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Abstract

A lower bound of the Hausdorff dimension of certain self-affine sets is given. Moreover, this
and other known bounds such as the box dimension are expressed in terms of solutions of simple
equations involving the singular values of the affinities.
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1 INTRODUCTION

A compact setK in Euclidean spaceIRd such as the middle third Cantor set may carry a rich
geometrical structure. In order to measure the complexity of its geometry, the box dimension and the
Hausdorff dimension have been introduced [4]:

dbox(K) := lim
δ↓0

logNδ(K)

− log δ
,

whereNδ(K) is the minimal number of balls of radiusδ needed to coverK, and

dHD(K) := inf{α ≥ 0 : mα(K) = 0} = sup{α ≥ 0 : mα(K) = ∞},

wheremα denotes theα-dimensional Hausdorff measure

mα(E) := sup
δ>0

inf {
∞∑

l=1

(diam(Sl))
α : E ⊂

∞⋃

l=1

Sl, diam(Sl) ≤ δ ∀l ∈ IIN}.

After it was discovered that Hausdorff and box dimension of self-similar sets coincide [7], great
effort has been made to calculate the dimensions of self-affine sets [8, 6, 12, 1, 3, 5, 9]. Though in
this case the two dimensions coincide at least ‘almost surely’ [3], the explicitly solvable cases mostly
turn out to be exceptional, yielding values which differ from the expected answer [8, 6]. So, looking
for ‘sure’ results, one is often forced to content oneself with bounds, as in [5], and as shall be done
here.



We will consider self-affine setsK which arise from an iterated function system in the following
way. Assume that the Euclidean space is split into two fixed orthogonal subspaces:IRd = IRd′ ⊕
IRd′′ . (For a fractal surface taked′ = 2 andd′′ = 1.) Fix a natural numberr and considerr affine
transformationswi of IRd which reduce to similarities in the subspacesIRd′ andIRd′′, i.e.

wi : IRd = IRd′ ⊕ IRd′′ → IRd (x, y) 7→ (λiΘix, νiΞiy) + (ui, vi) (1)

whereΘi andΞi are orthogonal transformations,ui andvi are fromIRd′ andIRd′′ respectively, and
where the ratiosλi andνi of the similarities satisfy

0 < ν := min {λ1, . . . , λr, ν1, . . . , νr} ≤ λ := max {λ1, . . . , λr, ν1, . . . , νr} < 1.

We will call w1, . . . , wr a family ofdiagonal affine contractions.
It is well known [7] that there exists a unique nonempty compact set satisfying

K =
r⋃

i=1

wi(K). (2)

It is the aim of this paper to provide a lower boundΓ of the Hausdorff dimension ofK, which holds
under a certain open set condition. This condition as well as some geometrical lemmas are given in
section 2. The boundΓ is elaborated in section 3 using limit theorems from probability theory. See
theorem 4. In section 4, this bound is compared with the lower boundd− given in [5], with the ‘almost
sure’ value ofdHD(K) [3] and with the actual box dimension ofK, for which explicit formulas are
provided.

2 GEOMETRICAL RESULTS

First, the geometrical situation we will deal with will be made precise and the formalism of sym-
bolic dynamics is introduced. Then, two geometrical lemmas are given, which provide lower bounds
of dHD(K).

First, assume the existence of a nonempty, bounded, connected, open setO satisfying the so-called
open set condition (OSC) [7]

wi(O) ⊂ O (i = 1, . . . , r) and wi(O) ∩ wj(O) = ∅ (i 6= j). (3)

Let
Vnil := O and Vi := wi(O) := wi1 ◦ . . . ◦ win(O).

Thereby we introduced the empty wordnil and the words of length|i| := n, (n ∈ IIN),

i := i1 . . . in ∈ In := {1, . . . , r}n.

Moreover, we setI := ∪In, i ∗ k := i1 . . . ink and i|m := i1 . . . im for m ≤ |i|. SinceVi∗k =
wi∗k(O) = wi(Vk) ⊂ wi(O) = Vi, the sequenceKn

Kn :=
⋃

i∈In

Vi decreases to K =
⋂

n∈IIN

Kn. (4)
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While in the case of similarities the OSC is enough to calculatedbox(K) anddHD(K) [7], one
more regularity condition is needed here: Denote byR the smallest closed rectangle containingO
and with sides parallel to the axes. For the sake of simplicity assumeR = [0, 1]2, which is not really
a restriction as far as dimensions are concerned. The additional hypothesis onO is: There is a% > 0,
i andj with 1 ≤ i ≤ d′ < j ≤ d andξ, x, ζ, z from IRd, such that the points

(ξ1, . . . , ξi−1, t, ξi+1, . . . , ξd) , (x1, . . . , xi−1, 1− t, xi+1, . . . , xd),
(ζ1, . . . , ζj−1, t, ζj+1, . . . , ζd) , (z1, . . . , zj−1, 1− t, zj+1, . . . , zd)

(5)

belong toO for all t ∈]0, %[. Loosely speaking, it is possible to crossR corresponding to the two
invariant subspaces on two piecewise linear paths which are parallel to the axes and which do not
leaveO. Any setO with the above properties is calledround open set.

Definition 1 We will say thatK is diagonal self-affineiff it is the nonempty, compact and invariant
(2) set of a family(w1, . . . , wr) of diagonal affine contractions with a round open set. (The singular
values ofwi will be denoted byλi andνi).

In order to estimate the Hausdorff measure ofK, a certain collection of sets(Vi)i∈Jδ
with ‘width’

approximately equal toδ is useful. For any finite wordi = i1 . . . in let

λi := λi1 · . . . · λin νi := νi1 · . . . · νin (6)

and
κ(i) := min(λi, νi) ≥ κ(i1 . . . in−1) · κ(in) ≥ κ(i1) · . . . · κ(in).

Sinceκ is only sub-multiplicative we prefer the slightly different notation and won’t writeκi. Trivially
κ(i) ≤ λn → 0 (n →∞). For anyδ ∈]0, ν[ set

Jδ := {i = i1 . . . in ∈ I : κ(i) ≤ δ < κ(i1 . . . in−1)}. (7)

The length of any word ofJδ amounts at mostmδ := dlog δ/ log λe. On the other hand, for anyj from
Imδ

there is a uniquen such thatj1 . . . jn ∈ Jδ, sinceκ(j) ≤ δ andκ(j1 . . . jm) ≤ λκ(j1 . . . jm−1).
Consequently,Jδ is secure[7], i.e.

K ⊂ ⋃

i∈Jδ

Vi, (8)

andtight [7], i.e. for any different wordsi 6= j from Jδ there isk ≤ min(|i|, |j|) with ik 6= jk, hence,
with (3),

wi(O) ∩ Vj = ∅ (9)

Finally,
νδ ≤ κ(i) ≤ δ for all i ∈ Jδ. (10)

Next, a lemma is required, saying that a set of sizeδ is not intersected by too many setsVi with i ∈ Jδ.
It is only here, where the ‘roundness’ ofO is actually needed.

Lemma 2 Given diagonal affinitiesw1, . . . , wr and a round open setO, there is a numberb such,
that#{i ∈ Jδ : Vi ∩W 6= ∅} ≤ b for all δ > 0 and for all ballsW of radiusδ.

315



Proof For simplicity we give the proof for the cased′ = d′′ = 1. The general case can be treated
with the same argumentation.
Let δ > 0 and letW be a ball of radiusδ with centre(x, y). SetW ′ := [x−2δ, x+2δ]×[y−2δ, y+2δ].
We will only be concerned with wordsi s.t.λi ≥ νi, leading to a boundb+. By symmetry, a bound
b− will be obtained for the words withλi ≤ νi, andb = b+ + b− will be enough.
SinceO is connected and bounded, there is a pathγ within O joining Q0 := (0, y1) with QN :=
(1, y2), and which consists of finite many straight line segments, each one parallel to one of the axes.
Of course it is possible to chooseN ≥ 2. Enumerate the vertices ofγ by Ql (l = 0, . . . , N), and
choose%′ > 0 such that the ballsU(%′, Ql) are contained inO for l = 1, . . . , N−1. Consequently, the
setwi(O) contains the ellipseswi(U(%′, Ql)) and hence the ballsUi,l := U(%′νδ, wi(Ql)) due to (10).
Takei 6= j from Jδ. By (9), the ballsUi,l must be disjoint withUj,m whenever1 ≤ l,m ≤ N − 1.
This is one main point of the proof.
Now consider the wordsi from Jδ, for whichVi meetsW . Two types will be distinguished. Wordsi
of the first type have a large part of a ballUi,l (1 ≤ l ≤ N − 1) lying in W ′. SinceUi,l andW ′ are of
nearly equal size, there can’t be too many words of this type. Wordsi of the second type have allUi,l

(1 ≤ l ≤ N − 1) outsideW ′. SinceVi meetsW , the pathswi(γ) must intersect the boundary ofW ′.
Since they are ‘parallel’ they cannot come too close due to the disjoint ballsUi,l, and their number is
bounded too.
Type 1): There isl 6= 0, N such thatwi(Ql) lies inW ′. ThenW ′ contains at least one quarter of the
ball Ui,l. Using disjointness and comparing volumes, the number of words of type 1) is seen to be
bounded by

b1 :=
64

π(%′ν)2
.

Type 2): Ri is a rectangle which meetsW and with sidesλi andνi. Sinceνi = κ(i) ≤ δ and sincei
is not of type 1), the pathwi(γ) joining ‘left’ and ‘right’ end of Ri must contain a point of the form
Si = (x± 2δ, yi). Denote byhi the horizontal part ofwi(γ), which containsSi. Sincei is not of type
1) and sinceN ≥ 2, there isl 6= 0, N such thatwi(Ql) is an end point ofhi. This point lies outside
W ′ but in the interior ofVi. Take a wordj of type 2) different fromi. Since the ballUi,l is disjoint
with Vj by (9), it cannot intersecthj. Vice versa,Uj,m cannot meethi. Consequently,Si andSj are at
least at distanceνδ%′ of each other. Comparing the length of∂W ′ with these distances shows, that at
the most

b2 := 2

(
4

%′ν
+ 1

)

words of type 2) are possible. Thusb+ := b1 + b2 is enough. ♦
Since any setVi contains a ball of radiusconst · κ(i), it is natural to estimatemγ(K) from below

by certain
∑

κ(i)γ. For any set of wordsJ let

σ(γ, J) :=
∑

i∈J

κ(i)γ =
∑

i∈J+

νi
γ +

∑

i∈J−
λi

γ, (11)

where
J+ := {i ∈ J : λi > νi} J− := {i ∈ J : λi ≤ νi}. (12)

Lemma 3 Let K be a diagonal self-affine set. Assume thatN and γ are such thatσ(γ, IN) ≥ 1.
ThendHD(K) ≥ γ.
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Figure 1: The number of rectanglesRi with λi ≥ νi ' δ meeting a ballW of radiusδ (or a box of
sizeδ for that matter) is bounded due to the disjoint ballsUi,l and the horizontal partshi.

Proof i) Note thatK is also invariant under the set of affinities(wi)|i|=N . Thus, performing a
natural change in the encoding ofK, i.e. IN = {1, . . . , r′} =: I ′1 with r′ = rN , we may assume
without loss of generality thatN = 1. Furthermore we may assume thatγ ≥ 0.

ii) Take an arbitrary cover(Sl)l∈IIN of K. For Sl 6= ∅ let Wl be an open ball of radiusδl :=
2 · diam(Sl) centred in a point ofSl. By compactness,K is covered by a finite subcollection of the so
definedWl, sayW1, . . . ,Wp. Moreover, sinceU := W1 ∪ . . . ∪Wp is open, a compactness argument
gives an integerq such thatU even coversKn (4) for all n ≥ q.

iii) Now considerHl := {i ∈ Jδl
: Vi ∩Wl 6= ∅}. By lemma 2 there is a numberb depending

neither onl nor on the coverSl with #Hl ≤ b. Consequently, with (10),

∞∑

l=1

diam(Sl)
γ ≥ 2−γ

p∑

l=1

δl
γ ≥ 2−γ

p∑

l=1

1

b

∑

i∈Hl

κ(i)γ ≥ (2γb)−1 · σ(γ,H),

whereH denotes the union of theHl. The final two steps of the proof show thatH is secure and that
σ(γ, L) ≥ 1 for any finite, secure setL. Consequently,mγ(K) ≥ 1/(2γb) > 0 anddHD(K) ≥ γ.

iv) By makingq larger if necessary we may assume that every word ofH is at most of lengthq
(since#H ≤ bp) and thatλq ≤ δl for l = 1, . . . , p. To prove thatH is secure it is enough to show:
for anyj ∈ Iq exists an integern with j|n ∈ H. Takej from Iq. SinceU coversKq, there isl with
Vj ∩ Wl 6= ∅. Sinceκ(j) ≤ λq ≤ δl there is by (7) a numbern such thati := j|n ∈ Jδl

. Finally,
Vi ⊃ Vj impliesi ∈ Hl ⊂ H and the claim follows.

v) Let L be any finite, secure set. We show thatσ(γ, L) ≥ 1. First, letL1 := {i ∈ L : i|m 6∈
L ∀m < |i|}. By definition,L1 is tight. Since only extensions of other words contained inL have
been thrown away,L1 is secure. Obviously,σ(γ, L) ≥ σ(γ, L1). Now, to prove the claim consider the
following inductive process which generates a ‘shrinking’ sequence of tight and secure setsLm: Take
a wordi = i1 . . . in ∈ Lm with maximal length. Assume thatn ≥ 2. SinceLm is tight and secure, it
must contain all the wordsi1 . . . in−1k (k = 1, . . . , r). Replacing theser words by their ‘predecessor’
i1 . . . in−1 yields a new setLm+1 which is still secure and tight. IfLm = I1, then setLm+1 = Lm.
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This defines the process. Consider the sequenceLm. One hasσ(γ, Lm) ≥ σ(γ, Lm+1) since

r∑

k=1

κ(j ∗ k)γ ≥
r∑

k=1

κ(j)γκ(k)γ = κ(j)γσ(γ, I1) ≥ κ(j)γ. (13)

By inductionσ(γ, L) ≥ σ(γ, Lm). Moreover, the number of words inLm decreases strictly inm
unlessLm = I1. SinceL1 is finite, this impliesLm = I1 for m large enough. By assumption
σ(γ, I1) ≥ 1 which completes the proof. For further use, note thatσ(γ, Ik) ≥ 1 sinceIk is secure and
finite. ♦

Remark The argumentation above is of purely geometrical kind. In fact, it provides an alternative
proof of Moran’s theorem [7].

3 THE MAIN RESULT

Now, the lower bound ofdHD(K) given by lemma 3 shall be optimized. We denote byγn the
unique (positive) numbers satisfyingσ(γn, In) = 1. With (13) it is easy to see thatσ(γn, Ikn) ≥ 1.
Sinceσ(γ, In) is strictly decreasing inγ one findsγn ≤ γkn and thussup(γn) = lim sup γn. On the
other hand,lim γn = Γ as will be shown below. Hence,Γ is the optimal lower bound ofdHD(K)
which can be extracted from lemma 3. Ex. 2 shows that there may be no better bound ondHD(K)
unless it involves the translations(ui, vi).

In order to give the value ofΓ, let γ+ resp.γ− be the unique numbers satisfying

r∑

i=1

νγ+

i = 1 resp.
r∑

i=1

λγ−
i = 1. (14)

Provided there arei 6= j with
λi < νi and λj > νj, (15)

denote by(t0, γ0) the unique solution of

∣∣∣∣∣∣∣∣

r∑
i=1

νγ
i (λi/νi)

t = 1 (a)
r∑

i=1
log(λi/νi)ν

γ
i (λi/νi)

t = 0 (b)

∣∣∣∣∣∣∣∣
(16)

(The existence of(t0, γ0) will be shown below.) Otherwise, i.e. if (15) does not hold, setγ0 = 0.
Finally, let

Γ+ :=





γ+ if
r∑

i=1
log(λi/νi)νi

γ+ ≥ 0,

γ0 otherwise,
Γ− :=





γ− if
r∑

i=1
log(νi/λi)λi

γ− ≥ 0,

γ0 otherwise.

Theorem 4 LetK be a diagonal self-affine set. Then

dHD(K) ≥ Γ := max (Γ+, Γ−).
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The first steps of the proof explain the definition ofΓ and provide some notation.
Proof Remind thatdHD(K) ≥ sup γn by lemma 3, whereσ(γn, In) = 1.
o) Assume first thatλi ≥ νi (i = 1, . . . , r). Then one finds

σ(γ, In) =
( r∑

i=1

κ(i)γ
)n

.

Thus, allγn then coincide withγ+, and hence withΓ by direct verification. The assertion follows
immediately, and a similar argument holds for the caseνi ≥ λi (i = 1, . . . , r). Thus assume (15) for
the remainder.

i) Consider the probability space(I∞,B, P ) whereI∞ := {i = 1, . . . , r}IIN is endowed with the
product topology, whereB is theσ-algebra of its Borel sets and whereP is the product measure onB
induced by the measures

{i} 7→ νi
γ

r∑
i=1

νγ
i

on the factors{1, . . . , r} of I∞. Note thatP depends onγ. The random variables

Xn : I∞ → IR (i1, i2, . . .) 7→ log(λin/νin)

are independent and identically distributed due to the property of the product measure. SetZn :=
X1 + . . . + Xn. Then, for any fixedγ,

σ+
n (γ) :=

∑

i∈I+
n

νi
γ =

( r∑

i=1

νγ
i

)n · P [Zn > 0]. (17)

Provided the expectationE[Xn] is nonnegative, the Law of Large Numbers implies thatγ+ still rules
the asymptotical behaviour ofσ+

n in a way made precise in step iv). Otherwise, the moment generating
function

M(t) := E[etXn ] =
( r∑

i=1

νγ
i

)−1
r∑

i=1

(λi/νi)
tνi

γ

is involved: ProvidedP [Xn > 0] > 0 andE[Xn] < 0, one has

lim
n→∞

1

n
log P [Zn > 0] = log inf

t
M(t) (18)

by Chernoff’s theorem [2, p 147]. As will be shown,t0 minimizesM(t) by (16 b), while (16 a)
combines (17) and (18). Thus, the asymptotical behaviour ofσ+

n is then ruled byγ0. This explains
the definition ofΓ.

ii) Next, the solvability of (16) has to be established. For convenience

χ(γ, t) :=
∑

νγ
i (λi/νi)

t.

For fixedγ, (16 b) has a unique solutiont0 = t0(γ) due to (15). Obviously,M ′(t0) = 0 and t0
minimizesM . Moreover,t0 depends continuously differentiable onγ sinceχ.tt > 0. The function of
interest for (17) is

h(γ) :=
r∑

i=1

νγ
i ·M(t0(γ)) = χ(t0(γ), γ),
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which is strictly decreasing by the following argument:χ.t(t0, γ) vanishes by definition oft0 and thus

h′(γ) = χ.t · ∂
∂γ

t0 + χ.γ =
r∑

i=1

log νi · νi
γ(λi/νi)

t0 ≤ log λ · h(γ) < 0.

The mean value theorem impliesh(γ) → ∞ (γ → −∞). On the other hand,M(t0) ≤ M(0) = 1
for all γ. As a first consequence,h(γ) ≤ ∑

νγ
i → 0 (γ → ∞). This establishes the existence

and the uniqueness ofγ0 with h(γ0) = 1, which is (16 a). As a second consequence, it implies
h(γ+) ≤ χ(0, γ+) = 1 = h(γ0) and henceγ0 ≤ γ+.

iii) The asymptotical behaviour ofσ+
n is best described in the notation of ii). Fixγ. If E[Xn] =

χ.t(0, γ)/χ(0, γ) ≥ 0, i.e.χ.t(0, γ) ≥ 0, thenP [Zn > 0] ≥ P [(Zn − nE)/(n
√

var) > 0] → 1/2 . If
E[Xn] < 0, then Chernoff’s theorem (18) can be applied due to (15). This leads with (17) to

l+(γ) := lim
n→∞

1

n
log σ+

n (γ) =





log χ(0, γ) if
r∑

i=1
log(λi/νi)νi

γ ≥ 0

log h(γ) otherwise.

iv) Finally, we show howΓ+ rules the asymptotics ofσ+
n :

l+(γ) > 0 if γ < Γ+ and l+(γ) < 0 if γ > Γ+.

FromM(0) = 1 followsχ(0, γ) ≥ h(γ) thusl+(γ) > 0 for all γ < γ0, resp.l+(γ) < 0 for all γ > γ+.
It remains to considerγ ∈ [γ0, γ

+]. Assumeχ.t(0, γ) = 0. Thent0(γ) = 0 andh(γ) = χ(0, γ). But
sinceh andχ(0, ·) are both strictly monotonous decreasing, and sinceh(γ0) = 1 = χ(0, γ+), this
impliesγ+ = γ0 = γ. In this case there is nothing more to show. On the other hand, ifγ0 < γ+ there
are only two possibilities:
1) χ.t(0, γ

+) > 0, henceΓ+ = γ+. Then for allγ ∈ [γ0, γ
+[ one hasχ.t(0, γ) > 0 and l+(γ) =

log χ(0, γ) > 0.
2) χ.t(0, γ

+) < 0, henceΓ+ = γ0. Then for allγ ∈]γ0, γ
+] one hasχ.t(0, γ) < 0 and l+(γ) =

log h(γ) < 0.
v) In order to deal with the second termσ−n of σ(γ, In) just interchangeλi andνi. Then,γ+ is

replaced byγ− and the only thing to do is to recognize, that the sameγ0 is obtained. For this just note
that interchangingλi andνi and replacingt by γ − t keeps the equations of (16) invariant. Thus

lim
n→∞

1

n
log σ−n (γ)

{
> 0 if γ < Γ−,
< 0 if γ > Γ−.

vi) Finally, takeγ < Γ. Sinceσ(γ, In) = σ+
n + σ−n with both terms positive, iv) and v) give

σ(γ, In) ≥ 1 and henceγ ≤ γn for sufficiently largen. For γ > Γ, iv) and v) giveσ(γ, In) ≤
1/2 + 1/2 andγ ≥ γn for n large enough. Consequently,lim γn = Γ and the theorem follows. ♦

4 APPLICATIONS

In this section theorem 4 is compared with results from [5], [3], [9] and [6].
Falconer [5] gave a lower bound for the Hausdorff dimension of self-affine sets, which does not

require a particular form of the ‘open set’ as in (5), but which does not apply to connected invariant
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sets. In our context, his result reads as follows: Given a linear transformationS on IRs with singular
valuesα1 ≥ α2 ≥ . . . ≥ αs, the singular value functionφβ is for positiveβ defined by

φβ(S) =

{
α1 · α2 · . . . · αm−1 · αβ+1−m

m if β ≤ s,

(α1 · . . . · αs)
β/s otherwise,

wherem = dβe. For a familywi(x, y) = Si(x, y) + (ui, vi) (i = 1, . . . , r) of affine transformations
with the OSC (3) in the plane denote byd−(w1, . . . , wr) the uniqueβ satisfying

lim
n→∞

( ∑

i∈In

(φβ(Si
−1))−1

)1/n
= 1.

Theorem 5 (Falconer) Let K be the invariant set ofw1, . . . , wr as above. If the setswi(K) are
mutually disjoint, thendHD(K) ≥ d−(w1, . . . , wr).

In the case of diagonal affinities (1), the boundd−(w1, . . . , wr) can be calculated using similar meth-
ods as in the previous section. Let

ϕi(β) =

{
λβ

i if β ≤ d′,
λiν

β−1
i if d′ < β,

and θi(β) =

{
νβ

i if β ≤ d′′,
νiλ

β−1
i if d′′ < β.

Then
τn(β) :=

∑

i∈In

(
φβ(Si

−1)
)−1

=
∑

i∈I+
n

θi(β) +
∑

i∈I−n

ϕi(β), (19)

and, following the lines of section 3letβ+ andβ− denote the unique numbers satisfying

r∑

i=1

θi(β
+) = 1 resp.

r∑

i=1

ϕi(β
−) = 1.

If (15) holds, denote the unique solution of
∣∣∣∣∣∣∣∣

r∑
i=1

θi(β)(λi/νi)
t = 1

r∑
i=1

log(λi/νi)θi(β)(λi/νi)
t = 0

∣∣∣∣∣∣∣∣

by (t0, β0). Otherwise setβ0 = 0. Finally let

B+ :=





β+ if
r∑

i=1
log(λi/νi)θi(β

+) ≥ 0

β0 otherwise
B− :=





β− if
r∑

i=1
log(νi/λi)ϕi(β

−) ≥ 0

β0 otherwise

Proposition 6 For diagonal affine contractions,d−(w1, . . . , wr) = B := max (B+, B−).

Proof Taking care to the special valuesβ = d′ andβ = d′′, whereϕ resp.θ are not differentiable
in general, the proof of theorem 4 carries over posing no essential problems. ♦
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A comparison ofB andΓ is easy. Sinced− may not only involve the smaller of the two singular
values ofwi but also the larger ones, one hasτn(γ) ≥ σ(γ, In) by (11) and (19), and henceB ≥ Γ.
On the other hand, ifd′′ ≤ d′,

∑
λd′′

i ≤ 1 and
∑

νd′′
i ≤ 1 as in Ex. 2, one hasB = Γ ≤ d′′ due to

τn(γ) = σ(γ, In) (γ ≤ d′′). Moreover,β0 = γ0 holds always, allowing further situations withB = Γ
(see Ex. 3). ThoughΓ can never exceedB, it is useful, since it applies also to connected sets.

Falconer also provided an ‘almost sure’ valuedF of dHD(K) of self-affine sets [3]. Using similar
methods as in section 3, [9] was able to give an explicit formula fordF . This reads as:

Let K be the compact set invariant under some family of diagonal affine contractionsw1, . . . , wr

of IRd. Providedλ < 1/3

dHD(K) = dbox(K) = dF := max(β−, β+)

for almost every choice of(u1, v1, . . . , ur, vr) with respect to Lebesgue measure inIRdr.
Note, that the OSC is not required. Moreover,dbox(K) ≤ dF for all (u1, v1, . . . , ur, vr). For the

actual value ofdbox(K), which is well known to be an upper bound ofdHD(K), we refer again to
[9], where the generalized dimensionsDq and the multifractal spectrum of self-affine measures (µ =∑

pi ·µ(w−1
i (·))) are calculated. It is worth noting, that the spectrum of these measures show features,

which can not be observed in the self-similar case: the functionq 7→ Dq may be not differentiable or
once but not twice differentiable. However, of interest here is the special valueD0 which equals the
box dimension of the supportK of µ.

LetK be a diagonal self-affine set. Assume thatD(k) = dbox(K
(k)) exist fork = 1, 2, whereK(1)

andK(2) are the projections ofK onto the invariant subspacesIRd′ andIRd′′ respectively. Then

dbox(K) = max(d+, d−), (20)

whered+ andd− are defined through

r∑

i=1

λi
D(1)

νi
(d+−D(1)) = 1 resp.

r∑

i=1

νi
D(2)

λi
(d−−D(2)) = 1.

Remark Providedλi ≥ νi (i = 1, . . . , r), one hasΓ = γ+, B = β+, dF = β− anddbox(K) = d+.
In the case of self-similar sets (λi = νi, i = 1, . . . , r), all values coincide.

Example 1 (Gatzouras, Lalley) In [6] certain special cases of diagonal self-affine setsK with
λi ≤ νi, called ‘carpets’ [8], have been investigated. In particular, the Hausdorff dimension of carpets
is shown to satisfy a variational principle which involves the invariant measures supported onK (see
[10]). Moreover,dHD(K) = dbox(K) = δ iff 0 < mδ(K) < ∞. Both results are of great interest.
However, explicit calculation ofdHD(K) seems hopeless in general and bounds such asΓ = γ− and
B = β− may be useful. ©

Example 2 Consider the mapswi(x, y) = (x/4, y/8) + (ui, vi) (i = 0, . . . , 3) with the round set
]0, 1[2. Sinceλi ≥ νi for all i, one findsΓ = B = γ+ = 2/3, dF = β− = 1. Hence,dHD(K) =
dbox(K) = 1 for almost all(ui, vi) with respect to Lebesgue measure in theIR8, 2/3 ≤ dHD(K)
for all (ui, vi) which imply the round OSC anddbox(K) ≤ 1 for all choices of(ui, vi). Finally,
dbox(K) = d+, which depends analytically onD(1).
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For ui = 0 andvi = i/4, K is a self-similar set lying on they-axis withdHD(K) = dbox(K) =
log 4/ log 8 = 2/3 = Γ. For a0 = a2 = 0, a1 = a3 = 3/4, b0 = b1 = 0 andb2 = b3 = 7/8, one
obtains the product of two self-similar sets withdHD(K) = dbox(K) = 1/2 + 1/3 = 5/6 ([11], [8] or
[6]). Finally, for ui = i/4 andvi = 0 one findsdHD(K) = dbox(K) = 1. ©
Example 3 (Rosette) Consider the maps

w1(x, y) = (x/2− 1/2, y/4) w2(x, y) = (x/2, y/2− 1/2)
w3(x, y) = (x/2 + 1/2, y/4) w4(x, y) = (x/2, y/2 + 1/2)

with the round open setO = {(x, y) : |x|+ |y| < 1} (Fig. 2). Here,D(1) = D(2) = 1, and

Γ = γ0 = 4/3 ≤ dHD(K) ≤ dbox(K) = 3− log(
√

17− 1)

log 2
' 1.357,

a satisfying bound. Alsod−(w1, . . . , wr) = β0 = 4/3, but the setswi(K) are not disjoint. ©
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Figure 2: The construction of the rosette (see Ex. 3).

5 CONCLUSIONS

We presented a class of self-affine sets and measures which is wide enough to cover important ap-
plications such as fractal interpolation surfaces and mountain surfaces. On the other hand, the affine
transformations used are simple enough to allow the explicit calculation of various fractal characteris-
tics such as bounds for the Hausdorff dimension, the box dimension and the multifractal spectrum. As
we stressed, with self-affine sets and measures one may not always get the intuitive answer: The spec-
trum does not have to be smooth. Furthermore, although the dimension of self-affine sets is ‘almost
surely’ known, exceptions do occur. Our explicit bounds give an idea, to what extent the effective
value may differ from the expected one.
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