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Abstract

The present paper is part I of a series of three closely related papers in which the
inverse measure p*(dt) of a given measure p(dt) on [0, 1] is introduced. In the first
case discussed in detail, g and p* are multifractal in the usual sense, that is, both
are linearly self-similar and continuous but not differentiable and both are non—zero
for every interval of [0, 1]. Under these assumptions the Holder spectra of pu(dt) and
p*(dt) are shown to be linked by the ‘inversion formula’ f*(a) = af(1/a).

The inversion formula is then subjected to several diverse variations, which reveal
telling details of interest to the full understanding of multifractals. The inverse
of the uniform measure on a Cantor dust leads us to argue that this inversion
formula applies to the Hélder spectra fip even if the measures p and p* are not
continuous while it may fail for the spectrum fi, obtained by the Legendre path.
This phenomenon goes along with a loss of concavity in the spectrum fy;. Moreover,
with the examples discussed it becomes natural to include the degenerate Hélder
exponents 0 and oo in the Hélder spectra.

This present paper is the first of three closely related papers on inverse measures,
introducing the new notion in a language adopted for the physicist. Parts II and 111
[RM2, RM3] make rigorous what is argued with intuitive arguments here. Part II
extends the common scope of the notion of self-similar measures. With this broader
class of invariant measures part 11l shows that the multifractal formalism may fail.
(Facsimile for personal use.) ©1997 Academic Press

1 Heuristic proof of the inversion formula

To begin, let us state once again that a multifractal is not a set but a measure. Many
multifractals of interest in physics are supported by fractal sets. However, to gain a
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full intuitive understanding of the notion of multifractal, unencumbered by extraneous
complication relative to its support, is best achieved in terms of a measure supported by
the interval [0, 1].

One begins by defining the measure p(dt) for the closed intervals of the form [0, ¢], in other
words, by giving a positive non decreasing function x([0,¢]) = M(t). For other intervals,
o is defined via u(]s, t]) = M(t) — M(s), p([s,t]) = M(t) — M(s—), etc. When M(t) has
a derivative M'(t), the measure of an infinitesimal interval p(]¢,? + dt]) is the ordinary
differential dM(t) = M'(t)dt and p has the density M'(t). When M(t) is discontinuous
at t, dM(t) is the value of that discontinuity M(¢) — M(t—). In addition, M is right-
continuous. Conversely, any right-continuous, non—decreasing function M with M (0) = 0,
M(1) =1 defines a measure p as above.

Definition of the inverse of a ‘basic’ multifractal. The usual multifractals are measures
that are continuous but not differentiable. In a first stage we require in addition that
M{(t) is strictly increasing so that every interval of ¢’s, however small, has a non—vanishing
measure. This is equivalent to saying that the measure is supported on the whole interval
[0,1]. In a widely used notation, it means that Dy = 1. In this case, the function M (t)
has a well defined inverse function M*(#) that is right-continuous and non—decreasing,
hence, defines a second measure p*(df). More precisely, denoting the length of an interval
I =]s,t] by |I| =t — s we have

u(l) = M()-M(s) = |M(I)]
WMD) = t—s = ]I

Picking a point ¢ at random on [0, 1] with respect to the measure g amounts to taking
6 at random on [0, 1] with uniform probability, and then taking for ¢ the value M*(0).
Picking a point # at random on [0, 1] with the measure p* amounts to taking ¢ at random
on [0, 1] with uniform probability, and then taking for 6 the value M ().

Heuristic arqgument for the inversion formula. Given a multifractal g described by f(«)
let us show that the function f*(«) of the measure p* is given by the inversion formula

[H(a) = af(l/a). (1)

First, note that a point ¢ of p-Holder exponent o corresponds to a point § = M(t) of
p*-Holder exponent o* = 1/
log pu(dt) : log | M (dt)| 1
a= lm ———F = 11m _— = —
dt—{t} log|dt|  M(t)—{6} log u*(M(dt)) o~
where the limit is taken over all intervals dt shrinking down to {¢}. Now, divide the
interval |0, 1] on the t-axis into small ‘c-intervals’ of length ¢. By the definition of f(«),
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the set K, of u-Hélder exponent a can be covered by N(e,a) ~ ¢=/(®) cintervals. The
i measure of each of these e-intervals is approximately ¢®. In other words, the function
M(t) maps these e-intervals to N(e, ) intervals, each of length €%, covering the set K.
of points 6 with p*-Holder exponent o* = 1/a. The dimension of this set is, therefore,

f(a*) = dim(K.) = — 08 N(&a) _ J(e)

log e o
It follows that f*(a*) = o™ f(1/a*), as asserted.
2 Examples and Comments
It is crucial to distinguish between the multifractal spectrum fy = dim(K,) and the

coarse grained spectrum fg: the former is the Hausdorff dimension of the ‘set of Holder
exponent «, while §=/6(®) is roughly equal to the number of cubes C' from a §-grid with
log ;1(C')/log é ~ . These terms are introduced in more detail in part II and 111 [RM2,
RM3]. There, it is shown that the argument in section 1 holds indeed for both types of
spectra provided the measure p is continuous.

The inversion formula preserves straight lines, therefore exchanges the universal linear
bounds of f. Under the transformation y(a) — y*(o) = ay(l/«a), the straight line
y = Aa+ B becomes the straight line y* = A+ Ba. Therefore, the well-known inequality
fla) < 1 implies f* < a. The well-known inequality f(a) < o implies f(1/a) < 1/a
and f* < 1. That is, the two lines that provide upper bounds to all f are exchanged
in the operation f — f*. In particular, due to our assumption that Dy = 1, ap and oy
are the values where f and f* reach these universal upper bounds. Therefore, af = 1/a4
and o = 1/ag. The important quantity oy characterizes the measure-theoretical support
of p(dt) and is the the p-Holder exponent of almost every point ¢ picked randomly with
distribution M. It transforms into of, which is of far lesser importance but which is the
w*-Holder exponent of almost every 6 picked randomly with uniform distribution. Finally,
Omin and oy are also interchanged, meaning that o i = 1/amayx and o pax = 1/amin.

Left-sided multifractals (see Mandelbrot [M90]) In a first sub-case ag = oo; if so, f*(0) = 0,
and f*(o*) is tangent to f* = o* at a®p = 0. In a second sub-case oy < oo and
fla) = flag) for a > ag; if so, f*(a*) = a* for o < a*y, and f*(a*) is tangent to
f* = a* at ;. These facts are discussed in Mandelbrot [M90, Section 7] as well as in

[RM1].

The degenerate case when M(t), hence M*(0), is continuous and differentiable. In mul-
tifractal terms, a = limge_, ) log dM/log dt = 1 for all ¢, hence f(a) is defined only for
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a = 1, where f(1) = 1. The same is true of f*(«). That is, these functions satisfy the
inversion formula, trivially.

The “inverse binomial” measure. The binomial is the simplest multiplicative measure. It
divides [0, 1] into two parts of equal lengths and assigns them masses mg and m;. The
usual brute force approach sets up the generating function

7(q) = —logy (moe? 4 my?)

and obtains f via Legendre transform. An other way is to calculate f in explicit form by
solving a 2 X 2 equation system for o and f [R1].

The next simplest multiplicative measure is the inverse binomial. This measure divides
[0, 1] into two parts of lengths mg and m; and assigns them equal masses. The inversion
formula yields f*(«) explicitly, starting with the binomial measure g. This function f*(«)
yields 7%(¢), but only in implicit form, and 7(¢) yields f(«).

The inverse of a random multifractal This is not the place to describe in full the general
theory of random multifractals presented by Mandelbrot [M89, M90, M95]. This theory
introduces functions f = fg which may have negative values. While the positive f(«)
are still Hausdorff Besicovitch dimensions this is not true for the negative ones: Their
importance lies in their discribing the fluctuations between coarse grained samples of those
multifractals. (More precisely, §'=/¢(*) is roughly equal to the probability of finding a cube
C from a d-grid with log ;1(C')/log 6 ~ «.) In particular, fo # fu here. Nevertheless, even
when f < 0, the inversion formula holds for conservative self-similar random multifractals
with Dy = 1. This is an immediate consequence of fg being the Legendre transform
of the function 7(¢) and of the relation 7* = —¢q, ¢* = —7, which is derived from the
conservation of mass (3. p; = 1 almost surely) [R2].

As an example, it is instructing to invert a measure introduces by Mandelbrot [M89,
section 3.3.], for which f(«) is defined for all & > 0 and equals

fla) = c+logy, o — «, with ¢ =1 — log,(log, 2) 4+ 1/ log, 2.

For this measure, ¢ = f'(«) ranges from an upper bound ¢, = 00 down to a lower bound
Gbottom = —1. Now we see that

o) = ac— alogy o — 1.

First consider the unbounded right tail of f(«), where f'(a) >~ —1, so that gpottom = —1.
The operation f — f* replaces this right tail of f by a bounded left tail of f* satisfying
f*(0) = —1 and also f*'(0) = oo, so that ¢*,,, = oo, and f*'(0) = —oo. Next consider the
unbounded left tail of f(a), where Gtop = 00. The operation f — f* replaces it by a very
steep, unbounded right tail of f* where f*(a*) = —oco (a* — o), so that gpottom = — 0.
In other words, p* is less “anomalous’ than the original p.
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3 Discontinuous multifractal measures and an ambi-
guity in the definition of f(«)

Our next topic concerns what happens, not only to the inversion formula, but also to
the definition of multifractality, when some intervals of ¢, called gaps, have zero measure.
Self-similarity then requires the measure i to concentrate on a fractal dust of measure 0
and dimension Dy < 1. We begin by a very special case.

The devil staircase. The inverse of the uniform Cantor measure pc(dt) is a purely discon-
tinuous measure. It is well-known that for the uniform measure on the Cantor dust, the
graph of the function M(t) is the Cantor devil staircase. The devil function is constant
over every gap of the Cantor dust or of u(dt). Each dyadic value § of M(t) corresponds
to a step of the staircase. The mirror image of the graph of M(¢) with respect to the
diagonal is the graph of a function that is many valued for each of the dyadic 6. In other
words, being a many-to-one function, M(¢) does not have a proper unique inverse function

M(0).

It is natural, however, to generalize the notion of inversion to wider classes of multifractals,
hoping it will preserve the validity of the inversion formula. To achieve this goal, it suffices
to define the measure p*(df) as equal to the sum of the lengths of the all gaps of u(dt)
such that § < M(t) < 8+ df. This defines the inverse function M*(8) as being continuous
to the right, and constructed as follows: Take the mirror image of the graph of M (t) with
respect to the diagonal, and when 6 is dyadic so that M*(§) was ambiguous, take the
highest value in the ‘interval” suggested by the mirror image graph.

For the uniform Cantor measure uc(dt), the function f(«) is not as simple as it seems.
The conventional wisdom is that this measure is characterized by f(D) = D and f(a) =0
for a # D. This explains why the homogeneous measure is called unifractal. While this
conventional wisdom is usually harmless, it is unjustified, and in the present context it
would be very misleading. Indeed, the above assertion only takes into account the points
in the Cantor set. But we must be more careful and also take into account the points ¢
that lie in the gaps of the Cantor set. For those points
log 0

T S g lat] T

Since gaps are of positive (Lebesgue) measure, f(oco) = 1. Thus, we conclude that f(«)
includes not one but two points.

Formal application of the inversion formula to the uniform Cantor measure pc(dt). If we
start with the usual f(«) limited to one point with f(D) = D, a formal application of the
inversion formula yields f*(1/D) = 1 and f*(«) = 0 for o # 1/D. Clearly, this result is
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completely inadequate. A more careful analysis must add the point of coordinates o* = 0
and f* = 0. This second point on the spectrum expresses that, when p* is discontinuous,
each discontinuity corresponds to

I constant
= 1m — =
d9-{0}y log |df| ’

*
o

and discontinuities are denumerable and hence form a set of dimension 0. Since the
measure * reduces to its discontinuities, one should pay foremost attention to the point
of f*(a*) which accounts for them, namely o* = 0, f* = 0. In other words, we have
o = 0. Recall that the graph of the f(a) of a ‘normal’ multifractal is tangent to the
bisector defined by f(a) = «, and that the point of tangency describes the measure—
theoretical support of the measure. For pc(dt), this role is played by the point f(D) = D
lying on the bisector. Now we see that the same is true of pul(dt).

This being granted, the fact that f*(1/D) = 1 seems highly ‘anomalous’. But it is easy
to explain. It expresses an almost sure property, namely a property of all the non-dyadic
points #. Such a point is defined as the limit of a sequence of dyadic intervals in which
the k' interval is of length 27%. The argument is simplest when these intervals contain
the mass 37%, hence

e g dos(Mwt) o log3 1

Qg

= a0y log(1/[d0])  asmi6y log2 D

Two facts are worth noting : First, non—dyadic points belong to the closure of the set
where p* is concentrated, and hence to the measure theoretical support of p*. Second,
since p is continuous, picking # randomly with uniform probability amounts to choosing
t randomly with respect to p and letting § = M(¢). This explains why it is not only
natural but even necessary to consider non-dyadic points 6.

These considerations bring us back to the relation
ag=1/a5g=1D ap = 1/a] = .

In other words, the p-almost sure Holder exponent o4 corresponds to the uniformly almost
sure p*-Holder exponent af and vice versa. Obviously, this must have implications to
‘realworld’ applications and the issue arises how a numerical analysis reflects this drastical
change of ‘how to choose random points’. The uniform Cantor measure is, however, not
suitable for this investigation and the issue becomes more clear at the end of this section.

Multifractal measures supported by the Cantor dust. The conventional wisdom is that
such a measure is represented by a function f(«) whose graph is shaped like the symbol
N (perhaps a bit skewed). The maximum of f(«) is D, and the graph of f(«) has a point
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of contact with the bisector f = «a. To be complete, however, it is necessary to add to the
graph the point o = oo, f = 1. The resulting shape may seem odd, because it negates
the notion that the graph of f(«) is cap convex. Thus, depending on one’s purpose, f(«)
may take either its conventional form N, or the form of the left side of its N combined
with the point a = oo, f = 1.

Inverse of multifractal measures supported by the Cantor dust. Now to f*(a*). The graph
obtained by applying the inversion formula separately to the two parts of f(«a) is made
of the origin and of a curve that is again shaped like N. The N-curve does have a point
of contact with f* = 1, but it fails to contact with f* = o* since the horizontal tangent
to f, namely the line f = Dy = D, is transformed into the line f* = Da*. The contact
with f* = o* takes place at o* = 0.

This shape is the correct form of the Hausdorfl spectrum fjj of p*. As for the coarse
grained spectrum f¢, negative ¢’s no longer raise any problem. But positive ¢’s do pose
a serious difficulty when ¢ > ¢op = D. The reason is that f&(a) can be evaluated from
7*(q) since p* is self-similar, even though not in the strict sense since some of the ratios
vanish (see [RM3]). The partition function 7%(¢) is evaluated as

1
(g) = lim % X(¢:¢)
e—0 logg

with x(g,e) =Y (1)

Here, the sum runs over all e-intervals from a grid. Since the gaps of the Cantor dust
have total length 1 the corresponding atoms of p* have total mass 1 and, thus, determine
w* completely. Let us consider the simple case when p is constructed by assigning mass
1/2 both to [0,7¢] and [r1, 1], leaving the middle interval of length ry :=1 —1rg—r; >0
without mass. In this gap, M(¢) = 1/2. In the next step, additional gaps of lengths rqrs
and riry are created where M takes the values 1/4 and 3/4, respecively. In a further step,
gaps of length rororsy, ..., rirqry are added, the value of M going in steps of 1/8 on the
whole family of gaps. Thus, the partition function x(g, ) of u* at stage n is

@2 =Y X () =t (L (o)) (L= e = )

k=0 1 ...Eke{o,l}k

From this,
_ q q <
~(g) = { log, (ro? + 7)) for ¢ < D

0 otherwise,

Conclusions on the multifractal formalism The first half of the so-called multifractal for-
malism states that fg is the Legendre transform of 7(¢). While this is not true for a
general measure it can be shown to hold for self-similar measures [AP, O, R1], even dis-
continuous ones [RM3]. We conclude that our f5 is concave. However, it can no longer
take the conventional form N. It must take the form of the top and right portions of its
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N down to o*; = 1/ag, combined with a straight line to the point o = 0, f* = 0. This is
a consequence of the presence of a whole hierarchy of atoms which produces a non-trivial
range of ‘frequently occuring’ coarse Holder exponents.

The more important second half of the multifractal formalism states that fy = fg. Note,
that the full multifractal formalism has been shown to hold for quite general constructions
of random self-similar measures (see [AP, O, L] and also [KP, CM, F]) as well as in the
context of dynamical systems (see [R, PW] and also [BMP, CLP]).

In the presence of gaps, as we have seen, f}j is not concave. Consequently, fi; # f&,
moreover, f& is the concave hull of f{;. Thus, the multifractal formalism does not hold
for p*. The difference between Holder spectra and coarse grained spectrum expresses,
therefore, the strong dependence of the convergence rate of log u*(I)/log|I| — «(t) on
t. In addition, this fact confirms our point of view which is to include all points of [0, 1]
in the Holder spectra. Otherwise, a convincing connection between f& and f}; would not
exist.

In summary, the inversion formula holds for the Holder spectra fi; in general and for the
coarse grained spectrum fg only for continuous measures.
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