
Diverging moments and parameter estimation

Paulo Gonçalv̀es
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Abstract
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1 Introduction

Heavy tailed distributions enjoy increased popularity and become more readily appli-

cable as the arsenal of analytical and numerical tools grows. They play key roles in

modeling approaches in networking, finance, hydrology to name but a few applica-

tions. Examples of interest include the stable, the Pareto and certain extreme value

distributions. The tail parameterα is of importance in its own right as the central

parameter for several of the mentioned distributions.

In addition, it sets the upper bound for the ordersr beyond which momentsIE[|X|r]
do not exist. Indeed, recall that a random variableX is calledheavy tailedwith tail

parameterα if

P [|X| > x] = x−αL(x) (1)

whereL is a slowly varying function, i.e.,L(tx)/L(x) → 1 asx →∞ for anyt > 0.

It is called Pareto, ifL(x) is a constant and (1) holds for all|x| > δ. For the Pareto

distribution, it is clear that moments are finite exactly up to orderα, a fact that can be

generalized using standard facts.

The issue of finiteness of moments is particularly pressing in view of the abundance

and usefulness of moment estimators. They are not only important for parameter es-

timation, when the underlying distribution law is known, but also for data fitting and

model selection, i.e., identifying unknown distributions from sample data. To recall

but two instances, the Kurtosis statistic hypothesis test resolves Gaussianity versus

non-Gaussianity, whereas for a Poisson random variable mean and variance should be

equal. In addition, many applications integrate moment estimates as a crucial ingredi-

ent. That is the case in multifractal analysis, where theq−th order absolute moments

of the increments (or the wavelet coefficients) of a process hold valuable information

on the local behavior of its paths.

Pathologies emerge when moments are infinite or not defined, such as for the

Cauchy distribution which has infinite second moment and undefined mean. As in-

finite moments may degrade the performance of estimators (possibly introducing some

systematic errors) or reduce the speed of convergence to limiting laws, special atten-

tion must be dedicated to their theoretical existence. We refer once more to multifractal

analysis where infinite moments may indicate phase transitions that are highly infor-
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mative about the process regularity.

All this motivates the development of statistical methods to determine the finite-

ness of moments of a distribution given finite sample data (Gonçalvès, 2000), more

precisely, to determine the (positive and negative)critical order λ−, λ+ of a distribu-

tion, by which we mean here

λ+ ∆= sup{r > 0 : IE[|X|r] < ∞}
λ− ∆= inf {r < 0 : IE[|X|r] < ∞}.

(2)

Related estimators will not only provide useful for the tail parameter, but also for the

analogous parameter governing the distribution around zero, or any center of choiceµ

after a translationX 7→ Xµ. To this end, we propose an approach that combines two

facts.

First, the characteristic functionφ(u) ∆= IE[exp(iuX)], being the Fourier transform

of the distribution ofX, has as many continuous derivatives at zero as the distribution

has finite moments of positive orders. In particular, for evenk we haveφ(k)(0) =

ikIE[Xk] whenever one of the two is defined (Papoulis, 1991). A crucial ingredient

to our methodology is a more general relation of this sort. To this end, we resort

to the concept of thecharacteristic exponentρ+ of a distribution by which we mean

the (generalized) degree of Lipschitz continuity of the real part of the characteristic

function at the origin. Providedρ+ lies in (0, 2) the characteristic exponent can be

written simply as

ρ+ = sup{r > 0 : 1− Re φ(u) = O(ur) asu → 0+} (3)

It follows from basic known facts that

λ+ = ρ+ (4)

as long as these values lie between0 and2. Estimation of the critical exponent can

then be achieved via the regularity ofφ. Replacing the random variableX by 1/X we

find ρ− and an estimate forλ−.

Part of the paper will address the extension of this approach for orders larger than

2 from the estimation point of view; the mathematical foundation of this extensions is

developed in a companion paper (Riedi and Gonçalvès, 2005) and can also be found in

(Gonçalv̀es and Riedi, 2002). Effective for model selection, the characteristic exponent

provides an exact estimate of the critical order:ρ+ = λ+ (see corollary 6).
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Second, having reduced the problem at hand to an estimation of local regularity, it

proves effective to leverage the power of the wavelet transform. In a nutshell, the decay

of the wavelet coefficients of a functionW [g](u, s) (as defined in (14)) foru close to0

provides quite precise information on the local regularity of the functiong at0. As will

be established, this wavelet analysis becomes particularly simple for a characteristic

functionφ and requires only the knowledge ofW [φ](0, s).

In summary, the recipe of our estimator forρ+ is dramatically simple:

• From the sample data set{Xn, n = 1, . . . , N} compute solely the wavelet coef-

ficients at zero of the empirical characteristic functionΦ̂(u) = N−1
∑

n exp{iuXn},
i.e.,W [Φ̂](0, s); as it appears, this amounts to computing the non-parametric un-

biased kernel estimator̂W (s):

Ŵ (s) =
1
N

N∑

k=1

Ψ(s·Xk) (5)

where the kernelΨ is a the Fourier transform of a semi-definite wavelet (see

text).

• The estimators of the two characteristic exponents, i.e.,ρ̂+ andρ̂− are obtained

from simple linear regressions oflog Ŵ (s) againstlog s within some predefined

scale intervals. These estimators are scale-invariant, can be made shift-invariant,

and are asymptotically un-biased.

• Since wavelets can not capture regularities higher than their own regularityNψ,

the procedure should be repeated with wavelets of increasing regularity (reason-

ably up toNψ = 4).

We will demonstrate the effectiveness of this estimator looking at symmetrical sta-

ble distributions in comparison with well established estimators such as Koutrouvelis’.

Recall that stable distributions appear as limiting distributions of properly renormal-

ized sums of iid random variables with (possibly) infinite variance. The symmetrical

stable laws are defined by

φX(u) = IE[exp(iuX)] = exp(−σα|u|α + iµu) (6)

and their heavy tail parameter is known to be equal toα (Samorodnitsky and Taqqu,

1994). Combining this with the fact that their densities, though not explicitly known,
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are symmetrical and uni-modal, they possess finite absolute moments of orderr exactly

for r ∈ (−1, α). On the other hand, the Taylor expansion ofexp(·) implies readily that

Re φ(u) = 1− σα|u|α + O(|u|2α), which verifies (4).

2 Background

In this section we collect well known facts on the existence of moments as well as the

wavelet analysis of irregular signals.

2.1 Tail Estimators

Most well-known tests for the existence of moments emerge as by-products of tail es-

timators and appear in parameterized settings. For instance, Nolan (2001) proposed a

maximum likelihood estimator for general alpha-stable laws (including Gaussian and

Cauchy) based on a large sample data set. As no closed form exists for these dis-

tribution functions (aside from some particular rational values of the parameters), he

proposes an efficient numerical resolution to find the maximum of the likelihood equa-

tion.

Previously, Koutrouvelis (1980) and McCulloch (1986, 1997), among many oth-

ers, have proposed two different estimators of the parameters ofα−stable laws, based

either on Pareto approximation forα−stables tails, or on the analytic form of the char-

acteristic function.

More recently, Bianchi and Meerschaert (2000) proposed a quadratic estimator of

tail indexα, based on the asymptotic of the sample variance. This robust estimator has

the advantage over Hill estimator (Hill, 1975), to be shift and scale invariant, and also

to perform well in situation where the Hill estimator is inefficient, namely for stable

distributions with1.5 < α < 2.

Starting from a closed form for the characteristic function (recall (6)) or in some

cases a numerical approximation of the density function all these methods aim at find-

ing the maximum of the log-likelihood function, given the data. As a result, it is well

known that these approaches are optimal in the sense of minimum variance and achieve

the Craḿer Rao bound (Feuerverger and McDunnough, 1981a; Koutrouvelis, 1980;

Nolan, 2001). However, being parametric, these estimators may perform poorly when-

ever the true underlying distributions do not match the model.
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In this paper, we propose anon-parametricestimation procedure with convincing

robustness properties for the characteristic exponentsρ+ andρ− which do not rely

on any assumption on the density model. In particular, not even the semi-parametric

assumption of heavy tails (1) is made and can be tested via this approach. The resulting

estimates can be used for estimating the tail parameter and the body parameter.

Notably, both exponents are estimated in the same procedure. Indeed, the problem

of existing negative moments could be reformulated with a simple change of variables

x 7→ x−1, as a positive moment existence problem. Then, we could apply our estimator

to X−1 instead ofX directly, allowing thus for determining a lower negative bound for

the existence of
∫∞
−∞ |x|−rdF (x), r > 0. However, as we will demonstrate both, the

positive and the negative characteristic exponent can be evaluated at once, using the

same procedure applied to the same data set of i.i.d. samples{Xi}i=1,...N .

2.2 Characteristic Function and Moments

Let us recall a well known relation between high order moments of a distribution func-

tion F (x) of a random variableX and its so-calledcharacteristic functionwhich is

defined as:

φ(u) = IEeiux =
∫

eiuxdF (x). (7)

Using simple duality argument between time and frequency (via the Fourier transform

in (7)), the behavior of the characteristic function at the origin relates to the tail be-

havior of the distributionF for large|x|. In particular, whenever the integerp-th order

moment ofF exists, thep-th derivative ofφ at the origin exits as well and they simply

relate as follows

φ(p)(0) =
dp

dup
φ(u)

∣∣∣∣
u=0

= ipIE[Xp] = ip
∫

xpdF (x). (8)

This justifiesφ to be also referred to as amoment generating function.

Conversely, whenp is even, existence ofφ(p)(0) implies existence ofIE[Xp]. No-

tably, pathologies can occur whenp is odd. As the following example ofφ(u) =

C−1
∑∞

j=2 cos ju/(j2 log j) demonstrates (compare Kawata, 1972, pg. 411), the exis-

tence ofφ(1)(0) does not necessarily guarantee the existence ofIE[X].

As we strive towards a generalization of a relation between moments and charac-

teristic function to non-integer ordersr > 0, let us first introduce the absolute moments
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of orderr ∈ IR:

Mr
∆= IE[|X|r] =

∫
|x|rdF (x) (9)

where we allow the value∞. Let us emphasize thatIE[Xp] exists if and only ifMp

is finite, in other words, if and only if bothIE[max(X, 0)p] andIE[max(−X, 0)p] are

finite.

We first recall the definition ofλ+ in (2) and note a simple fact:

Lemma 1 For any distributionF we have

λ+ = sup{r > 0 : Mr < ∞}
= sup{r > 0 : 1− F (x) + F (−x) = O(x−r) asx →∞} (10)

Note that a priori there is no information on the behavior in (10) forr exactly equal

to λ+.

Proof

To obtain one half of the lemma recall the Markov inequality which states that

P[|X| > a] ≤ a−rIE|X|r, ∀r > 0, ∀a > 0. (11)

Consequently,1 − F (a) + F (−a) is O(a−r) for all r > 0 with finiteMr. The other

half of the lemma follows from theorem 11.3.1 in Kawata (1972) which states that

1− F (a) + F (−a) = O(a−r) implies thatMr′ is finite for all r′ < r. ♦

Next, we apply a theorem1 due to Binmore and Stratton (1969) (see Kawata, 1972,

e.g.) which relates the Lipschitz regularity ofφ at the origin to the tail decay ofF for

orders less than2. Recalling the definition of the Lipschitz exponent ofφ given in (3)

we find:

Corollary 2 If eitherλ+ or ρ+ is known to be strictly less than2 then:

λ+ = ρ+. (12)

With this in mind, we present wavelet theory in the next section with particular em-

phasis on their natural abilities to detect and estimate the local regularity of a function.

1Let 0 < r < 2. Then,1− Re φ(u) = O(ur) if and only if P [|X| > x] = O(x−r).
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2.3 Wavelets and Local Regularity

A wavelet analysis consists in a linear decomposition of a signalg onto a set of analyz-

ing functions2

{ψt,s(u) ∆= |s|−1ψ((u− t)/s), (t, s) ∈ < × <∗+} (13)

through the inner product

W [g](t, s) ∆=
∫

g(u)ψt,s(u) du. (14)

Conceptually, this transform can be viewed as a partitioning of the time-frequency

space, whereW [g](t, s) measures the correlation betweeng and each elementary atom

ψt,s. All of these time-frequency cellsψt,s are time-shifted and scale changed ver-

sions of a unique prototype functionψ. Therefore, for the time-frequency tiling to be

consistent, the mother wavelet must be localized in the time and in the frequency do-

main simultaneously. Formally, these constraints transpose to the following: We call a

waveletψ admissible of regularityNψ, if it has the following three properties:

• |ψ(k)(t)| ≤ C1(1 + |t|)−Nψ−1 for k = 0, . . . Nψ,

• ∫
tkψ(t) dt = 0 for k = 0, . . . Nψ − 1, and

• ∫∞
0
|Ψ(ν)|2/ν dν =

∫∞
0
|Ψ(−ν)|2/ν dν = 1.

Now, because equation (14) conveys information on the local oscillatory behavior

of the analyzed functiong, it is possible to assess the local Lipschitz exponent ofg

from the dynamic of wavelet coefficients across scales. A simple fact reads as follows

(see Jaffard (1989, 2001), also Riedi (2001)):

Theorem 3 Consider an admissible waveletψ of regularity Nψ ≥ r. Assume that

g(u)− g(0) = O(ur) asu → 0. Then, there is a constantC such that

|W [g](0, s)| ≤ Csr ass → 0+. (15)

2We restrict ourselves to the case of real continuous wavelet transforms, even though all theoretic results
we present here transpose directly to the discrete framework of real orthogonal wavelets.
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Reciprocally, somewhat more precise knowledge3 asu → 0 of the decay ofW [g](u, s)

for all u allows to determine the local continuity of the functiong (Jaffard, 1995, 2001).

As we will elaborate, a certain type of wavelet analysis of the Lipschitz continuity of

characteristic functions simplifies dramatically due to the fact that the wavelet trans-

form is in this particular case maximal at the origin.

3 Wavelet analysis of Characteristic Functions

We start by demonstrating how the wavelet analysis of characteristic functions can be

simplified tremendously.

3.1 Semi-definite Wavelets

As it turns out it is particularly simple to estimate the wavelet coefficients of a char-

acteristic function provided the waveletψ is semi-definiteby which we mean that its

Fourier transformΨ(ν) =
∫

ψ(t) exp(−itν)dt is real and does not change sign. In

other words,ψ is either positive semi-definite, i.e.,Ψ(·) ≥ 0, or it is negative semi-

definite, i.e.,Ψ(·) ≤ 0. Examples of such wavelets are the derivatives of even order of

the Gaussian kernel: set

ψp(t)
∆= cp

d2p

dt2p
exp(−σ2t2) (17)

wherecp is a normalization constant andp is a positive integer. One finds the semi-

definite Fourier transform

Ψp(ν) = Cp(−1)pν2p exp
(−ν2

4σ2

)
. (18)

Lemma 4 If the Fourier transformΨ of the waveletψ is real, square integrable and

semi-definite then

|W [Reφ](t, s)| ≤ |W [Re φ](0, s)| (19)

In other words, for fixed scales the modulus of the wavelet transform of the real part

of a characteristic function is maximal att = 0 for semi-definiteΨ.
3For a simplified version consider0 < r < 1. The following condition implies thatg(u) − g(0) =

O(ur) (Jaffard, 1989, 2001, 1995): there exist numbersC andq < r such that

|W (u, s)| ≤ C

(
sr +

|u|q
log |u|

)
, for s → 0+. (16)
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Proof

Recall that|s|−1ψ((u − t)/s) andΨ(sx) exp(−itx) form Fourier pairs, as well asφ

andF . Applying Parseval’s identity yields

W [Re φ](t, s) = Re
∫
|s|−1ψ((u− t)/s)φ(u)du

= Re
∫

Ψ(sx) exp(−itx)dF (x) (20)

Using the simple estimate|Re x| ≤ |x| as well as the fact thatΨ is semi-definite and

does not change its sign we obtain

∣∣∣W [Reφ](t, s)
∣∣∣ ≤

∫
|Ψ(sx) exp(−itx)|dF (x) =

∫
|Ψ(sx)| dF (x)

=
∣∣∣∣
∫

Ψ(sx)dF (x)
∣∣∣∣ =

∣∣∣W [Re φ](0, s)
∣∣∣ (21)

as desired. ♦

As a corollary from (20) we note

W [Reφ](0, s) =
∫

Ψ(sx)dF (x) = IE[Ψ(sX)] (22)

3.2 Critical orders smaller than 2

We are now in a position to combine the above results into the anticipated tight con-

nection between a wavelet analysis and the critical orderλ+. We will then extend this

connection to orders larger than2 (see Section 3.3).

Theorem 5 Consider an admissible, semi-definite waveletψ of regularity Nψ ≥ 2.

Then,

λ+ = ρ+ = sup{r > 0 : |W [Reφ](0, s)| ≤ Csr for s → 0+}, (23)

provided that either term is known a priori to be strictly less than2.

From a wavelet point of view we can not stress enough that the above result owes

its simplicity to the fact that the wavelet coefficients ofRe φ are maximal at0. Also,

λ+ = ρ+ was noted earlier.

Proof

Due to lemma 4, the condition (16) of footnote 3 follows trivially fromW (0, s) ≤ Csr.
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The extension to0 < r < 2 exploits the symmetry ofRe φ to conclude that the best

polynomial approximation ofRe φ of degree1 is still constant (for a full argument see

the companion paper Riedi and Gonçalvès (2005) or Gonçalv̀es and Riedi (2002)).

♦

3.3 Critical orders higher than 2

Attempting to extend the appealing three-fold connection of theorem 5 to orders higher

than2 we face two hurdles, one surmountable due to special properties of the charac-

teristic function, the other more profound.

For a better understanding, we need to extend the concept of Lipschitz continuity

to higher orders. To this end, we define the Taylor rest-term of order2p at zero as:

Q2p(t) = Re φ(t)− 1−
p∑

k=1

t2k

(2k)!
φ(2k)(0) (24)

whenever it exists. Thus, the general definition ofρ+ reads then as

ρ+ = sup{r > 0 : Q2p(u) = O(ur) asu → 0+, for 2p ≤ r < 2(p + 1)} (25)

Also, we require a more general version of corollary 2. The higher order extension

of Binmore and Stratton (1969) is found in Kawata (1972) and relates the finiteness of

moments, i.e., the value ofλ+ to a smoothness condition ofQ2p.

The first hurdle concerns the fact the wavelet analysis is a powerful tool for assess-

ing the local degree of regularity, but does in general not allow to make conclusions

on differentiability of the analyzed function. To make the point, functions which be-

have at zero as| · |2.5 (modulo a polynomial) but have only one derivative are easily

constructed. In other words, the corrective polynomial does not have to be the Taylor

polynomial as in (24). This difficulty is overcome by proving existence of moments

directly via monotone convergence from the decay of appropriate wavelet coefficients.

Finite moments imply then thatφ was indeed differentiable and that wavelet analysis

indeed reflects the regularityρ+ of Q2p.

The second hurdle stems from the fact that Kawata’s smoothness condition4 (which

4Assume thatφ(2p)(0) exists. ThenMr exists if and only if (Kawata, 1972)∫ ∞

0

1

tr+1
|Q2p(t)|dt < ∞. (26)
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allows to computeλ+) is in terms of an integral and weaker than the Lipschitz condition

(25) (which is the one resulting from wavelet analysis). However, using results on the

expansion of characteristic functions by Lukacs (1983) we are able to obtain exact

bounds. We state only the final result and leave mathematical details to a companion

paper (Riedi and Gonçalvès, 2005).

Corollary 6 In general, the Lipschitz regularity of a characteristic function (25) is

related to the critical order of moments (2) via

ρ+ = λ+ = sup{r > 0 : |W [Reφ](0, s)| ≤ Csr for s → 0+}. (27)

3.4 Negative Critical Orders

We are now interested in estimating the negative critical orderλ− defined in (2), of

a random variableX with densitydFX(x). Let us define a new random variableY

using the one to one mapping fromIR to IR : Y = g(X) = X−1. Fixing Y = y,

equationy = g(x) has only one rootx = y−1, and |g′(x)| = y2, from which we

deduce the distribution ofY , dFY (y) = y−2dFX(y−1). The negativeqth order ofX

simply corresponds to the positive−qth order of random variableY :

IE[|X|q] = IE[|1/Y |q] = IE[|Y |−q]. (28)

Therefore, to estimateλ−(X) of X, we can directly apply general results obtained

in Section 3.3 for positive higher orders, to get

λ−(X) = −λ+(1/X) (29)

4 Estimation procedure

In this section, we elaborate on the implementation of our estimator forλ+, in partic-

ular the choice of wavelet and scales to consider, its bias, robustness and optimality

properties.
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4.1 Implementation

GivenXi, (i = 1, . . . , N ) a set ofN observed i.i.d. samples of the distributiondF (x),

we use the empirical estimator for the characteristic function

φ̂(u) ∆= φN (u) ∆=
1
N

N∑

k=1

exp{iuXk} (30)

For our purpose, we need to evaluate this function on a properly sampled interval

uj = j · δu, j = 0, . . . , K − 1, that we will make more precise later.

We now recall some convergence properties of this empirical characteristic func-

tion (see Feuerverger and Mureika (1977); Feuerverger and McDunnough (1981b) for

details), justifying its use in the rest of our method. First,φN (u) converges almost

surely whenN goes to infinity towardsφ(u) in theL∞ sense, over some finite interval

T

sup
|u|≤T

|φN (u)− φ(u)| → 0. (31)

Second, consider the random processYN (u) =
√

N(φN (u)−φ(u)) and letY (u) =

Y (−u) be a zero mean complex Gaussian process with covariance structureIEY (u)Y (v) =

φ(u+ v)−φ(u)φ(v). Then, the sequenceYN (u1), YN (u2), . . . , YN (um) converges in

distribution toY (u1), Y (u2), . . . , Y (um).

It is also shown in Feuerverger and Mureika (1977) thatYN (u) converges weakly

towardsY (u) in any finite interval, provided thatIE|X|1+δ < ∞.

Next to consider is the wavelet decomposition ofφN (u) which simplifies to

W [φN ](t, s) =
∫

ψt,s(v) φN (v) dv

=
1
N

∑

k

∫
ψt,s(v) exp{iXkv} dv

=
1
N

∑

k

exp{iXkt}
∫

ψ(u) exp{iXksu}

=
1
N

∑

k

Ψ(s·Xk) exp{iXkt}.

Two-Step Estimation Procedure

(1) Assuming thatΨ is real, semi-definite we finally arrive at the surprisingly sim-

ple estimator for the maximal wavelet coefficient ofReφ of scales, which is the main
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ingredient in our method:

Ŵ (s) ∆= W [Re φN ](0, s) = (1/N)
N∑

k=1

Ψ(s·Xk). (32)

(2) Finally, according to theorem 5 the characteristic exponentρ+ is estimated from

the powerlaw exponent which steers the decay ofŴ (s). An estimator of the critical

moment order results from either corollary 2 or corollary 6. Taking the logarithmic of

this powerlaw model yields the linear trend

log Ŵ (s) ≈ ρ̂+ log s + log C, (33)

whereρ̂+ is simply obtained via a standard (weighted) linear regression procedure of

log Ŵ (s) againsts restricted to some scaling interval(smin, smax) to be specified.

RobustnessSince we assume nothing on the distribution we obtain thus a non-

parametric estimator. We also note immediately, that the estimation can bemade shift

invariant by subtracting the sample average from the dataX and that it isscale invari-

ant.

Indeed, consider the dataX ′
i = aXi. ThenŴ [X ′](s) = Ŵ [X](as). Rewriting

log(s) aslog(as)− log(a) we find that the regression data ofX ′ andX differ merely

by a shift, leading to the same estimated least square slope.

4.2 Statistics of the estimator

Let us study the bias of both, the simple estimator of the wavelet coefficient (32) itself,

as well as the derived estimation of the scaling exponent (33).

Since all observations are drawn from the same distribution, we may write

IE[Ŵ (s)] =
1
N

N∑

k=1

IE[Ψ(sXk)] = IE[Ψ(s ·X)] =
∫

Ψ(sx)dF (x). (34)

This shows that as an estimator of the wavelet coefficientW (0, s) itself, Ŵ (s) is un-

biased. However, as we will show, a bias is introduced as we estimate the powerlaw

decay ofW (0, s) through the powerlaw decay of̂W (s). This result is similar to the one

obtained in Abry et al. (1995) where it is shown that using log-periodograms (Welch

estimator) to analyze processes with spectra of the typeΓX(f) ∼ σ2|f |−α leads to a

systematic bias on the estimate ofα. On the other hand, using a wavelet-based spectral
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analysis (the frequency marginal of a wavelet decomposition) yields an asymptotically

unbiased estimator for exponentα. This is due to the constant relative bandwidth of

wavelets that performs a logarithmic tiling of the time axis. The resultingtime-band

analysis has joint time and frequency resolutions that match naturally powerlaw decays

as inΓX(f), or in our case, inφ(u) around the origin.

Example: Estimating the critical order To explore the properties of an estimator of

the characteristic exponentρ+ through the wavelet coefficients we first treat a simple

case where we assume that

• the distribution is Pareto, i.e.,F ′(x) = pX(x) = c0x
−α−1 for |x| > δ and

vanishes elsewhere, withc0 = αδα;

• the wavelet is bandlimited, actually require thatΨ(ν) = 0 for |ν| ≤ ν, where

ν > 0 is some constant.

Such wavelets are known to exist. For instance, by construction, the auto-correlation

function of any admissible and band-limited wavelet is itself a symmetric in time, band

limited and positive definite admissible wavelet.

Inserting the particular form ofpX(x/s) into the bias formula (34) we can extract

the scales through a substitution. Provideds is small enough, i.e., s < ν/δ, the

remaining integral is independent of the scale due to the band limitation ofΨ. This

reads as:

IE[Ŵ (s)] =
∫ ∞

δ

Ψ(xs)c0x
−α−1dx = sα ·

∫ ∞

δs

Ψ(y)c0y
−α−1dy

= sα ·
∫ ∞

ν

Ψ(y)c0y
−α−1dy = CΨ(α) · sα. (35)

Thus, the exact powerlaw of the density translates into one ofŴ (s) thanks to the

band limitation of the wavelet. Apart from this showcase, approximatively the same

decay ofŴ (s) can be observed under much less restrictive assumptions, as we are

about to show.

Estimating the critical order of fat tail distributions We relax the above assump-

tions to the following scenario:
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• We consider a simple, heavy tailed probability density function which is sym-

metrical, constant around the origin and which follows an exact powerlaw in the

tails:

F ′(x) = pX(x) =
{

c1 if |x| < δ,
c2|x|−α−1 if |x| ≥ δ,

(36)

where

c1 =
1
2δ
· α

α + v
and c2 =

δα

2
· α

1 + α/v
.

• The wavelet is sufficiently regular:

Ψ(ν) ≤ dψ|ν|Nψ . (37)

Let us comment on this choice. Despite its special form, this distribution will be

sufficient to explore general fat tail distributions. Clearly, it has finite moments of the

orders betweenλ− = −1 andλ+ = α. Also, v = pX(δ)/pX(0) is the ratio of the tail

amplitude to the constant value around zero. Clearly, the bound (37) is restrictive only

at smallν, asΨ is integrable and must decay at infinity.

To show thatIE[Ŵ (s)] scales assα, we need to generalize (35) and split the integral

of (34) into two parts,|x| < δ and|x| ≥ δ. We claim that the first part is of the order

sNψ while the second term behaves assα plus a term of the ordersNψ . In summary,

the wavelet estimator decays indeed assα with an error term in the ordersNψ , which

may introduce a bias in the estimation ofλ+ = α.

Applying (37) we find

∫ δ

−δ

Ψ(sx)pX(x)dx ≤ c1 ·
∫ δ

−δ

Ψ(x)dx ≤ c1 · 2δ · dψδNψ · sNψ (38)

as claimed. Next, similarly to (35) we obtain
∫ ∞

δ

Ψ(sx)pX(x)dx =
1
s

∫ ∞

sδ

Ψ(y)pX(y/s)dy = sα · c2

∫ ∞

sδ

Ψ(y)y−α−1dy. (39)

To the contrary of (35) this integral depends ons. Thus, we write it as
∫∞
0
− ∫ sδ

0
. The

first term is now a constant, leading to the announced behavior assα. To estimate the

second term, we estimateΨ in a way similar to (38):

∫ sδ

0

Ψ(y)y−α−1dy ≤ dψ

∫ sδ

0

yNψy−α−1dy = dψ
(sδ)Nψ−α

Nψ − α
. (40)
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Collecting (38) - (40) we find thatIE[Ŵ (s)] = Asα +O(sNψ ). Bounding the error

relied on the regularity (37) of the wavelet, while the exact scaling derives directly from

the exact powerlaw (36) of the distribution. We generalize this result as follows:

Proposition 7 Assume thatΨ is positive semi-definite. Assume, the distribution has a

densitypX which can be bounded as follows:

pX(x)




≤ a|x|−α−1 for |x| ≥ δ,
≥ b|x|−α−1 for |x| ≥ δ,
≤ c for |x| ≤ δ.

(41)

Assume that the regularity of the waveletψ is larger than the critical order, i.e.,Nψ ≥
α. Then,

ã · sα + O(sNψ ) ≥ IE[Ŵ (s)] ≥ b̃ · sα + O(sNψ ), (42)

with ã/b̃ = a/b.

Proof

Sinceψ hasNψ vanishing moments we know that (37) holds. Proceeding as before,

we write

IE[Ŵ (s)] =
∫ δ

−δ

Ψ(sx)pX(x)dx + s−1 ·
∫

|y|>sδ

Ψ(y)pX(y/s)dy (43)

The first term is bounded from above asO(sNψ ) as in (38). The second term maybe

framed using the tail bounds onpX as

sα · aI ≥ s−1 ·
∫

|y|>sδ

Ψ(y)pX(y/s)dy ≥ sα · bI, (44)

where

I =
∫

|y|>sδ

Ψ(y)|y|−α−1dy =
∫ ∞

−∞
Ψ(y)|y|−α−1dy −

∫ sδ

−sδ

Ψ(y)|y|−α−1dy.

Here, the last term can be bounded asO(sNψ−α) as in (40). It combines with the factor

sα of (44) to aO(sNψ ). So, only one term behaves assα and we find

IE[Ŵ (s)] = Asα + BsNψ (45)

where

a ·
∫ ∞

−∞
Ψ(y)|y|−α−1dy ≥ A ≥ b ·

∫ ∞

−∞
Ψ(y)|y|−α−1dy. (46)
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A more careful computation reveals that

B ≤ 2δNψ+1 · c · dψ + 2adψ
δNψ−α

(Nψ − α)
. (47)

♦

4.3 Numerical robustness

Provided that the observationsXk (k = 1, . . . , N ) are un-correlated one finds easily

varŴ (s) = (1/N)var(Ψ(sX)) . (48)

Moreover, under the assumptions of proposition 7 we conclude thatIEΨ(sX) ∼ sα

and, consideringΨ2 as a wavelet,IEΨ2(sX) ∼ sα. Thus,

var(Ψ(sX)) = IEΨ2(sX)− (IEΨ(sX))2

∼ sαIEΨ2(X)− s2α (IEΨ(X))2 .

To provide a more rigorous error estimate let us assume that we consider the ele-

mentary, yet admissible, wavelet

Ψ(x) =

{
Aψ, x ∈ Iψ = [νψ − 1

2N
−1/2
ψ , νψ + 1

2N
−1/2
ψ ]

0, otherwise.
(49)

This somewhat crude boxcar approximation for the wavelet becomes reasonably

accurate for the derivatives of the Gaussian kernelψp (17) as we setνψ =
√

pσ/π.

Indeed,|Ψp| reaches its maximal valuecp(pσ2/π2)p exp(−p) at thisνψ. Clearly, the

approximation becomes more accurate as the regularity increases, i.e.,Nψ →∞.

For the box-car wavelet we get

var̂W (s) = (1/N)var(Ψ(sX)) =
A2

ψ

N

(
pX [sX ∈ Iψ]− p2

X [sX ∈ Iψ]
)
.

Assuming an exact powerlaw for the tail as in (36) we may write, provided the scale is

sufficiently small, i.e.,s < (νψ −
√

Nψ/2)/δ:

pX [sX ∈ Iψ] =
∫ (νψ+ 1

2 N
−1/2
ψ

)/s

(νψ− 1
2 N

−1/2
ψ

)/s

c2x
−α−1dx = sα · c2

∫

Iψ

y−α−1dy.
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Using the mean value theorem we may rewrite the integral byy−α−1
ψ ·N−1/2

ψ whereyψ

is some number inIψ, thus,yψ ∼ νψ. Finally, givenψ has unit energy, i.e.Aψ = N
1/4
ψ

var̂W (s) ∼ c2

Nνα+1
ψ

sα

(
1− sαc2

να+1
ψ

√
Nψ

)
(50)

For small scales (s → 0), the variance behaves like var̂W (s) ∼ O (sα). Figures 1(a)–

(c) show empirical variance var̂W (s) varying with parametersN , s andNψ, attesting

the good agreement between experimental and theoretical results.

Let us now consider the new variablelog Ŵ (s). With a central limit theorem ar-

gument, we can say that̂W (s) is asymptotically normal with meanδs ≈ Asα and

varianceσ2
s ≈ Csα. Then, in first approximation, using a result on functions of

asymptotically Gaussian variables (Sirfling, 1980; Papoulis, 1991), we conclude that

log Ŵ (s) is asymptotically Gaussian and





IE log Ŵ (s) ≈ log IEŴ (s) ≈ log A + α · log(s)

varlog Ŵ (s) ≈ |IEŴ (s)|−2var̂W (s) ≈ B/A · s−α

(51)

See figure 1(d).

To summarize the above, we propose to estimate the characteristic exponentρ+

via the estimator of the scaling exponentα of the wavelet coefficients in (51). For

(asymptotically) Gaussian random variables such as (51), the maximum likelihood es-

timator ofα is simply obtained from a linear regression oflogŴ (s) againstlogs, as

already suggested in (33). Asymptotically, the resulting estimate converges toρ+. In

practice though, the finite size data set limits the regression range to some interval

s ∈ (smin > 0; smax < ∞). The important issue of properly choosing this scaling

region is treated in the next section.

4.4 Choice of the scale range

We have defined an estimator forρ+ via a log-log linear fit. While in theory the wavelet

coefficients should decay as a powerlaw of the scale, we are in practice faced with the

fact that the scaling deviates significantly from the theoretical ideal case for both large

and small scales. Here we discuss the reasons for this deviation and explain how to

choose the scaling region.
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Figure 1: Experimental verification of expressions (50) and (51). (a)–(c): Empirical
estimates of var̂W (s) estimated over a set of 100 independent realizations ofα-stable
processes of lengthN . Evolution of var̂W (s) is plotted as a function of: (a)log N
(α = 1.2, Nψ = 4, s = 0.0087); (b) log s (α = 1.2, Nψ = 4, N = 214); (c) Nψ

(α = 1.2, s = 0.0087, N = 214). (d) Empirical estimation oflog IEŴ (s) versus
log s. The error bars correspond to the standard deviation oflog Ŵ (s). The dashed
line materializes the theoretical lawlog IEŴ (s) = α · log(s) + C ′ (α = 1.2, Nψ = 4,
N = 214).
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4.4.1 Lower bound of scaling region

We have two different approaches to determine a lower bound for the scale range of

the linear regressionlog Ŵ (s) versuslog s in (33).

The first one is based on a Shannon-like theorem. Our estimator estimates the

singularity of the characteristic function at the origin. In practice, we use the em-

pirical estimator for the characteristic function, i.e.,φ̂(uk) = N−1
∑

j exp(iukXi).

The maximum variation of̂φ is controlled by the maximum value ofXj . There-

fore samplingφ̂ at a higher rate than approximately the Nyquist rate(X)−1 with

X = max{Xj , j = 1, · · ·N}, does not bring any finer information on the regularity

of φ(u) atu = 0. On the contrary, when the analyzing scale goes below the minimum

boundsmin = (X)−1, the measured regularity is overestimated, as the function under

analysis reduces to the soleC∞ componentexp(iukX), oversampled at the vicinity of

the origin. Thus, concordantly with theorem 5, whenα̂ is estimated from data below

this minimum scale bound it reflects the regularityNψ of the analyzing wavelet rather

than the targeted regularity of the characteristic function.

The second approach starts from the expression (32). In order to be consistent, we

need to ensure that at least one sampleXj falls inside the equivalent support ofΨ(sx).

For smalls, only the largest values ofXj are retained to enter the sum (32). As a

result, ifX is the maximum sample of the seriesXj , νψ/s is thecentral frequency of

the wavelet at scales. We then wantX ≈ νψ/s, which leads tosmin ≈ νψ/X.

In summary, both arguments above lead to the same conclusion that the lower cut-

off scale should be chosen proportionally to1/X. For the numerical analysis in this

paper we adopted:

smin = 1/X. (52)

Using a stable law with index of stability (or shape parameter)α, we present in fig-

ure 2 the theoretical lower scale boundsmin = (X)−1. A linear regression oflog Ŵ (s)

versuslog s for s > smin yields an accurate estimate of the characteristic exponent

ρ+ = α. Moreover, on this same plot, we verify that fors < smin, the wavelet estima-

tor Ŵ (s) behaves likesNψ , in accordance with the aforementioned argument that the

function under analysis is now theC∞ exponentialexp(iuX).
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4.4.2 Upper bound and negative moments

As we saw, existence of moments is dictated by the tail decay of the distributionF (x)

for x → ∞. For instance, it is shown in Samorodnitsky and Taqqu (1994), that the

asymptotic tail behavior of a stable law is Pareto when0 < α < 2. Defining when

exactly this asymptotic behavior starts seems to be a tough problem (see Nolan, 2001),

as it depends heavily on the parameterization that is used to model the distribution (in

the parametric context). We just pretend here, that the upper cutoff scalesmax below

which Ŵ (s) behaves likesα is also determined by this cutoff value ofX separating

the tail behavior (as a Pareto law for instance) from thebodyof the distribution. We

illustrate this with a compound distribution, made out of a uniform distribution for

|X| ≤ δ andα−stable distribution for|X| > δ. We show with this simple example

(see Figure 2), that the upper cutoff scale is of order:

smax = δ−1 (53)

whereδ marks the transition from body to tail behavior in the distribution. In practical

applications one might chooseδ from prior knowledge (rendering the estimator semi-

parametric) or estimateδ itself from the scaling plots (see Figure 2).

Beyond this upper limit, the wavelet estimatorlog Ŵ (s) decays with slope−1.

This particular value of the slope depends only upon the distribution we have chosen

for the body of our compound distribution. In our example, the uniform distribution

has negative moments only forp > λ−(X) = −1. That is precisely this bound that

is estimated in figure 2, whens > smax. To support our claim, we simply follow the

same lines as for the tail estimator (35) : GivenPX(x) ∼ |x|γ−1, x → 0, then

IEW (s) =
∫ δ

0

Ψ(sx)PX(x)dx =
∫ δ.s

0

Ψ(x)|s−1x|γ−1s−1dx,

and recalling thatΨ is band-limited, we get :

IEW (s) = s−γ

∫ ν

0

Ψ(x)|x|γ−1dx, ∀s s.t.ν ≤ δs

∼ Bψsγ .

The same value forλ−(X) would have been estimated, if instead ofX directly

we had analyzed the new random variableY = X−1 as discussed in Section 3.4, and

estimatedλ+(Y ) = −λ−(X) from the tail decay of the transformed distribution.

22



−40 −35 −30 −25 −20 −15 −10 −5 0
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Theoretical scale range

Lower scale bound

Upper scale bound

slope = N
ψ

slope = α

slope = −1

−60 −50 −40 −30 −20 −10 0 10
−60

−50

−40

−30

−20

−10

0

Lower scale bound

Upper scale bound

slope = N
ψ

slope = α slope = −γ

Figure 2:SCALING REGION AND CUTOFF SCALES: Choosing the scale too small, the resolu-
tion is fine enough for the wavelet to analyze the individual exponentials that form the estimator
φ̂. According to section 4.4.1 the wavelet coefficients decay (at least) with exponentNψ. Choos-
ing the scale too large, the estimator samples the body instead of the tail of the distribution; thus,
the wavelet coefficients adhere to a powerlaw with exponentλ−.

This observation bears a convenient consequence as far as negative moments are

concerned: We can fully exploit the behavior of̂W (s) for s > smax, leading us to a

simple estimator ofλ− in (2). To illustrate this, we now choose a compound process

similar to before but replace the uniform distribution for|X| ≤ δ with a Gamma dis-

tribution of parameter0 < γ < 1. The density of the Gamma distribution behaves as

| · |γ−1 around the origin, whence negative moments exist exactly for negative orders

p > λ− = −γ. Therefore, we estimate the slope oflog Ŵ (s) for s > smax = δ−1 and

compare this estimate against the theoretical valueλ− = −γ (see table 2).

To summarize, givenK i.i.d. random variables{Xj , j = 1, · · ·K}, the wavelet

estimator (32) behaves like:

• Ŵ (s) ∼ sNψ , for s < smin = (maxj{Xj})−1,

• Ŵ (s) ∼ sρ+
, for smin < s < smax, wheresmax corresponds to the inverse of

the cut-off value separating the tail from the body of the underlying distribution,

• Ŵ (s) ∼ s−ρ− , for s > smax.

This is impressively demonstrated in Figure 2. In fine, bothρ+ andρ− can be de-

duced from a linear regression oflog Ŵ (s) versuslog s, over the corresponding scale

intervals.
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As elaborated in section 3 choosing an appropriate wavelet and according to corol-

lary 6, we haveλ+ = ρ+ andλ− = ρ−.

4.5 Choice of the wavelet

The theoretical results of section 3 form the basis of our estimator. For them to hold

the analyzing waveletψ is required to have a semi-definite Fourier transform as well

as a number of vanishing momentsNψ larger thanHRe φ(0).

In practice, we suggest to start with a low regularity wavelet such as the second

derivative of the gaussian windowψ2(t), corresponding toNψ = 2. If the slopeρ̂+

obtained from the linear regression oflog Ŵ (s) versuslog s is smaller thanNψ = 2,

then corollary 2 immediately posits that the positive critical orderλ+ is equal toρ+.

Now, if the measured slopêρ+ equalsNψ = 2, we need to verify whether the regularity

ρ+ is actually larger than two or not.

To this end, we increase the number of vanishing momentsNψ = p of ψp(t),

and repeat the estimation ofρ+ for increasing integerp as long as the slopêρ+ hits

the boundNψ. Once we get âρ+ < Nψ, we should recall corollary 6 which again

guarantees thatλ+ = ρ+.

5 Applications

Application of particular interest in this context are the parameter estimation of stable

laws as well as the estimation of the multifractal partition function.

5.1 Estimating Stable and Gamma Parameters

To set notation we recall some classes of distributions well known in the literature, that

we will use to illustrate our characteristic exponent estimator.

Pareto. A Pareto densitypX is a simple power law function that take on the form

pX(x) =
{

αµαx−α−1 if x > µ,
0 else,

(54)

with α the shape parameter, andµ the position parameter. A random variableX with

Pareto distribution, has positiver−th order moments existing only for ordersr < α,
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while all negative orders moments exist asX ≥ µ > 0 almost surely. The median is

µ21/α, and ifα > 1 then the mean exists and equalsIEX = µα/(α− 1).

Stable. Stable laws form a class of heavy tailed distributions, for which there exists

an abundant literature (see e.g., Samorodnitsky and Taqqu (1994) for a detailed intro-

duction). A random variableX follows a stable law that we denoteSα(σ, β, µ), if and

only if its characteristic function reads :

IE[exp(iuX)] = exp(−σα|u|α(1− iβwα(t)) + iµu), (55)

wherewα(t) = tan(παsgn(t)/2) for α 6= 1 andw1(t) = −(2/π)sgn(t) log |t|.
Although there exists no closed form for stable distributions except for a handful

of special cases, stable laws have a tail behavior that can be approximated as a Pareto

distribution (54). Indeed, Property 1.2.15 in Samorodnitsky and Taqqu (1994) reads

as: IfX ∼ Sα(σ, β, µ) with 0 < α < 2, then

lim
λ→∞

λαP [X > λ] = Cα
1 + β

2
σα

lim
λ→∞

λαP [X < −λ] = Cα
1− β

2
σα (56)

where1/Cα =
∫∞
0

x−α sin(x)dx depends only onα.

The indexα is sometimes referred to as the characteristic exponent of the stable

law, and for our purpose, it constitutes the most important parameter since absolute mo-

ments of orderr are finite exactly forr ∈ (−1, α) (0 < α < 2). Forα = 2 we recover

the special case of Gaussian distribution, with existing moments at all ordersr > −1.

The parameterσ indicates scale, sinceX ∼ Sα(σ, β, µ), thenaX ∼ Sα(aσ, β, aµ)

(a > 0). For α = 2 we haveσ2 = var(X)/2 while for α < 2 the second moment

IE[X2] is infinite and the variance is not defined. The parameterµ defines position

in the sense that ifX ∼ Sα(σ, β, µ) thenX + c ∼ Sα(σ, β, µ + c). Provided that

α > 1 we may be even more explicit and identifyµ as the expected value:IE[X] = µ.

However, in the caseα ≤ 1 the meanIE[X] is not even defined; as the most prominent

example we mention the Cauchy distribution. Finally, the parameterβ provides a mea-

sure for the skew, more precisely,X is symmetrical if and only ifβ = 0; moreover, if

this is the case then (55) reduces to (6).
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Gamma. The last case we will comment on is the Gamma distribution. A random

variableX has Gamma distribution if

pX(x) =
{

λxγ−1 exp{−cx} if x ≥ 0
0 else.

(57)

In the above,γ andc are positive numbers, andλ = cγ/Γ(γ), with Γ the generalized

factorial function. The special caseγ = n/2, c = 1/2 with n an integer, corresponds

to the Chi-square density withn degrees of freedom, and forn = 2 it reduces to the

usual exponential density. As far as moments are concerned, thanks to the dominant

exponential decay in (57), all positive order moments exist, and in particularIEX =

γ/c andIEX2 = γ(γ + 1)/c2. The negative moments, i.e.,

Mr =
∫ ∞

0

λxr+γ−1 exp{−cx}dx, r < 0, (58)

converge only forr > −γ.

For the above classes of distributions, Pareto, stable and Gamma, there exist effi-

cient procedures aimed at estimating the different sets of parameters. In most cases,

these estimators are parametric estimators and they turn out to be optimal (in the

sense of maximum likelihood) whenever the specific underlying distribution model

and the analyzed data distribution do match. Our estimator (32) is non-parametric,

and it should not be expected to outperform a parametric estimator on the distribution

it is tailored for. This is for instance very clear on the experiments depicted in Ta-

ble 1. ConsideringN i.i.d. samples of a stable variableX ∼ Sα(σ, β, µ), we compare

our estimates (33) ofα against two well-known parametric estimators for stable laws :

Koutrouvelis (1980) and McCulloch (1986) procedures.

Superiority of parametric estimators in this appropriate context is not questionable.

However, in most real world applications, the true density underlying the data to be

analyzed is rarely known, and very likely blind application of parametric estimators

will produce aberrant results. A very illustrative example is proposed in Table 2. We

consider a Gamma variableX with shape parameter0 < γ < 1, and form the new vari-

ableY = X−1. From (58) we know thatr−th order moments ofY should only exist

for r < γ. If we now compare the (empirical) densities derived both fromY and from

a stable variable with characteristic exponentα = γ and skewness parameterβ = 1

(which ensures positivity sinceα < 1) it is quite difficult to dissociate them (Figure 3).
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Table 1: Estimation of the characteristic exponentα of a stable law, using Koutrouvelis
procedure, McCulloch procedure and our wavelet based procedure, usingN = 212

i.i.d. samples of a stable variable. Scale, position and skew parameters are fixed (σ = 1,
µ = 0, β = 0), andα varies in(0, 2). Empirical means and standard deviations (in
parenthesis) on the estimates are based upon a 1000 realizations set.

α 0.2 0.6 1 1.4 1.8

λ̂+ 0.196 0.58 1.0 1.46 1.74
(0.084) (0.134) (0.187) (0.257) (0.141)

α̂ (Koutrouvelis) ND 0.60 1.0 1.403 1.80
(ND) (0.084) (0.095) (0.114) (0.11)

α̂ (McCulloch) 0.59 0.605 1.0 1.40 1.80
(0.042) (0.095) (0.095) (0.127) (0.148)

Yet, applying crudely stable law designed estimators, like Koutrouvelis or McCulloch,

to the raw dataY , yields very bad estimateŝα = γ̂ = −λ̂−. In contrast, determin-

ing the characteristic exponentλ+(Y ) = −λ−(X) from our wavelet-based regression

procedure (as described in Section 3.4), provides us with fairly good estimates of shape

parametersγ for Gamma distributions. Hence, because our non-parametric estimator

does not assume any a priori distribution for the data, it compares favorably as a gen-

eral purpose tool to parametric estimators (see for instance the Hill estimator and its

various improvements (Hill, 1975; Kratz and Resnick, 1995; Resnick, Dress, and Haan,

1998; Bianchi and Meerschaert, 2000), tail estimators (DuMouchel, 1983; McCulloch,

1997), and the comparative study conducted in Akgiray and Lamoureux (1989)).

Discussion and Conclusions

We itemize the three main results we have derived in this paper.

• We have established a theoretical connection between three exponents namely

the critical exponentλ+ which fixes the highest order of existing moments for a

random variable, the tail parameter of its probability distribution and the charac-

teristic exponentρ+ which captures the Lipschitz regularity of the characteristic

function at origin.

• We proposed a wavelet based estimator ofλ+ andλ−, that allows for an ex-
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Figure 3: Empirical distributions of the random variablesY = X−1 andZ, whereX
follows a Gamma law withγ = 0.6, andZ follows a stable law withα = 0.6 and
β = 1. For both cases,λ+ = α = γ. Axis are in logarithmic scale.

Table 2: Estimation of the shape exponentγ from a Gamma variableX. Koutrouvelis
procedure, McCulloch procedure and our wavelet based procedure are applied to the
heavy tail transformed variableY = X−1. N = 212 i.i.d. samples of Gamma variable
where used. Parametersc = 1 is fixed, andγ varies in(0, 1). Empirical means and
standard deviations (in parenthesis) on the estimates are based upon a 1000 realizations
set.

γ 0.2 0.4 0.6 0.8

−λ̂− 0.204 0.395 0.589 0.793
(0.084) (0.089) (0.123) (0.173)

α̂ (Koutrouvelis) ND 0.433 0.56 0.67
(ND) (0.078) (0.084) (0.095)

α̂ (McCulloch) 0.513 0.514 0.583 0.72
(0.000) (0.000) (0.095) (0.114)
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traordinarily simple implementation. Moreover, this characteristic exponent es-

timator is non-parametric and does not assume any a priori knowledge on the

underlying distribution, not even Pareto.

• From an application point of view, this estimator shows very useful at character-

izing rare events (often responsible for divergence of moments) and measuring

power law decays of fat tail distributions. We also mentioned a particularly in-

teresting application of this estimator in the context of model selection in multi-

fractal analysis.
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