A. “Regression-type estimation of the parameter of stable law.”
American Statistical Associatipii5:918—928 (1980).

Kratz, M. F. and Resnick, S. I. “The QQ-Estimator and Heavy Tails.” Technical report,
Universit Ren Descartes, Paris V and Cornell University (1995).

Lukacs, E. Developments in Characteristic Function Theotyew York, macmillan
co. edition (1983).

McCulloch, J. H. “Simple consistent estimator of stable distribution param&en’-
munication on Statistical Simulatiph5:1109-1136 (1986).

—. “Measuring tail thickness to estimate the stable index alpha: A criticim&rican
Statistical Associationl5:74-81 (1997).

Nolan, J. P. “Maximum likelihood estimation and diagnostics for stable distribu-
tions.” In Barndorff-Nielsen, O., Mikosch, T., and Resnick, S. (ed&yy Processes
Boston: Brikhuser (2001).

30



Papoulis, A.Probability, Random Variables, and Stochastic ProcesbtesGraw Hill,
3 edition (1991).

Resnick, S. I., Dress, H., and Haan, L. D. “How to make a Hill ploOR & IE
University(1998).

Riedi, R. “Lois déchelle multifractales: fondements et approche ondelettes.” In Abry,
P., Goncales, P., and évy-Véhel, J. (eds.),.ois d’echelle, fractals et ondelettes
Traite Information—~Commande—Communication. Paris, France: Ber§c. Pub.
(2001).

Riedi, R. and Goncabks, P. “Diverging moments, Characteristic Regularity and

Wavelets.”In preparation(2005).

Samorodnitsky, G. and Taqqu, Metable non-Gaussian random process€sapman
and Hall, New York ISBN 0-412-05171-0 (1994).

Sirfling, R. Approximation theorems of Mathematical Statisti¢éley (1980).

31



