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Abstract

A lower bound of the Hausdorff dimension of certain self-affine sets is given. Moreover, this
and other known bounds such as the box dimension are expressed in terms of solutions of simple
equations involving the singular values of the affinities.
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1 INTRODUCTION

A compact set in Euclidean spac&‘ such as the middle third Cantor set may carry a rich
geometrical structure. In order to measure the complexity of its geometry, the box dimension and the
Hausdorff dimension have been introduced [4]:

logNg(K)

dpox (K) := lim ————~,
box (K) 310 —logd

whereN;(K) is the minimal number of balls of radidsneeded to covek’, and
dup(K) :=inf{aa >0 : m*(K) =0} =sup{a >0 : m*(K) = oo},

wherem® denotes thex-dimensional Hausdorff measure

m®(E) := sup inf{i (diam(S)))* : E C D Sy, diam(S;) < 6 VI € IN}.

6>0 =1 =1
After it was discovered that Hausdorff and box dimension of self-similar sets coincide [7], great
effort has been made to calculate the dimensions of self-affine sets [8, 6, 12, 1, 3, 5, 9]. Though in
this case the two dimensions coincide at least ‘almost surely’ [3], the explicitly solvable cases mostly
turn out to be exceptional, yielding values which differ from the expected answer [8, 6]. So, looking

for ‘sure’ results, one is often forced to content oneself with bounds, as in [5], and as shall be done
here.



We will consider self-affine set&” which arise from an iterated function system in the following
way. Assume that the Euclidean space is split into two fixed orthogonal subspates: R* ¢
R?". (For a fractal surface tak& = 2 andd” = 1.) Fix a natural number and consider affine
transformationsu; of IRY which reduce to similarities in the subspad®@$ andIR?", i.e.

w: RY=RY@R" - R (2,9) — (\iOiz, iSy) + (us, v;) (1)

where®; and=; are orthogonal transformations; andv; are fromR? and R*" respectively, and
where the ratios; andy; of the similarities satisfy

O<v:i=min{\,..., A\ vy, .., < Ai=max{\,..., A\, vq, ..., 01 < 1.

We will call wy, ..., w, afamily ofdiagonal affine contractions
It is well known [7] that there exists a uniqgue nhonempty compact set satisfying

It is the aim of this paper to provide a lower bounaf the Hausdorff dimension ak’, which holds
under a certain open set condition. This condition as well as some geometrical lemmas are given
section 2. The bound is elaborated in section 3 using limit theorems from probability theory. See
theorem 4. In section 4, this bound is compared with the lower bdurgiven in [5], with the ‘almost
sure’ value ofdyp (K) [3] and with the actual box dimension &f, for which explicit formulas are
provided.

2 GEOMETRICAL RESULTS

First, the geometrical situation we will deal with will be made precise and the formalism of sym-
bolic dynamics is introduced. Then, two geometrical lemmas are given, which provide lower bound:
of dHD(K)

First, assume the existence of a nonempty, bounded, connected, opesasistying the so-called
open set condition (OSC) [7]

w;(0)CcO (i=1,...,7) and  w;(0)Nw;(0)=0 (i+# 7). (3)

Let

‘/;111 = 6 and ‘/; = wi(O) = U)il O0...0 wln(é)
Thereby we introduced the empty watd and the words of lengtfi| := n, (n € IN),
ii=dy...0, €L, :={1,...,r}"

Moreover, we sef := UIl,, i x k := iy...i,k andilm := iy...0, for m < |i|. SinceV,, =

Wik (0) = wi(Vy) C w;(O) =V, the sequencé,

K,:=|J V. decreasesto K = (| K,. 4)

i€ln nelN
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While in the case of similarities the OSC is enough to calculgig(K) anddup(K) [7], one
more regularity condition is needed here: Denotefbthe smallest closed rectangle containiig
and with sides parallel to the axes. For the sake of simplicity asstim€0, 1]2, which is not really
a restriction as far as dimensions are concerned. The additional hypothésis:onhere is & > 0,
iandj with 1 <i < d < j < dand¢, z, ¢, z from IR¢, such that the points

(gla'"7£i*17t7£’£+17'-'7£d) ) (xlr'-axiflvl_t7xi+17-"7'rd>7 (5)
(Clv"‘7Cj—17tﬂgj+17"‘acd) ) (217"'7zj—171_t7zj+17"'7zd>

belong toO for all ¢ €]0, o[. Loosely speaking, it is possible to croBscorresponding to the two
invariant subspaces on two piecewise linear paths which are parallel to the axes and which do not
leaveO. Any setO with the above properties is calleaund open set

Definition 1 We will say thatK is diagonal self-affineff it is the nonempty, compact and invariant
(2) set of a familywy, ..., w,) of diagonal affine contractions with a round open set. (The singular
values ofw; will be denoted by, andv;).

In order to estimate the Hausdorff measureigfa certain collection of set3;),c s, with ‘width’
approximately equal té is useful. For any finite word= i, . . .7, let

V=V ...V, (6)

n

and
k(2) == min(A;, 1) > K(iy .. dpo1) - K(n) > K1) - .. - K(in)-

Sincex is only sub-multiplicative we prefer the slightly different notation and won'’t wxiteTrivially
k(i) < A" — 0 (n — oo). Foranys €]0, v| set

Jy={i=i1...in€ : k(i) <3 <r(ir.. in1)} (7)

The length of any word of; amounts at most,; := [log d/log A\]. On the other hand, for aryfrom
I, there is a uniquex such thatj; ... j, € Js, sincex(j) < 6 andx(ji ... Jm) < A&(J1 .. .}m_l).
Consequently/; is securg7], i.e. -
Kc |V, (8)
i€Js
andtight [7], i.e. for any different wordg # j from J; there isk < min(|é|, |j]) with i, # ji, hence,
with (3), - -
wi(0)NV; =10 ©)

Finally,
vd < k(i) <9 forallie Js. (20)

Next, a lemma is required, saying that a set of sienot intersected by too many séfswith i € J;.
It is only here, where the ‘roundness’ Ofis actually needed.

Lemma 2 Given diagonal affinitiesvs, . .., w, and a round open s&b, there is a numbeb such,
that#{i e Js : V,NW #£ 0} <bforall § > 0and for all balls¥ of radius?.
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Proof For simplicity we give the proof for the cagé= d” = 1. The general case can be treated
with the same argumentation.
Leto > 0 and letiV be a ball of radiug with centre(x, y). SetW’ := [z —26, x + 26y — 20, y +24].
We will only be concerned with wordss.t. \; > v;, leading to a bound*. By symmetry, a bound
b~ will be obtained for the words with; < v;, andb = b* + b~ will be enough.
SinceO is connected and bounded, there is a pathithin O joining Qo := (0, ;) with Qy =
(1,y2), and which consists of finite many straight line segments, each one parallel to one of the axe:
Of course it is possible to choogé > 2. Enumerate the vertices ofby @, (I = 0,...,N), and
choosey’ > 0 such that the ball& (¢, Q);) are contained iW forl = 1, ..., N —1. Consequently, the
setw;(O) contains the ellipses;(U(¢’, Q;)) and hence the balls;, := U(¢'vé, w;(Q;)) due to (10).
Takei # j from J;. By (9), the ballsU;; must be disjoint withJ; ,,, wheneverl < [,m < N — 1.
This is one main point of the proof. -
Now consider the wordsfrom Js, for which V; meetsiV. Two types will be distinguished. Words
of the first type have a large part of a b&ll; (1 <1 < N — 1) lying in W’. SinceU,, andV’ are of
nearly equal size, there can't be too many words of this type. Wootithe second type have dll
(1 <1< N —1)outsidelV’. SinceV; meetsiV, the pathsu;(y) must intersect the boundary @f’.
Since they are ‘parallel’ they cannot come too close due to the disjointijallsind their number is
bounded too.
Type 1): There isl # 0, N such thatw;(Q;) lies inW’. ThenWW’ contains at least one quarter of the
ball U;,. Using disjointness and comparing volumes, the number of words of type 1) is seen to be
bounded by

— 64

VT oa(ew)?
Type 2): R; is a rectangle which meet$” and with sides\; andy;. Sincer; = x(i) < § and since
is not of type 1), the pathy,(v) joining ‘left’ and ‘right’ end of R; must contain a point of the form
S; = (z £ 26, y;). Denote byh; the horizontal part ofv;(y), which containsS;. Sincei is not of type
1) and sinceV > 2, there isl # 0, N such thatw;(@);) is an end point of;. This point lies outside
W' but in the interior ofl;. Take a word; of type 2) different fromi. Since the ballU;; is disjoint
with V; by (9), it cannot intersedat;. Vice versalJ; ,, cannot meek,. Consequentlys; andS; are at
least at distancedo’ of each other. Comparing the length@f/’ with these distances shows, that at

the most
4
bQ = 2 (/ + 1)
o'V

words of type 2) are possible. Thus := b, + b, is enough. o
Since any sev; contains a ball of radiusonst - x(2), it is natural to estimate:”(X) from below
by certainy_ x(z)”. For any set of wordd let

0(77 J) = ZK(@)’Y = Z yiﬂ/ + Z )‘177 (11)
i€J icJt i€~
where
Jr={ieJ N>y} Jo={ieJ N\ <yl (12)

Lemma 3 Let K be a diagonal self-affine set. Assume thaand~ are such thatr (v, In) > 1.
ThendHD(K) > .
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Figure 1: The number of rectanglés with \; > v; ~ § meeting a ballV’ of radiusé (or a box of
size¢ for that matter) is bounded due to the disjoint bal]s and the horizontal parts;.

Proof i) Note thatk is also invariant under the set of affinities;);;—n. Thus, performing a
natural change in the encoding &f, i.e. Iy = {1,...,7'} =: I} with ' = r", we may assume
without loss of generality thaV = 1. Furthermore we may assume that 0.

i) Take an arbitrary covefS;),cw of K. ForS; # () let W, be an open ball of radiug :=
2-diam(.S;) centred in a point of;. By compactnesdy is covered by a finite subcollection of the so
definediW;, sayWi, ..., W,. Moreover, sincé/ := W; U...U W, is open, a compactness argument
gives an integeg such that/ even coverdy,, (4) for alln > q.

i) Now considerH, := {i € J;, : V;NW, # (}. By lemma 2 there is a numbérdepending
neither on/ nor on the covek; with #H; < b. Consequently, with (10),

Zdlam () >2" 72(5ﬂ>2 VZ > k( (270) - o(v, H),

= ZEH[

where H denotes the union of th&,;. The final two steps of the proof show thitis secure and that
o(~, L) > 1 for any finite, secure sdt. Consequentlyn?(K) > 1/(27b) > 0 anddup(K) > 7.

iv) By makingq larger if necessary we may assume that every worH o at most of lengtly
(since#H < bp) and that\? < §, for[ = 1,...,p. To prove thatH is secure it is enough to show:
for anyj € I, exists an integen with j|n € H. Takej from I,. SinceU coversk,, there isl with
V; N W, # 0. Sincex(j) < A < §; thereis by (7) a numbet such thati := j|n € Js. Finally,
V D V;implies: € H; C H and the claim follows.

v) Let L be any finite, secure set. We show thét, L) > 1. First, letL, := {i € L : ilm ¢
L ¥m < |i|}. By definition, L, is tight. Since only extensions of other words contained inave
been thrown away,, is secure. Obviously; (v, L) > o(~, L;). Now, to prove the claim consider the
following inductive process which generates a ‘shrinking’ sequence of tight and secufg,sdtske
awordi = i, ...14, € L,, with maximal length. Assume that> 2. SinceL,, is tight and secure, it
must contain all the words . . .7,k (k = 1,...,r). Replacing thesewords by their ‘predecessor’
i1...1,_1 Yields a new sel.,, . ; which is still secure and tight. If,, = I, then setl,,,;; = L,,.
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This defines the process. Consider the sequénceOne hasr (v, L,,) > o(v, L,+1) Since

r

> k(jxk) > i k(j) k(k) = k(3)o(y, 1) > K(j)". (13)

k=1

By inductiono(~, L) > o(v, L,,). Moreover, the number of words ih,, decreases strictly im
unlessL,, = I;. Sincel, is finite, this impliesL,, = I; for m large enough. By assumption
o(v, 1) > 1 which completes the proof. For further use, note that, ;) > 1 sincel, is secure and
finite. &

Remark The argumentation above is of purely geometrical kind. In fact, it provides an alternative
proof of Moran’s theorem [7].

3 THE MAIN RESULT

Now, the lower bound oflyp(K) given by lemma 3 shall be optimized. We denote~hythe
unique (positive) numbers satisfyid-~,, [,,) = 1. With (13) it is easy to see that(v,, Ix,) > 1.
Sinceo (v, I,,) is strictly decreasing ify one findsy,, < i, and thussup(~,) = limsup ,. On the
other handlim~, = I" as will be shown below. Hencé, is the optimal lower bound ofyp(K)
which can be extracted from lemma 3. Ex. 2 shows that there may be no better bodpg(éh)
unless it involves the translatioqs;, v;).

In order to give the value df, lety* resp.y~ be the unique numbers satisfying

> v =1 resp. YN =1 (14)
=1 =1
Provided there are# j with
i < v and )‘j > Vj, (15)

denote by(ty, 7o) the unique solution of

M=

2 v (Nifwi)’ = 1 (a)
> log(Ai/w)vi (/) = 0 (0)

(16)

)

(The existence ofty, vy) will be shown below.) Otherwise, i.e. if (15) does not hold, get= 0.
Finally, let

o+ ~Tif ZT: log()\,-/z/i)z/ﬂ+ >0, - v if Xr: log(v;/Ai) Y >0,
= i=1 = i=1
v otherwise, v otherwise.

Theorem 4 Let K be a diagonal self-affine set. Then

dgp(K) > T :=max (I'", 7).
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The first steps of the proof explain the definitionlo&dnd provide some notation.
Proof Remind thatlyp(K) > sup v, by lemma 3, where (v, 1,) = 1.
0) Assume firstthad; > v; (i = 1,...,r). Then one finds

r

o(y, L) = (3 k(i))".
=1
Thus, allv, then coincide withy*, and hence witi" by direct verification. The assertion follows
immediately, and a similar argument holds for the case \; (i = 1,...,r). Thus assume (15) for
the remainder.
i) Consider the probability spad¢é.., B, P) wherel,, := {i = 1,...,r}™ is endowed with the
product topology, wherg is thec-algebra of its Borel sets and whefas the product measure @

induced by the measures
I/ify

{i} = =
> v
=1
on the factor{1,...,r} of I.. Note thatP depends ory. The random variables
Xn I = R (iy,09,...) — log(\;, /vi,)

are independent and identically distributed due to the property of the product measurge, Set
X1+ ...+ X,. Then, for any fixedy,

T

of(y) =Y 1 = (ZV?)R-P[Z,I>0]. 17)
Ze]ﬁ i=1
Provided the expectatiofi[X,,] is nonnegative, the Law of Large Numbers implies tiasstill rules

the asymptotical behaviour ef” in a way made precise in step iv). Otherwise, the moment generating
function

M) = Bl = (X 0) " S /m)'w
i=1 i=1
is involved: ProvidedP[X,, > 0] > 0 andE[X,,] < 0, one has
1
lim —log P[Z, > 0] = log inf M(t) (18)

n—oo n,

by Chernoff’'s theorem [2, p 147]. As will be showty, minimizes M (t) by (16 b), while (16 a)
combines (17) and (18). Thus, the asymptotical behaviour'os then ruled byy,. This explains
the definition ofl".

i) Next, the solvability of (16) has to be established. For convenience

X(v,t) =Y vl (N/v)"

For fixed~, (16 b) has a unique solutiafy = ¢y(v) due to (15). ObviouslyM’(t,) = 0 andt,
minimizesM . Moreover.t, depends continuously differentiable ersincey ;; > 0. The function of
interest for (17) is

h(7) = Z v - M(to(7)) = x(to(7),7),

=1
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which is strictly decreasing by the following argumext;(to, v) vanishes by definition of, and thus

h'(v) = x4+ %to + Xy = Zlog vi - vi"(Ni/vy) <log X - h(v) < 0.
=1

The mean value theorem implié$y) — oo (y — —o0). On the other hand}/(t,) < M(0) = 1
for all 4. As a first consequencé(y) < > v/ — 0 (y — oo). This establishes the existence
and the uniqueness of, with h(y,) = 1, which is (16 a). As a second consequence, it implies
h(7") < x(0,77) = 1 = h(y0) and hencey, < .

iil) The asymptotical behaviour of' is best described in the notation of ii). Fix If E[X,] =
x+(0,7)/x(0,7) > 0,i.e.x+0,v) > 0, thenP[Z, > 0] > P[(Z, — nE)/(ny/var) > 0] — 1/2 . If
E[X,] < 0, then Chernoff’s theorem (18) can be applied due to (15). This leads with (17) to

1
[*(v) ;= lim —logo

n—oo n,

gy = [ 1orx(0,9) 1 Slog(h/mn 2 0
a = i=1
log h(7) otherwise.

iv) Finally, we show how* rules the asymptotics of:
() >0 if y<I* and [T(y) <0 if v>TT.

FromM (0) = 1 follows x(0,~) > h(y) thusi™ () > 0 forall v < ~,, respi*(y) < Oforally >~ .
It remains to considey € [yo,7"]. Assumey .(0,~) = 0. Thenty(vy) = 0 andh(y) = x(0,). But
sinceh and x(0, -) are both strictly monotonous decreasing, and siileg) = 1 = x(0,7%), this
impliesy™ = v, = ~. In this case there is nothing more to show. On the other hangl <if y* there
are only two possibilities:
1) x..(0,7") > 0, hencel't = ~4*. Then for ally € [yy,7"[ one hasy.(0,v) > 0 andi*(y) =
log x(0,7) > 0.
2) x+(0,7%) < 0, hencel'" = ~,. Then for ally €]y,7"] one hasy(0,v) < 0 andi*(y) =
log h(y) < 0.

v) In order to deal with the second tem] of o (v, I,,) just interchange\; andv;. Then,y" is
replaced byy~ and the only thing to do is to recognize, that the sapis obtained. For this just note
that interchanging; andv; and replacing by v — ¢t keeps the equations of (16) invariant. Thus

1
lim —logao, ()

n—oo n,

>0 ify<I'™,
<0 ify>T".
vi) Finally, takey < T'. Sinceo(v,1,) = o + o, with both terms positive, iv) and v) give

o(v,I,) > 1 and hencey < ~, for sufficiently largen. For~ > T, iv) and v) giveo(v,1,) <
1/2 +1/2 and~y > ~, for n large enough. Consequentln ,, = I and the theorem follows. <

4 APPLICATIONS

In this section theorem 4 is compared with results from [5], [3], [9] and [6].
Falconer [5] gave a lower bound for the Hausdorff dimension of self-affine sets, which does not
require a particular form of the ‘open set’ as in (5), but which does not apply to connected invariant
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sets. In our context, his result reads as follows: Given a linear transformaboriR* with singular
valuesa; > an > ... > «, the singular value function® is for positives defined by

O e
gy [ @l <
¢ (5) { (ar ... ay) otherwise

wherem = [3]. For a familyw;(z,vy) = S;(z,y) + (u;,v;) (i = 1,...,r) of affine transformations
with the OSC (3) in the plane denote By(w;, ..., w,) the uniques satisfying

1/n o

lim (> (@°(Si7) ) =1

n—oo \ A
i€ly

Theorem 5 (Falconer) Let K be the invariant set ofv,,...,w, as above. If the sets;(K) are
mutually disjoint, therlyp (K) > d_(wy, ..., w,).

In the case of diagonal affinities (1), the bouhdwy, . .., w,) can be calculated using similar meth-
ods as in the previous section. Let

)\6 f d’ 5 f d//
A= S sy 90 = 0
Then By
w(B) =3 ((57)) = L aB) + X wil0), (19)
et iert il

and, following the lines of section 3lgt" and3~ denote the unique numbers satisfying
jzleiw*) —1 resp. é%(ﬁ) 1.
If (15) holds, denote the unique solution of
;::1 0:;(B)(Ni/vi)t = 1
éIOg(Ai/Vi)Qi(ﬁ)()\i/Vi)t = 0
by (to, 5o). Otherwise sefi, = 0. Finally let

B { B X log(N /)08 20 o { B it X log(/A)pi(87) 2 0
Gy otherwise By otherwise

Proposition 6 For diagonal affine contractiong]_(ws, ..., w,) = B := max (B*, B™).

Proof Taking care to the special valugs= d’ andg = d”, wherey resp.f are not differentiable
in general, the proof of theorem 4 carries over posing no essential problems. o
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A comparison ofB andI is easy. Sincéd_ may not only involve the smaller of the two singular
values ofw; but also the larger ones, one ha$y) > o(v, I,,) by (11) and (19), and hende > T..
On the other hand, i#” < d’, > A" < 1andY v < 1asinEx. 2, one ha8 = I' < d" due to
.(7) = o(~, I,,) (v < d"). Moreover,3, = v, holds always, allowing further situations with =T
(see Ex. 3). Though can never exceef, it is useful, since it applies also to connected sets.

Falconer also provided an ‘almost sure’ vatijeof dyp (K) of self-affine sets [3]. Using similar
methods as in section 3, [9] was able to give an explicit formulaforThis reads as:

Let K be the compact set invariant under some family of diagonal affine contraatigns. , w,
of R?. Provided\ < 1/3

dHD<K) = dbox<K) = dF = max(ﬁ*,ﬁJr)

for almost every choice dfuy, vy, . . ., u,, v,) with respect to Lebesgue measurdifi .

Note, that the OSC is not required. Moreowéy,(K) < dp for all (u, vy, ..., u,,v,). For the
actual value ofdy,.(K'), which is well known to be an upper bound &fn(K), we refer again to
[9], where the generalized dimensiobg and the multifractal spectrum of self-affine measuyes-(
> pi-p(w; ' (+))) are calculated. Itis worth noting, that the spectrum of these measures show features
which can not be observed in the self-similar case: the fungtien D, may be not differentiable or
once but not twice differentiable. However, of interest here is the special ¥&lwehich equals the
box dimension of the suppoft of ..

Let K be a diagonal self-affine set. Assume that) = d,., (K *) exist fork = 1, 2, whereK ")
and K@ are the projections ofs” onto the invariant subspac@? andIR?' respectively. Then

dpox(K) = max(d*,d"), (20)

whered™ andd~ are defined through

T I8

W (g+_pa 2\ (d-—D@
S Ay DY) — 1 resp. ) PP\, D) —
i=1 =1

Remark Provided\; > v; (i =1,...,r),onehas =~+*, B = g%,dr = = andd,o(K) = d".
In the case of self-similar sets,(= v;,7 = 1, ...,r), all values coincide.

Example 1 (Gatzouras, Lalley) In [6] certain special cases of diagonal self-affine g&tsvith

A < y;, called ‘carpets’ [8], have been investigated. In particular, the Hausdorff dimension of carpets
is shown to satisfy a variational principle which involves the invariant measures supporfédsae

[10]). Moreover,dup(K) = dpox(K) = §iff 0 < m°(K) < oo. Both results are of great interest.
However, explicit calculation ofyp (/) seems hopeless in general and bounds suéh-asy~ and

B = 3~ may be useful. O

Example 2 Consider the maps);(z,y) = (z/4,y/8) + (u;,v;) (i = 0,...,3) with the round set
10,1[%. Since); > v; for all 4, one findslI' = B = 4+ = 2/3,dr = - = 1. Hencedup(K) =
dpox(K) = 1 for almost all (u;, v;) with respect to Lebesgue measure in 1R&, 2/3 < dyp(K)
for all (u;,v;) which imply the round OSC and,..(K) < 1 for all choices of(u;,v;). Finally,
dpox(K) = d*, which depends analytically o™,
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Foru; = 0 andv; = i/4, K is a self-similar set lying on thg-axis with dyp(K) = dpox(K) =
10g4/10g8 = 2/3 =1TI. Foray =a, =0,a1 = a3 = 3/4, b =b1 =0 andb, = by = 7/8, one
obtains the product of two self-similar sets withp (K) = dpox(K) = 1/2+1/3 = 5/6 ([11], [8] or
[6]). Finally, for u; = i/4 andv; = 0 one findsdyp (K) = dpex(K) = 1. O

Example 3 (Rosette) Consider the maps

wl(‘ray) = (317/2—1/2,y/4) UJQ({L‘,y) = ({L’/27y/2—1/2)
(z,y) = (¢/2+1/2,y/4)  walz,y) = (2/2,y/2+1/2)

with the round open s&? = {(z,y) : |z| + |y| < 1} (Fig. 2). Here,D®Y) = D® =1, and

['=7 =4/3 <dup(K) < dpox(K) =3 — log(\lﬁfgz—l) ~ 1.357,
a satisfying bound. Alsd_(wy, ..., w,) = B, = 4/3, but the setsv;(K') are not disjoint. O
T
Low
\\\\\\\\ LT
LYoy
“‘%*“”*éf*"
i

Figure 2: The construction of the rosette (see Ex. 3).

5 CONCLUSIONS

We presented a class of self-affine sets and measures which is wide enough to cover important ap-
plications such as fractal interpolation surfaces and mountain surfaces. On the other hand, the affine
transformations used are simple enough to allow the explicit calculation of various fractal characteris-
tics such as bounds for the Hausdorff dimension, the box dimension and the multifractal spectrum. As
we stressed, with self-affine sets and measures one may not always get the intuitive answer: The spec-
trum does not have to be smooth. Furthermore, although the dimension of self-affine sets is ‘almost
surely’ known, exceptions do occur. Our explicit bounds give an idea, to what extent the effective
value may differ from the expected one.
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