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Abstract

In an earlier paper [MR] the authors introduced the inverse measure u'(dt)
of a given measure u(dt) on [0,1] and presented the ‘inversion formula’ fT(a) =
af(1/a) which was argued to link the respective multifractal spectra of p and uf.
A second paper [RM2] established the formula under the assumption that g and uf
are continuous measures.

Here, we investigate the general case which reveals telling details of interest to the
full understanding of multifractals. Subjecting self-similar measures to the operation
1 — pl creates a new class of discontinuous multifractals. Calculating explicitly we
find that the inversion formula holds only for the ‘fine multifractal spectra’ and not
for the ‘coarse’ ones. As a consequence, the multifractal formalism fails for this class
of measures. A natural explanation is found when drawing parallels to equilibrium
measures. In the context of our work it becomes natural to consider the degenerate
Holder exponents 0 and oco. (fac simile for personal use (©Cambridge Philosophical
Society)

1 Introduction

Let p be a probability measure on [0, 1]. Its distribution function M(x) = u([0,x]) is an
increasing and right-continuous map of [0, 1] to itself. There is a natural way of defining
an ‘inverse function” MT of M. Its differential is a probability measure ' which we call
the inverse measure of p:

(0. 6]) = MY(0) ::{ ilnf{t C M(t) > 0} ig i 1 (1)

As will be shown u' is indeed a measure, and /,LTJr = U.
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Our interest lies in a possible relation between the multifractal spectra f and fT of p
and ! and the implications of such a connection. (For definitions see Section 2). In part
[ [MR] it was argued that the so-called inversion formula should hold:

fi(a) = af(1/a). (2)

Part IT [RM2] established the formula under the assumption that p and u' are continuous.

The practical use of such a formula is most evident when dealing with left-sided spec-
tra [M90, MEH, RM1] since it allows to transform the infinite range [@min, 0] of Holder
exponents of a left-sided spectrum into the finite range [0, 1/amin] of a right-sided spec-
trum.

A further application of the inversion formula is to self-similar measures which reveals
telling details on the multifractal formalism. Recall that a compactly supported measure
w is traditionally called self-similar iff

= Epmw;l(-)), (3)

where twy, ..., w,_; are similarity maps of IR* with contraction ratios r; € (0,1), and
where the probabilities p; > 0 satisfy po + ...+ p,—1 = 1. As Hutchinson [H] showed,
such measures exist and are unique even under the weaker condition that the w,; are
contractions.

Computation of the multifractal spectrum requires knowledge on the amount of pos-
sible overlap in (3). The widely used open set condition OSC of Hutchinson [H] is said
to hold if there is a bounded, open set O such that w;(O) are mutually disjoint subsets
of O. For the ease of dealing with inverse measures of self-similar measures, we will as-
sume that the OSC holds with O = (0,1). Then, it is well-known (see [AP, R1] and also
[CM, F2, O]) that all reasonable definitions of the multifractal spectrum of x coincide. In
particular, all spectra equal the Legendre transform *(«) := inf,(go — 8(q)) where

u—1
Zpiqn_ﬁ(q) - 1. (4)
1=0

It is easy enough to verify the inversion formula (2) for self-similar measures with full

support [0,1]: In this case we have g + ...+ r,_; = 1, and a moments thought shows

that the inverse measure puf is self-similar with ratios ri = p;, and probabilities p;r =7

Thus, ¢ = —51(q"), ¢' = —3(q), and (2) follows easily from f = 3*.
If 41 is supported on a Cantor set K C [0, 1] then ro+...4+ 7,1 < 1 by the OSC (note

that dim(K) = —3(0) < 1). In order to obtain an invariance for u' it is useful to add

similarities w; (j = u,...v — 1) to the family w, ..., w,—; such that (0, 1) is still an open
set and such that ro +...4 r,—; = 1. Assigning the probabilities p; =0 (j = u,...v — 1)
to these maps leaves p unchanged and finds uf invariant under (wg, e ,wl_l).

This observation leads naturally to extending the notion of self-similar measures by
allowing ratios r; = 0 and probabilities p; = 0. A first possible extension of the inversion
formula for non-continuous measures is, thus, to verify whether (4) (the sum taken only
over all i with r] # 0, i.e. p; # 0) continues to rule the spectra of this broader class
of self-similar measures. As we will show, this is indeed true for the two Holder spectra
fu(e) and fp(a) which are defined as the Hausdorff and the packing dimension of the set
K, of singularity exponents «, respectively (see Section 2). The ‘coarse’ Holder spectra
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fa(a) and fi(«), however, which are obtained through partitioning of [0, 1], contain less
information on the singularities than fi1, and the inversion formula fails here. This is due
to the presence of atoms. They shadow the finer details of the dense parts of the measure
to an analysis from the ‘global’ point of view of fg, which manifests itself in a linear part
in the graph of fg.

As a consequence, the multifractal formalism which states fg = fp = fo = fi, fails
for this class of multiplicative measures. Moreover, the inversion formula (2) does not
hold for fg and fi, in general. In more positive words, information hidden in a linear part
of fg may be recovered by analyzing its inverse measure. It is worthwhile to note that
such a procedure is not equivalent to the ‘fixed mass algorithm’, unless p is continuous
and non-vanishing.

Section 2 provides definitions and the proof of (2) in the continuous case. In Section 3
the discontinuous self-similar measures are introduced and their full multifractal analysis
is provided. Section 4 contains the proof of (2) for fy and fp for general probability
measures on [0, 1]..

2 Preliminaries

We start this section by establishing some claims made in the introduction. Then, we
introduce the various multifractal spectra and relate them to each other. Finally, we prove
the inversion formula (2) in the continuous case.

Lemma 1 MT as defined in (1) is monotonous and right-continuous. Hence, ul is a
measure.

Proof

Monotony of MT is immediate. Consider a sequence 0, \, 0. By definition of MT(0), we
can choose {t,}, such that M(¢,) > 0 and t,, < MT(0)+1/n. For every n we find k, with
M(t,) > 0y, , hence, t,, > MT(0;,) > M1(0) and M1 is right-continuous. &

Lemma 2 We have /,LTJr = . In other words, Mt =M.

Proof

Take ¢t < 1 and let 6 := M(¢). Recall that MTT(t) =inf {0' : MT(0") > ¢}.

Assume first that MTT(t) < 0. Then, we find 0/ < 0 with MT(0") > t. Take ¢’ > t with
MT(0") > #'. The definition of M implies M(¥') < 0 < 0 = M(t), a contradiction to
monotony.

Assume now that MTT(t) > 0. Then, we find 0 > 0 with MT(0") < t. Take ¢ > t. The
definition of MT implies M (') > 0'. Letting ¢’ \ ¢ yields M (¢+) > 0’ > 0, a contradiction
to right-continuity. &

2.1 The multifractal formalism

Recall the definition of y-dimensional Hausdorff measure in IR?

W(B)=suwpnl(E),  5{(E)=uf {3 |L]": B C Ul and |I] < 6}
k

§—0
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where |I| stands for the diameter of I and where the sets [}, are arbitrary. The Hausdorff
dimension is then defined as

dim(E) =inf{y >0 : n"(F) =0} =sup{y >0 : n"(F) = oo}.
Following Tricot [Tr], we define the vy-dimensional packing pre-measure

7(F) = inf 71§ (E), 7 (E) = sup { ST+ {Ii}k is a &-packing of E}
k

§—0

A é-packing {I;}; of E is a collection of mutually disjoint, open balls, each of length at
most ¢ and each intersecting K. The y-dimensional packing measure is given by

T(E) = inf{z T(E,)  ECU, En}
(the sets E, are arbitrary) and the packing dimension by

Dim(FE)=inf{y >0 : 7"(F) =0} =sup{y >0 : 7n7(F) = co}.

For convenience, we set dim({)) = Dim({)) = —co. Let u be a measure on [0, 1]¢. Given a
number o, 0 < a < oo, called ‘Holder exponent’, set
1 !
F, = {t € [0,1]% : limsup og 1(1) < a}
1=ty log |1
1 !
Goo= e timnrioet S
I—+{t} log|I|
with the convention log0 = —oo. Here, I — {z} means that [ is a cube containing «,

and that the length of I tends to zero. Finally, set

[Xraa/ = GaﬂFa/

K, = K,,.

K, is sometimes called the ‘set of Holder exponent a’. Denote the corresponding sets of
ul by 1 ete.

Definition 3 The two fine multifractal spectra are the Hausdorfl spectrum and the pack-
ing spectrum, respectively, which are defined as

fula) = dim(K,) and fe(a) = Dim(K,),
respectively. We also introduce their continuous versions:
fucla) = 11_1;% dim(Ko—cate) and frela) = 11_1;% Dim(Kq—cote)-

The continuous versions are, by definition, more regular than the usual ones. fy. has
been studied by Lau & Ngai [LN] in the context of infinite Bernoulli convolutions and
a closely related notion has appeared earlier in a work by Brown, Michon and Peyriere
[BMP, Thm. 2].

Of practical interest is yet another approach to multifractal analysis. Based on a
partition of IR?, we will define two coarse multifractal spectra f and fi,. For simplicity
we stick to the case d = 1; the general case is obvious.
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Definition 4 Let Hs be the set of all intervals B = [16, (I 4+ 1)§) with integer | and with
w(B) #0. Let By :=[(I —1)4,(l +2)d). The grid spectrum is defined as

o log Ns(a, ¢)
foler = I o

where

Ns(o,e) =#{B € Hs : [Bi[*™* < p(B1) < |Bi[*~7}.

Here, N5 denotes the number of ‘intervals from a grid of size § with coarse Holder
exponent a(B) = log u(B)/log | B| roughly equal to o’. As was described earlier in [R1],
the straightforward or naive way of counting intervals gives poor results in theory as
well as in numerical application. Among the various possible improvements suggested
by Strichartz, Olsen, Lau & Ngai, Arbeiter & Patzschke, and one of the present authers
[S, LN, O, AP], we favor the given one for its simplicity and accuracy [R1, PR].

Though tempting it is wrong to interpret fg as the box dimension of K, (Ex. 1). The
truth is that K, has the same box dimension as its topological closure which is, in the
case of self-similar measures, equal to the whole support of the measure. In fact, recalling
K, =G, N F, and setting

Ay =t €[0,1] : [P <pu(l) < |[I|*"*ift el and |[I| <1/m} (5)
yields
Ng(Oz,QeS) > #{B cHs : BNA, 75 @}, (6)
provided 3§ < 1/m. Denoting the box dimension of a bounded set A by A(A) we have
log #{B € H; : BN A, _ log Ns(ar,2
A(A,,) := limsup og #{B € s l 70} < lim supM
50 log 1/5 50 log 1/5

It is well known that Dim(:) < A(-) (see Tricot or Falconer [Tr, F]). Together with
UnAm D Ko—cate and Dim(U,, A,,,) = sup,, Dim(A,,), one concludes fg(a) > fpo(a). In
combination with dim(-) < Dim(-) [F, Tr], we obtain the following relation between the
various spectra:

Lemma 5 fc(a) > feela) > fr(a) > fula) and fa(a) > feela) > fucla) > fu(a).

If the box dimension was o-stable like Hausdorff and packing dimension, one could
argue fa(a) > sup,, A(Ay) = A(UnAy) = A(supp(p)) which is obviously not true. The
spectrum fgq is related to the partition function 7(q)

| B¢
7(q) := liminf 08 > pen, H(B1)
§—0 10g5

through the Legendre transform [R1]
7(q) = inf (ga — fa(a)). (7)

a€lR

This relation holds also in the much more general context of Choquet capacities (see
Levy-Vehel and Vojak [LV, Thm 3]). The tentative inversion formula (2) translates to:

¢'=—r = —q. (8)
Most evidently it holds for self-similar measures (compare (4)). In general, however,
(8) will fail as is the case with discontinuous self-similar measures. It may also fail for
continuous measures, e.g. if their spectrum fg is not strictly concave.
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Definition 6 [t is natural to introduce the Legendre transform of 7(q) as a multifractal
spectrum:

fule) = inf (g0 = 7(9)).
An equivalent form of (7) is to say that fi, is the concave hull of fg. Consequently:
Lemma 7 fg(a) < fi(a).

For typical values of «, we have equality. In fact [R2]:

fala™) = qaT —7(q) (¢>0) (9)
Jala™) = qa” —7(q) (¢ <0)
where at := 7/(¢g+) and a™ := 7/(¢—) denote the one-sided derivatives of 7(q).

The multifractal formalism is closely related to the thermodynamical formalism and
means that equality holds in Lemma 5. To establish it under various assumptions has
been a point of major interest in multifractal analysis (see Kahane & Peyrire, Collet et al,
Rand, Pesin & Weiss and aforementioned authors [KP, CLP, Ra, LN, AP, O, R1, PW]).
In general, however, the estimate (6) can clearly be sharp, meaning that an interval B can
show a coarse Holder exponent o B) = « although it contains no point ¢ with a(t) = «a.
The most simple example is the absolutely continuous measure p with density ¢(¢) = ¢
on [0,1], i.e. M(¢) = t*/2. Here, a(t) = 1 for 0 < t < 1 and «(0) = 2, hence fu(1) = 1,
fu(2) = 0 and K, is empty otherwise. A direct calculation shows, on the other hand, that
fala) =2 —a for 1 < o < 2. What seems to be a paradox is readily explained: while
log 11(1)/log |I] tends to 1 for all ¢ > 0, a coarse graining on any ‘pre-asymptotic’ level
0 > 0 will show a non—trivial distribution of Holder exponents. The inequality fq > fg is
a direct consequence of the highly non-uniform convergence of the Holder exponents a(t).

Further examples of a similar kind are present with the inverse measures of self-similar
measures. Before introducing them in Section 3, we provide some intuition on inverse
measures by giving the proof of the inversion formula (2) in the continuous case.

2.2 The continuous case

By saying loosely that we are in the ‘continuous case’ we mean that
M(t) = u([0,t]) is continuous and strictly increasing. (10)

Equivalently, we could require that one of the following conditions are satisfied:
i) w and uf are both continuous.
ii) M :[0,1] = [0,1] is onto and one-to-one with inverse M.

Provided (10) holds and 0 < a < oo, we have

te K, s M) e K|, (11)
or, more generally,
M(Fa) = Gi/a M(Ga) = FlT/oz'

This is a simple consequence of |[M(I)| = p(I) and uf(M(I)) = |I| which holds for
arbitrary intervals I due to (10).
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Proposition 8 Let p be a probability measure on [0,1] and let A be a subset of G,
(0 < a < o0). Then,
dim(A) > a - dim(M(A)).
Proof
Fix o < a and let 4, = {:L' eA:pul)y<|I|*ifxeland |l < l/m} Obviously, A =
UleAm .
Let a denote the left boundary point of an interval I. Then, |M(1)| = p(I\{a}) < u(1)

since M is right continuous. Let {/;}; be a covering of A,, by intervals of length less than
I/n (n > m). For the [; which intersect A,,, we have

IM(L)] < u(l;) < |G| < (1/n)~.

Consequently, {M(1;) : I; N A,, # (0} forms a covering of M(A,,) by intervals of length
less than &, := (1/n)*" and we find

i (MA)) < Y M) < I
LNAm#D J

Taking the infimum over all coverings of A, we find
! (M(A40)) < gy (An) < 7(An) <7 (A),

thus, dim(M(A,,)) < dim(A)/o’. With the o-stability of Hausdorff dimension, i.e.
dim(M(A)) = sup,, dim(M(A,,)), the claim follows by letting o/ * a. O

Proposition 9 Assume that M is continuous and strictly increasing. Then
Dim(A) < a - Dim(M(A)

for any subset A of F,,, provided 0 < o < o0.

Proof

In its basic structure, this proof is very similar to the one of Proposition 8 above. Note
that a = 0 is allowed. Fix o/ > a and let

Ap={reA:p(l)>I|"ifzeland|I]<1/m}.

Consider a 1/n-packing {/;}; of A,, which is a collection of mutually disjoint, open inter-
vals, each of length less or equal 1/n and each intersecting A,,. Since M and MT = M1
are continuous, the collection of all M([;) provides a packing of M(A,,). The central
estimate is

\M(1;)| = pu(1;) > 1]

which holds due to (10). All that is needed to get the obvious argumentation started is
an upper estimate of the length of M(/;). Once more we use the continuity of M, more
precisely its uniform continuity. Choose 6 > 0. Then there is n such that [I| < 1/n
implies |[M(1)] < 4.

In summary, {M(I;)}; is a d-packing of M(A,,) provided n is sufficiently large. This
allows to estimate the y-dimensional packing premeasure 7:

3 (M(A)) > S > 1P

It is an easy task now to complete the proof in a similar way as above. &
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Corollary 10 (Inversion formula in the continuous case) Assume that M is onto
and one-to-one. Let 0 < a < oo, and let A be any subset of K. Then,

dim(A) = o - dim(M(A)), and Dim(A) = a - Dim(M(A)).
Finally, Ky is at the most of dimension 0 but might be empty:
dim(Ky) = Dim(Ky) <0.
Consequently,
fil@) = dim(K!) = dim(M(Ky/.)) = adim(Ky/,) = affi(1/a)
and similar for fp.

Remark 11 In the continuous case, fg is properly linked with the spectrum fr obtained
by the so-called ‘fixed mass algorithm’, provided 7(¢) is a strictly concave diffeomorphism
[R2]. As its name suggests, fp is obtained through a partition of [0, 1] into intervals of
equal mass. This partition translates immediately into a usual grid on the f-axis. As a
consequence, the inversion formula holds in this case also for fg and fi,.

Proof
Note first that M(A) C K;r/a and that MT(M(A)) = A due to (11). Applying Proposi-

tion 8 once to u and A C K, C (,, and once to pu' and M(A) C K;r/a C Gi/a yields
dim(A) > adim(M(A)) > dim(MT(M(A))) = dim(A). The argument for Dim(+) is simi-

lar.

%

Remark 12 Proposition 8 could be used to establish the inversion formula in general if
it were not for a generalization of (11) which appears to be cumbersome. In the context
of Section 4, this generalization will come more natural.

Remark 13 In the definition of K, F,,..., all possible intervals are considered. In
certain situations, however, it is convenient to restrict the attention to a family J of
intervals. Then, if K, F, and (G, are defined using only elements of 7 , the sets KL,
FL, and GLT have to be defined using the family M(J) of intervals on the §-axis. The
definition of dimension has then to be modified accordingly on the ¢- and the -axes.

3 Discontinuous self-similar maesures

In this section, we provide the full multifractal analysis of a broader class of self-similar
measures, allowing also discontinuous ones. As a corollary, we obtain the inversion formula
(2) for fu and fp in this special case as well as a counter example showing that (2) may
fail for fq and fi,. Moreover, we obtain a weak form of the multifractal formalism for the
discontinuous self-similar measures, namely, that the ‘coarse’ spectrum fg is the concave
hull of the ‘fine’ spectrum fy.

What might look like a loss can be turned into a gain: Coarse multifractal analysis
of the inverse measure of a given measure may provide the information hidden in the
linear part of fg—as is the case with discontinuous self-similar measures. (Note that
this procedure is not equivalent to the fixed mass algorithm which is as sensitive to the
presence of atoms as fg [R2].)

We conclude the section by comparing discontinuous self-similar measures with equi-
librium measures of dynamical systems.
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3.1 Extended notion of self-similar measures

We start with two simple examples.

Example 1 [Failure of the Multifractal Formalism| Consider the self-similar mea-
sure pe invariant under the maps wo(?) = rot and wy(t) = (1 —rq1) + rit with ro + 7y < 1
and with probabilities po = p1 = 1/2 (see (3)). By definition, intervals of zero ¢ measure
correspond to atoms of the inverse measure puc'. Since their lengths add up to 1, uc'
must be purely atomic. A closer look reveals that pc' consists of a hierarchy of atoms
situated in the binary points 1/2, 1/4, 3/4, 1/8, etc. having masses ry := 1 —rg —ry, rors,
r1re, ToTole, Fol1Ta, T'1ror2, 17172, etc.

Introducing a third map wy(t) = ro + rot with probalility p, = 0 leaves pec unchanged.
The inverse measure ', on the other hand, is then invariant under wl(8) = 6/2, wi(0) =
po+p2-0=1/2and wI(@) =po+p2+pi-0=1/2+60/2 with probabilities rg, ro and r,
respectively.

Though purely atomic, pct possesses non-trivial spectra since its support is not count-
able. By Corollary 22, (8) and (4), the fine multifractal spectra f{& and fft of 1ot are com-
posed of the origin and a bell-shaped curve which is the graph of the Legendre transform
of

B1(s) = —log, (ro” + r1°).
This curve has maximal value 1 and touches the line of slope D through the origin, D

being the dimension of the support of si¢, i.e. the zero of 3.
The rough estimate

Z /,L(Bl)szrgsnz_: Z (re, = vvvvre,)’ =12

BeH, jon k=0 &;..5,€{0,1}F

A= (o +m%)"

1—7"05—7"15

Y

which is made precise in Proposition 18, implies

(s) = { BY(s) for s <D

0 otherwise.
Thus, the inversion formula (8) holds exactly for ¢ > 0, i.e. for 7 > —D. By Theorem 19

fov ety Dea for0<a < (BY)(D),
fela) = fule) = { fi(a) for o= (B1(s) and s < D.

Note that fé(()) = 0 by direct calculation. This is in stark contrast to the fact that the
set of atoms is dense, hence, of box dimension 1. O

Example 2 [Failure of inversion formula for the coarse graining approach] Take
po € (0,1) and let py = 1 — pg. Consider the multifractal measure g composed of Dirac
measures pg - p; in the points 1/2":

=" piph - Sany.

n=0

Note first that p is invariant under wo(t) = /2 and wy(t) = 1 (compare (3)). As
before, it is convenient to add a map we(t) = ¢/2 4+ 1/2 with probability p, = 0 to the
invariance family of p.
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For the fine multifractal spectra fi and fp, we find: f(0) =0, f(oo) =1 and f(ap) =0
for ag = —log pg/ log 2, which is the Holder exponent at ¢ = 0. For all other «, we have
K, =10.

Straightforward calculation yields 7(¢) = apq for ¢ < 0 and 7(¢) = 0 otherwise. Also
by explicit calculation or using Theorem 19, one finds fo(a) = 0 for 0 < o < ap and
fa(a) = —oo otherwise.

By drawing a graph of M, it is easy to see that u' is of the same form as ju:

ph=23227"
n=1

In conclusion, the inversion formula (2) can been verified for the fine multifractal spectra
fu and fp, but if fails for the coarse multifractal spectra fg and fi, in all points but
a = ag. For 7(q), the inversion formula (8) holds only at ¢ = 0.

O

Consider the following definition of a self-similar measure g on [0, 1] which is broader

than the usual one [H, CM, R1]:
Definition 14 A probability measure p on [0,1] is called self-similar iff

u(B) = 3 pun( (), (12)

where w; is a similarity map of [0,1] into itself with contraction ratios r;, and where we
require that ro+...4ry_1 =1, po+...+pu_1 =1, r; > 0 and p; > 0 for all 1. Furthermore,
we call p1 discontinuous self-similar iff r; = 0 # p; and r; # 0 # p; for some 1 and some j.

If p; = 0 for all ¢ with r;, = 0, then p is self-similar in the usual sense [H]. Allowing
p; = 0 means to include measures supported on a set of dimension strictly less than 1.
Allowing r; = 0 means to include the inverse of such self-similar measures. The condition
ri = 0 # p; implies that there are atoms while r; # 0 # p; avoids the triviality of
i reducing to a finite number of atoms. Discontinuous self-similar measures are purely
atomic: by n-fold application of (12) the mass not lying in an atom is smaller than
(2,20 pi)™ which tends to zero.

Here, we stretch the notion of self-similarity beyond its original meaning that ‘the
whole’ can be ‘regained’ by enlarging any little part of it. Still, these measures are
invariant, unique, and they can be obtained by ‘redistributing mass’ in intervals in a
self-similar way. In particular, the cylindrical sets V,p, = w,, ... w,,((0,1)) obtained by
iteratively applying the maps w; continue to be useful when approximating the measure
p: 1(Vopn) = &aboy - - - - Do, with ¢ <&, <1/c for some constant ¢ > 0.

It is not necessary to use maps to produce the sets V|, and one can think of a more
general construction of measures through a nested family of sets V;),,, sometimes called
Moran constructions. As is shown in [CM, R1, PW], the multifractal spectra do not
depend on the actual positioning of ‘daughter sets’ V41 within V|, as long as the
obvious separation condition is respected. Applying the inversion formula in its general
form (Theorem 21), we conclude that the actual masses of the atoms (p; > 0 = r;) of a
discontinuous measure are not essential but the ‘multiplicative process’ which rules the
length and mass of the intervals that seperate them. The spectra will, therefore, depend
only on the non-degenerate entries, i.e. the maps with r; # 0 # p;.

We need adopt the separation condition.
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Definition 15 Given a self-similar measure, the open set condition is said to hold with K
iff K is compact with nonempty interior O such that w;(O) are mutually disjoint subsets

of K.

For ordinary self-similar measures, this definition coincides with the usual one, e.g. with
the one used in [AP]. The fine multifractal spectra of a discontinuous self-similar measure
(12) can be computed in the straightforward generalization of (4):

Theorem 16 Let u be a self-similar measure and define the concave, differentiable func-

tion (3 through
Z pir, PO = 1. (13)
1 #0#£p;
Assume that the OSC is satisfied with K = [0,1]. Then,

fu(@) = fucla) = fela) = focla) = B*(a) = ¢'(q) — B(q)

at o = (3'(q) for ¢ € R as well as for g — +oo. For all other o € (0,00), we have K, = 0.
Ky is at most countable and it is non-empty iff there is 1 with r; = 0 # p;. K. contains
nonempty open intervals iff it is non-empty and iff there is j with p; =0 # r;.

Remark 17 The theorem holds also in the random case in the sense of [AP], given that
assumption 1.1 iii) of [AP] is replaced by: iii’) there is a number ryui, > 0 such that r; is
either 0 or larger than ry;, with probability 1 and similar for p;.

In our context, infinite Holder exponents occur only in gaps. We include them for
reasons of symmetry and completeness. In general, infinite Holder exponents may occur
also as non-trivial limits. As an example, we refer to the left sided multifractal presented
in [MEH, RM1]. Some of these infinite self-similar measures are continuous and non—
vanishing, and have Holder exponent oo (Lebesgue) almost everywhere [RM1, Ex. 1].
Proof
Using the inequalities between the various spectra as stated in Lemma 5, it is enough to
show that fp. < 8" and 6* < fp.

We think of the points ¢ € [0, 1] as being encoded by a sequence o = o103 ... in the
usual way, i.e. ¢ € ¥ :={0,...,u— 1}™ and the sequence w,,(0) := w,, o...0w,,(0)
converges to t. The coding is unique for all but countably many points ¢ (if r; = 1/10 for
all 7, then this is just the usual decimal representation). We denote by ¥ := {0 € ¥ :
o, # 0 # p,, }'N. All but a countable number of points ¢ on supp(u), e.g. the atoms of ,
are encoded with sequences of Y. Note, that sequences from " can also encode atoms.

Some notation is useful: ¥, :={0,...,u—1}", 3, :=, X,, and similarly ¥" and X.
Let o|n := oy ...0,. It will be clear from the context whether o|n is an arbitrary word of
length n or whether it is the beginning segment of length n of a given longer word. Let

Toln =Toy " Tops Poln = Poy * -+ * Poy, and
Js = {oln € X, : Toln < 6 < ooy and p,p, # 0} Ji = Js N XL (14)

These sets Js can be thought of as being constructed iteratively in the following way.
Arrange the set of non-vanishing r,|, in non-increasing order and let 4,, be the m-th
value in this ordering. For convenience, set g := 1 and rg := 1. Then, induction starts
with Js, =0, J5, = {0,...,u— 1}, and Js,, is obtained from Js, by replacing words o|n
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with 74, = d; by all extensions oy ...0,41 with p, . #0 (75, = 0 is allowed). Finally,
Js = Js, for m such that d,, < § < d,,_1.

Let V), = wo,((0,1)). By induction, it is easy to see [H, R1] that {V,, : o|n € Ji}
forms a cover of all points with address in " and that

> Palarap M =1 (15)

olneJy

for every Ji. Moreover, |V, .| = rs, and p(V51,)/p((0,1)) = pojn-

Now, it is easy to check that the claim is true for Holder exponents 0 and oco: First,
a(t) is bounded from above for all ¢ provided p; > 0 for all ¢. This follows easely by
considering the intervals I, defined to be the r" parallelbody of V;, for any sequence o
that encodes t, and by noting I 3 ¢, [I,| < 37", and u(l) > p((0,1)) - peje (here, r and 7
denote the smallest, nonvanishing and the largest r; respectively). Thus, if K, # () there
exists necessarily a j with p; = 0 # r;. But if so, the interior of K., is obviously not
empty.

For Holder exponent 0 note that a(t) is bounded from below by min;(log p;/log r;)
provided r; > 0 for all 7.

Assume for the remainder that 0 < a < co. Let ¢ > 0 such that @« —e > 0. The coding
sequence of a point of K,_. ,4. must belong to X" by definition. For this restricted set of
digits, the usual arguments apply as we are about to show.

For the upper bound one considers A,, as defined in (5). For m large enough and
§ < 1/m, a cover of A, is formed by {V;,, : oln € J§ and p,),,? > rg|n(qa+3|q5|)}. Then,

1> Z pg|nqrg|n—ﬁ(q)2 Z rg|nqa+3|q6|—ﬁ(q): Z (|‘/U|n|)qoz+3|qs|—ﬁ(q)‘

olneJy olneJy olneJy

implies Dim(A,,) < A(A,,) < ga + 3|ge| — 8(q). Taking the infimum over all ¢ we obtain
Dim(A,,) < max(G*(a + 3¢), 5*(a — 3¢)). With

Dim(Ky—cate) < Dim(U,, Ay) = sup Dim(A,,)

the upper bound fp . < " follows by letting ¢ — 0. The random case can be treated as
in [AP].

To obtain the lower bound, consider the invariant measure @, defined by (12) where
the p; have been replaced by 7, := p;%r; %9, Here, only letters from ¥} need to be
considered since 0 < o < oo. We would like to apply the results of [AP]. (The random
case reduces trivially to the determistic case when choosing Dirac distributions for the
random variables.) Since we don’t have 3=, o p; = 1, the various steps in [AP] need to be
verified. First, we do have ®,(0K) = 0 for all ¢ € IR. Next, the strong open set condition
holds for the family w; (¢ € ¥7) since it has been shown to be equivalent to the OSC
by Schief [Sch] and by Patzschke [Pa]. At this point, we may conclude already that @,
concentrates on the points ¢ with address o € ¥” such that

10g Poln / log ﬁcr|n
=2 — Jd ———
log 74y, g =F(q) an log 74y,

— qay — B(q) = ().

Now, we claim that «a(t) can be computed using V,|,, ®, a.s. Then, it follows that
K., itself has full ®, measure, thus, positive 3*(ay)-dimensional Hausdorff measure. We
proceed as in [AP, Lemma 3.8]. Some caution is needed, though, since mass may lie on
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the boundary points of K|, = w,,([0,1]). Rather than with K., we have to argue with
Vo = we)n((0,1)). Due to the OSC p(V;n) = pojn - 1((0,1)). Since V5, is the interior
of K,,, we may substitute the basic estimates B(h(c),r) D K, (s and B(h(c),r) C
Kok, (o) In [AP] by B(h(o),7) D Vijk, (o) and B(h(o),r/2) C Vok, (»)- This is obviously
sufficient for the estimation of Holder exponents. (Hereby, h(o) denotes the point ¢ with
address o). Together with |V,,| = r,|, the claim follows as in [AP]. It relies heavily on
the fact that the distance of a point to the boundary of K is log-integrable with respect
to ®,. In other words, points of K, do not come too often too close to the atoms of s.

%

In order to compute the coarse multifractal spectra, let us first investigate 7(q).

Proposition 18 Let o be a discontinuous self-similar measure. Define 3 as in (13) and
denote its zero by DT. Assume that the OSC is satisfied with K = [0,1]. Then, the
partition function 7(q) of p satisfies

T(q):{ Q(Q) q < Dt

0 otherwise.

Proof
To avoid trivialities, we discard with letters ¢ such that r; = p; = 0. We use the notation
of the proof of Theorem 16.

Due to its self-similarity, (12) p possesses atoms: denoting by «a; the fixed point of w;
we have p({a;}) > p; if r; = 0. By Definition 14, there is at least one atom, i.e. p; > 0.
As a matter of fact, u consists entirely of atoms. We won’t use this fact, though.

The exact values m; := u({a;}) > 0 (a; € Ag) are not important and depend on the fact
whether 0 and/or 1 are atoms. The OSC implies disjointness of the sets V|, := w,),,((0,1))
for o|ln € ¥7'. But overlap may occur for other on, i.e. for atoms: The OSC can not be
iterated for the sets V; which are contained in the boundary of K. The partition function
7(q), describing a scaling behavior, depends not on m;, but only on the way how the
further atoms are produced by the multiplicative process as one iterates (12) in order to
obtain more detailed information about p.

Assume first that p({0}) = p({1}) = 0. See Ex. 1. Consider the set J5 as defined in
(14) and recall its iterative construction. The following remarks are most easily established
by induction. First, the set

Ji=Js\Js ={olneJs : r,, =0}

n

encodes atoms. More precisely, the sets V;, with o|n € J§ are singletons and the tails
Ont1, Ont2, - - . are of no significance since r,, = 0. The set J, on the other hand, encodes
mutually disjoint open intervals V, of positive length 7., . Between any two atoms of
J§ lies an open interval V,, (o|n € J§). The sets V,, (o|n € Js) cover the support of u
up to finite many points of zero measure. We have

_f b ((O,1)) il €,
) = { e 1OD) o (16)

Finally, still by induction, the mass of an arbitrary atom ¢ = w,,(0) (o|n € J§) is
comparable to the mass of an entire neighborhood of a:

p({a}) = (Vo) < plla —rd,a+1d]) < cop({a}). (17)
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where r = min{r; : r; # 0} and ¢o = 1 +2u((0, 1))/ min;(m;)) are constants. To see this,
assume for a moment that Js had been constructed allowing also words with p,|, = 0.
Then, the sets Vi, (o'|m € Js5) cover all of [0,1] up to finite many points of zero
measure. By induction, @ is a boundary point to two open intervals V.., and V,u
(o'|m,o"|k € Jf) with m,k > n and o'[n — 1 = 0”|n — 1 = o|n — 1. This implies
(Vo) /1((0,1) = porjmn < Pojn—1 = p({a})/mo,. Since Vi, and Vo are of length at
least rd, the claim follows easily.

In the general case, that is if we allow atoms in 0 and/or 1, the list of atoms «; at
‘first stage’ (boundary points of the intervals V; (¢ € ¥) with positive mass) will contain
not only the fixpoints of maps w; with r; = 0 < p;. We may still have m; := p({a;}) = p;
(see Ex. 2) and the arguments above are valid. In general, however, overlap will occur on
the boundary of V; (i € ¥;) leading to m; > p; for some of the atoms «; at first stage.
If so, we have to adopt the definition of Js slightly: in the iterative construction of Js,
a ‘newly arriving’ atom V|, may coincide with an already existing one, say V,,,, which
must lie on the boundary of the parent V,|,_;. Consequently, o, must encode one of the
atoms in 0 and/or 1 and m < n, o/|m—1 = o|m —1. In this case we keep only the shorter
address ¢’|m and discard o|n (the additional mass supposed to arrive at V|, was already
accounted for by m, ).

It is important to note that we may assume without loss of generality that there are
atoms of the form a; = w;(a;) € (0,1) at “first stage’: if not, we use that y is also invariant
under the family w;;. The claim follows then from the very definition of discontinuous
self-similar measures (Definition 14) and by choosing an enumeration for 5. This said,
we hurry to add that (16) and (17) hold in general.

In order to compute 7(q), it is convenient to estimate Ss(q) := Y pep, p(51)? against
2.7, Doln? for some ¢’ which is a multiple of 4.

Consider an interval B € Hs. Choose §' = §. Since p(B) # 0 by definition, we find a
set Vi, (o|n € Js) intersecting B and conclude p(By) > p( V1) > ¢1pojy, where ¢ > 0 is
a constant. Thus, Ss(q) < e1? 3, poja? for ¢ < 0.

In addition, B; intersects at the most ¢; := 14 3/r sets V,), with ojn € Jj. Con-
sequently, B; contains at the most the same number of atoms V;),, with o|n € J§. Let
o|n(B) denote the word corresponding to the maximum of these masses, i.e. o|n(B) :=
argmax{u(Vy,) : oln € Js and By NV, # 0}. Then, u(B) < p(By1) < 2¢2psjn(B). Since
every wqn((0,1)) (o|n € Js) can intersect at the most 4 intervals B;, we conclude
Ss(q) < 4(2¢2)? 3, pojn? for ¢ > 0.

Now, consider o|n € Jsy. Assume first that o|n € J§ and choose § = §'r?/3. Since
Vi 1s a singleton formed by an atom, there is B € Hs which contains it. By (17)

1/03pcr|n S /u(‘/cr|n) S M(Bl) S CO/’L(‘/CT|TL) S C3Ps|n (18)

for some constant cs. If, on the other hand, o|n € Jj, pick an atom V41 in V.. A set
of this form exists since there is an atom a; = w;(a;) in (0,1). There is B € Hs which
contains Vj,41. By choice of §, By C V,y, and mq, . pojn < p(B1) < oMo, Pojn- Thus,
increasing cs if necessary the same estimate (18) holds.

The argument just given is, of course, closely related to the fact that g is an infinite
sum of atoms. In summary

T log ZJ(; pcr|nq
T(q) = hgr;lglf T.
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For the asymptotical behavior of this sum, note first that the words o|n € J§ are of
length n between log d/log r and log §/ log 7 with ¥ = max{r;}. For every word o|n € J§,
on the other hand, there is o'|/m € J{ with oln — 1 = ¢'|n — 1.

Assume first that ¢ > DT. Then, there is ¢ such that

pg < Zpﬂnq < Z Zpﬂnq = Z ( Z pzq)n < 00,
T n=0 %I n=0 i€x]

thus, 7(¢) = 0. For ¢ = D', in a similar way p! < 3_;. p,j.? < logd/logT and 7(D') = 0.
If ¢ < DT, then

5D o = 87D pon? = E(8) S popnrapn 7@ = £(3) (19)
Js Ji I§

where we used (15) and where £(§) is bounded between min{1,r*@} and max{r*® 1}
for all 6. Thus, 7(q) < B(q).

Finally, we estimate the sum over J§ from above in a very crude way. Including a
factor £ = > ; m!, we can discard with the last digits of such words o|n and replace them
with on — 1. Then, r,,_1 > ¢, and since 8(q) <0

logd/log7
5_5((1) Z pcr|nq < 5 Z pa|n—1qra|n—1_ﬁ(q)§§ Z Z pcr|nqrcr|n_ﬁ(q)

olneJdy olnedg n=0 o|neXy

< Elogé/logT.

Together with (15), we obtain 7(g)
5

B(q). This completes the proof. In fact it was
shown that 7(¢) assumes the limit 0

%

>
_>

Theorem 19 The grid spectrum fo of a self-similar measure (12) equals the Legendre
transform fr.(a) of T(q).

The formula for 7(¢) made already clear that the multifractal formalism must break
down for discontinuous self-similar measures in one or the other way: fi, contains a linear
part of slope Df. The graph of fy and fp, on the other hand, consists of the origin
and and a strictly concave curve which touches the line of slope D through the origin
(Theorem 16). Due to Theorem 19, the damage is even worse: also fg, which contains in
general more information than the partition function 7(¢) [R1], does not provide the full
singularity spectrum fy.

Corollary 20 The multifractal formalism does not apply to discontinuous self-similar

measures, i.c. fu = fp # fa = fr.. A weaker form holds, though: fu™ = fi..

This comes to its extreme with measures the fine multifractal spectra of which consist
of only two points: the grid spectrum is a line connecting these two points (see Ex. 2 and
a degenerate case of Ex. 1).

Proof

The ‘classical’ case is well known [R1] and we may assume that x is a discontinuous self-
similar measure. The upper bound fg < fi, holds in general. For o = 0, this implies
immediately fo(0) = 0 which can as well be obtained by direct computation. It remains
to provide a lower bound on fg(«) for o > 0. For notation, we refer to Proposition 18.
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Let h € (0,1) and set §' = 6" and §” = 6r?/3.

Consider a word o|n € Jj. For 6 > 0 small enough, r,,, > ré’ > ¢ and J§ contains
all oln 4+ 1 with r, ., = 0. For each such atom, there is B € Hs» with (18). For each
oln € Jj, select one such interval and denote it by B(c|n). Since B(o|n) C V., this is
unique within Jg,.

Assuming now r?ﬂf < Pojn < r?ﬁf we find p(By) < e36""7° < cq| By|Me=e) < | By|Me=29),
provided § < 1/r? - ¢,~'/?**_ Here we use that ¢, depends on «, h, and ¢ but not on §.
Similarly, u(By) > | By |"°*29), provided § is small enough.

Let Ji(a,e) := {o|ln € J} : r?ﬂf < Pojn < r?ljf}. As we will show in a moment, a
large deviation result allows to conclude that

= f"(a)

In fact, the proof is formally identical with the one given in [R1, Thm 7]. Since

log Ns(ha, 2he) < log #Ji (o) log #J5(a,€)
log1/6 = logl/s log 1/6

we conclude that fg(a) > h3*(a/h). This proves the theorem.

In order to apply a large deviation result of Ellis-Gértner [E], we recall the asymptotic
behavior of the partition function corresponding to J;. By (19): X Dol = £(6)6—r®
where £(0) is bounded.

Now, consider the probability spaces J§ with uniform distribution where 4, — 0 is
an arbitrary sequence. Denote the moment generating function of the random variables
X, = log po by ¢, (1) := IE[exp(tX,)] = ngn Pon' /#J5 . Let ay :=log é, = —oo. Then,

we have

Since ¢ is concave and differentiable, [E, theorem I1.2] applies: denote by P,(U) the
probability that (1/a,)X, lies in U for a randomly picked o|n. If U is open and U’ is
closed, then

log P, log P, (U’
I(U) <lim infL(U) lim sup L(U)

n—roo —day n—00 —dy

< I(U")

where [(U) :=sup{l(a) : o € U} and (o) = inf,(ta — ¢(t)) = 5*(a) + 5(0).
Choosing U = (a —¢/2,a 4+ ¢/2) and U’ = [a — 2¢,a + 2¢] we have P,(U) - #J; <

#Ji (a,e) < P, (U') - #J; for n large enough. o

3.2 Equilibrium measures

A natural generalization of the notion of self-similar measures are the equilibrium measures
which appear in the theory of dynamical systems. In a typical situation on the line, one
will consider a conformal mapping ¢ which maps some disjoint intervals I; C [0,1] onto
[0,1] such that —log|¢| is negative and Holder continuous. The invariant measure y
in question will then live on the repeller of g, more precisely it will be the equilibrium
measure of another Holder continuous function ¢. This scheme reduces to the self-similar
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case if g is such that the w; are its inverse branches and if ¢ takes the constant value log p;
on I;.

The multifractal formalism, which basically states that fu(a) = fL(«), has been es-
tablished for Cookie-cutters by Rand [Ra], and for equilibrium measures of certain Moran
constructions by Pesin and Weiss [PW]. Set ¢ = exp(¢ — P{¢}) with P denoting the
pressure function and let 3 be (uniquely) defined through P{qlog — 3(—log|g’|)} = 0.
Then, 7 equals , and the spectra of p collapse with the Legendre transform g*. Note,
that the definition of [ reduces to the usual one (13) in the self-similar case.

It is tempting to produce new measures analogously to self-similar measures, i.e. to
exchange the roles of ‘geometry’ —log |¢'| and ‘mass’ ¢, and to compare this procedure
with the inversion. Assume, therefore, that ¢ = —log|h’| for some function h with
properties analogous to g. Denote the h-invariant equilibrium measure corresponding to

¢ 1= —log |¢'| by 7.

The fine multifractal spectra of uf can be obtained through the inversion formula, i.e.
they equal the Legendre transform of the inverse 37!. In analogy with Proposition 18,
we conjecture that the partition function of u' is min{3~*,0}.

Being an equilibrium measure, 77 has its fine multifractal spectra equal to 3~ where,
as before, P{tlogy — B(—log|h|)) = 0 with 1> = exp(¢ — P{¢}). Though very closely
related, the spectra of u' and 77 are very well distinguished, i.e. 3 # 371, unless P{¢} and
P{¢} vanish. But this is the degenerate case when i and p are supported on all of [0, 1].

One particular difference between the spectra of u' and 7z is the slope of their tangent
through the origin, i.e. the zero of 3~ and (3, respectively. With the continuous 7, this
slope is 1 while it is strictly less than 1 for the discontinuous u'. This fact reflects the
fundamentally different way of dealing with the fact of ‘loosing mass’ when approximating
the measure iteratively by u(V,,). With puf, loss of mass in the generating process is
compensated by producing atoms. To the contrary with @ which is ‘renormalized’ in each
step by a factor e in order to prevent it from dying out or exploding (compare [Ra,
p 389]). (For the equilibrium measure 77, the sets V), are obtained iteratively as the
components of the sets A~ (V,,_1).) This re-normalization brings a shift in the Holder
exponents which causes the distinct yet closely related shape of the spectra of u' and 7.

It is this different way of compensating mass which causes the failure of the multifractal
formalism for the inverse measure pf.

4 The inversion formula in the general case

This section is devoted to the general proof of the inversion formula for f;; and fp. For
notation, we refer back to Section 2. Our main result is

Theorem 21 Let u be a probability measure on [0,1] and u' its inverse measure. Assume
0<a<d <. Then,

L/a-dim(K, o) > dim(K],,, ) > 1/’ - dim(K, )
and

1/a’ - Dim(Ky o) < Dim(K],

) <1/a-Dim(K, o).

Corollary 22 (Inversion formula) Let p be a probability measure on [0,1] and u' its
inverse measure. Assume that 0 < a < oco. Then,

fHle) = af(1/a)
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where [ may stand for fu, fp, fue, or fre.

Proof

o) The plan It is possible to apply the arguments given for f in the continuous case to
general measures (see Proposition 8). Difficulties arise, however, if some of the atoms of y
lie on the boundary of gaps, the main problems lying in a generalization of M (K, ) = K;r/a.
In addition, the argument for fp(«) cannot be generalized in this way because there is no
one-to-one correspondence between packings of A, and K;r/a in the presence of gaps. It
is worthwhile, therefore, to give the following, somewhat more elaborate argument which
proves the inversion formula in full generality for the Hausdorff spectrum and the packing
spectrum.

The first step i) consists in perturbing u slightly to obtain a new measure u? which
is non—vanishing. The corresponding M?(t) = p?([0,¢]) is strictly increasing but not
necessarily continuous.

As will be shown in ii)-iii), #? and p have the same Holder exponents in all points of
interest. More precisely, we have KT , "R = K, o N'R, where

R:={tel0,1] : p(l,) = 0 |[,|] = 0 for all sequences ([,) with ¢ € I, Vn}.

We call the points of R p-regular. Restricting attention to R means, in particular,
to exclude the points in the gaps of y which would contribute the pP-Holder exponent
1. Non-regular points either belong to the closure of some gap or are an atom of p.
Therefore, K, ,/\R is at most countable and the spectra fi and fp of p are not affected
by replacing K, . by K, . N'R. For py?, on the other hand, excluding points outside R
changes the spectrum. Here, we will take advantage of the fact that the inversion formula
holds for subsets of K

The change from pu! to p?t := (uP)' corresponds to an expansion ¥ on the f-axis which
we introduce in iv). It is, unfortunately, not globally bi-Lipschitz. On each G, however,

T

the distortion is small enough to preserve dimension. This is shown in v)-vii).

Once it is established that the perturbation does not affect the spectra, we simply
apply the same procedure to v := pPf. This produces P which is continuous and non-
vanishing by construction. The inversion formula holds, thus, for v which has the same
dimension spectra as v = p?’ and, hence, the same as pf. Its inverse v*T has the same
spectra as v = Pt = y?, which coincide with the spectra of . Through this chain of
equalities,carried out in detail in viii), we will obtain the desired result.

i) The perturbed measure p? Let ¢(c) := c'/. Let A denote the countable,
possibly empty set of values which M takes more than once. For notational simplicity, we
reserve the letter a for elements of A. For every a let L, := {t : M(t) = a}, a so-called
gap, which is an interval closed to the left and open or closed to the right. Let

P 2:M+Z)\a

where A, is an absolutely continuous measure on L, defined as follows: if the boundary
points of L, are denoted by s < t then A,([s,s + h]) = Au([t — h,1]) = &(h) for 0 <
h < |L4|/2. The total mass added to p in L, is m, := Ao(La) = 20(|Lal/2) < o(|La]).
Outside of the gaps, M?(t) := u?([0,1]) increases strictly since M does, inside a gap it is
differentiable with derivative ¢'(h) > 0, h being the distance to the boundary of the gap.

ii) Comparing g and p? Let [ be an interval of length < 1 which is not contained
in any gap, in other words, which contains a point from R. Let {, := |L, N | for all
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a € A. Due to [, <1, we have Y, o0 ¢(l,) < I = VIS (1, / OV < VP (1)1 < 1M
from which we conclude

p(l) < p"(1) < p(l) + o (1)) (20)
For all sufficiently small intervals I containing a point t of K, ./, u(I) will eventually be
larger than |/|**" and hence larger than ¢(|I]). Relying on this idea, we will prove the
claims announced in o). From (20), it follows also that px? has total mass ¢”(IR) € [1,2].
We refrain from normalizing p* for the sake of simplicity.

iii) Holder exponents of u? Consider a sequence of intervals [, which converges
down to t € R. Assume that

log 1u(1,)
1) =
a(ln) log |1,

and take £ € (0,«). If |1,,| is sufficiently small, we have ¢(|1,,|) < |1,]° < u(1,). With
(20),

(1) < 2u(1), (21)
implying o?(1,) := log u*(1,)/log |I,,| — a. Assume, on the other hand, that o*([,) — «.
For sufficiently small |I,|, we find ¢(|1,]) < |L.]°T* < (1/2)|1.]° < (1/2)pf(1,) and
conclude with (20) that o(/,) — a. Altogether,

a(l,) = a ifand only if o”([,) — «a, (22)

from which
K?

oo TR =K,0 N'R,
provided 0 < o < o < oo. Note that we need ¢ € R in order to obtain (21).

iv) Inverse measure P’ of pu? In order to compare u' and pPT, which can be
regarded as a ‘perturbation’ of the former, we introduce the expanding map ¥ on the

f-axis which identifies the points M(¢) and M?(¢). On R' := M(R), we may define
U = MP? o M~ or, more generally

U : R\A— R (9!—>(9p::(9—|—2ma

a<f

with m, = Ay(L,). To avoid confusion, we will use the superscript ? for objects in the
image-space of W.

W is continuous on IR\A because >5,_gj<1/, ma — 0 for all § € A. Obviously, there
is no continuous extension to A, the atoms of uf. Each a € A is ‘stretched’ into a whole
interval

Ly = [ta, va] := [sup W(0), inf W(6")]

@ f<a 8'>a

which is of length m, = A,(L,). On the boundary of L?, the Holder exponent of uT is
infinite, in the interior it is 1. It is clear that we have to exclude these points from our
considerations. Since

ACR\R'=IR\M(R) and  L? = M*(L,) C R\M?(R),

this will happen automatically, so to say, by restricting our attention to R and R, the
p and the pf-regular points. It is useful to denote the set of these points in the P-space
(which are the ones of interest to us) by

RV = U(RY) = U(M(R)) = MP(R). (23)
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Here, we are slightly inconsequent in our notation since R is not the entire set of u'-
regular points but only the ones that do not lie in any L.

Note some simple properties. Let I? be an interval and let I be the convex hull of its
pre-image under ¥, i.e.

[ = (U~N(7)) = 0N (1" ) Ufac A: Lt C 17} (24)

which is again an interval. Denote by [ the interior of I and by [ its closure. The
definitions imply

T = | < 17| = |1+ Y1 e < [+ m, (25)
aET aET
and )
p (1) < @t (17) < p'(T) (26)

with equality in (26) unless [? ends in some L2, in other words, unless an atom lies on
the boundary of /. The essential ingredient for the remainder is a translation of the ‘error

estimate’ (21) used in iii). To this, we note

> _ma <D 6(|Lal) < G301 Lal) < S(u(1)) (27)

acl a€l a€l

for all intervals I, which follows using first the same argument as in (20) and finally

L] = ' {a}).

v) Comparing Kl’a, and Kgfa, (ngra, = GPT N FP1is the obvious set for pPt.)
The basic idea is clear: The term 3" m, in (25) can be neglected due to (27) as soon as
an upper estimate of uf(7) against || or |I?| is available. If so, Holder exponents must
be identical. Minor difficulties arise, however, from the fact that some details of intervals
I? on the #P-axis are not reflected by (W~!(I?)), in particular when [? ends in some L£.

Take § € GI NRT, & € (0,a) and let 67 := W(h). Take an interval I? > 7 of length
smaller than 1/n and let [ := (¥~1(1?)). Certainly, § € I and |[I| < |I?| < 1/n. Assume
that n has been chosen large enough to ensure pf(7) < |I|*=° and ¢((1/n)>~%) < 1/n.
The latter implies ¢(x) < #'/(°=%) whenever 0 < x < (1/n)*~. With « = uf(T) and (27),
we obtain Y, 7m, < p!(1)V/(=9) <|I]. Thus, (25) and (26) combine to

log ¢!(T) _ log p!(17) _ log (1)
log|I| — logl|l?| — 10g2|f|

(28)

which proves 07 € GPT. Moreover, (28) provides the desired knowledge on the accumula-
tion points of a(/7). With (23), we get \I/(K;a, NR) C ngra, N R

For convenience, we repeat the assumptions for (28): 0 € GI NRT, I? > 07 := U(0),
and I? of sufficiently small length.

vi) Let 0» € GPI N RPT and take ¢ € (0,a/2). The argument we will give is almost
identical to the one in v) only that we estimate 3, m, against p?f(I?). For later use in
vii), we start again with I* 3 #? and let [ := (U~!(?)). Unlike (28), we have to produce
an estimate involving u'(I) rather than u'(I) or MT(f). So, we have to deal with the
possibility of I? having a boundary point in some LZ.

Assume that |[?] < 1/n where n is large enough to ensure

MPT(IP) < |[p|oz—s7 qb((l/n)a_%) < 1/n7 and n > 26/(&—25)‘
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We have ¢(x) < /(272 for all x < (1/n)*2% and [[P|(@=9)/(2=25) < (1/2)|I7]. Consider
an arbitrary L? which intersects I?. By assumption 6° ¢ L? = [u,,v,], in other words, I?
must contain a boundary point of Lf. Say we have L2 N [P = [u,, w,] for some w, < v,.

(The argument is similar in the symmetric case.) By construction, L2 = M?(L,) and
there are s <t with M?(s) = u,, M?(t) = w,. Since M? is one-to-one, s must be the left
boundary point of L, from which

W =, = |LE OV I = i ((,0)) < 61— 5) = S (10, 0,)

and

SILEN <Y G (o wa))) < (30 #M (0 wa))) < G (17))

U«GT aET (IET
follow. Choose x = pPt(I?). Then, z < |I?|*=¢ < (1/n)*~% and

S(uPT(17)) < pPT(1P) 2 < 1217,

With (25)
(1] < 17 < 2. (29)
For convenience, we repeat the assumptions of (29): 0» € GPI NRFT, [? 5 0P, and [P of
sufficiently small length.
This bound is all we will need in vii) to estimate dimensions. To conclude on Hélder
exponents, however, we have to estimate uf(7) against u?T(1?) which is not possible under

such general assumptions. Fortunately, we need only consider the following situation:
take any interval I containing 8 := ¥~'(6?) and let

1Y :=(U()) = w()u L (30)

a€l

Then, pf(I) = pPT(IY) by (26), and I = (¥~1(I"Y)). Substituting I¥ for I? in (29) we
obtain, for [IY] small,
log p*(1")
log ([17]/2)

But, letting I N\, 0 implies IY \ 07 since 3_,c;m, — 0 (VU is continuous). Together with
v) we conclude:

log (1) _ logp"'(1") _ logp'(1)
log|I| = log|l"] ~ log(2/I])

< (31)

R =w(GtNRY)  and K7, N R = (K]

a,of a,of

mRT).

We add a short note: (28) provides information only on the lim sup and the lim inf of
sequences afT(IP) (1P \, {07}), while (31) gives a stronger result: provided § € K;a, NRT

ozT([n) —a as [, \(0 = osz([f) — q.

In addition, the type of argument given here does not apply to FI for this reason.
vii) Dimension estimates Let A be a subset of GI NRT. According to v), we have

U(A) C GPTN R We claim:

dim(A) = dim(¥(A)) and Dim(A) = Dim(W(A)).
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Take ¢ € (0,a/2). Let n be sufficiently large, i.e. ¢(1/n%7%) < 1/n and n < 2¢/(2=29),
Set
A, =1{0€ A:U() e I?and |I?] < 1/n imply uPT(IP) < |IP|7~°}

where [? denotes arbitrary intervals. Defining I? as in (30)
Apmi=1{0€ A, : 0l and|l] <1/mimply [I?] <1/n}.

By continuity of ¥ and v), A = U, A, = UpmAnm (A, and A, ., are increasing in n
and m). For n large enough, the estimate (29) applies to I¥ for any interval I of length
|I| < 1/m which intersects A,, ,,. But (29) means that ¥ is uniformly Lipschitz continuous
on A, , and preserves dimensions. Together with the o-stability of Hausdor{f and packing
dimension the claim follows.

Since W is defined on IR\'R only, this argument might not seem trustworthy to the
reader. This step being crucial to the whole proof, we proceed giving the details.

Consider a covering {/;}; of A, by open intervals of length |I;| < < 1/n. Due to
(28) and (29) |I'| < 21|, provided I intersects A, ,,. We conclude,

RS Y <2 YL
J

5 TN Ap ;m#0

and

03 (W(Anm)) <2705 (Anm) <27 -17(A).
Using o-stability [Tr], we continue dim(W(A)) < sup, ,, dim(W¥(A, ,)) < dim(A). The

opposite inequality is trivial since ¥ is one-to-one and expanding.

Finally, let {I¥}; be a packing of W(A,) by open intervals of length |I7| < § < 1/n.
Consider I; := (U~'(IF)). First, each I; meets A C GI due to vi). Second, the I; are
disjoint since W is one-to-one and only atoms a with L2 C I? belong to I; by (24). Third,
the last argument shows in addition that [; is open. Thus, {/;}; forms a packing of A,.
Due to (28) and (29), we have I} < 2|I;| and the rest follows by copying arguments of
above and of Proposition 9.

viii) The spectra Again some notation. We apply the procedure described in i) to
pPT. Let v := pPT for the ease of notation. By construction, v is a continuous measure
on the #P-axis. Its perturbation v? is, consequently, continuous and non—vanishing. In
analogy to i), we consider its inverse measure v*T as being defined on the "-axis.

Let N(07) := MPY(0?) = v([0,07]) and NP(0?) := v?([0,07]). The correspondence
between points N(67) on the t-axis and NP(6”) on the tP-axis is provided by an expansion
X. As described in iv), we have x(¢) = N? o N7!(¢), provided N7!(¢) is a v-regular
point. But all points of RPT = MP(R) are certainly v-regular. In agreement with (23),
we consider only the points of interest and set S := R*T.

By definition of R, MP? is a bijection between R and RPT with inverse M?! = N.
Hence,

\(t) = NP(MP(t))  forteR.

This expresses in a very clear picture how we distorted #- and t-space to get rid of gaps
(by M?) and atoms (by N?) of the measure x. In analogy with iv), we let SPT denote the
points of interest on the tP-axis:

S = N?(8) = N*(R") = N*(MP(R)) = x(R).
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Propositions 8 and 9, i.e. the inversion formula apply to the pair v and v*T. We
already know that — as far as the spectra are concerned — v? is ‘close’ to v = p?T which
again is close to u!. It remains to relate u and v?!, more precisely, their ‘sets of Holder
exponent’” K orlp] and Ko o[v?1]. Take A C Koo lp] N'R. By iii) A C K., [u] N R.
By Lemma 2, u? and v' coincide and K, ./[u?] = K, [vT]. Applying vi) to v yields
(A) C Koo [P N SPT with equality if A = K, . NR. Tt follows from vii) that A and
X(A) have the same Hausdorff and packing dimension.

The inversion formula will provide us now with a dimension estimate of N*T o y(A)
where N*T(#7) := v#1(]0, #*]). This, we would like to compare with the dimension of M(A).
By (10), N*Tis bijective with inverse N”. We conclude that N*Toy = N*To NPo M? = M?,
and, for t € R:

NPtoyxy = MP =Wo M. (32)

The ‘diagram’ commutes. In other words, the distortions of the ¢ and the # axis ‘match’.
Furthermore, the inverse of *1 is 1” by Lemma 2, and (32) shows that M?(A) is a subset
of Ko o[?]NS. Again, we have equality if A = K, . NR.

Finally, M(A) and M?(A) have the same dimensions by vii). Furthermore, U~! is well
defined on all of M?(A) due to Rt = U(RT). Thus, M(A) C K;r/au/a NRT with equality
if A=K, NR.

Using the results of the three preceding paragraphs, and applying Proposition 8 to the
measure T, our chain of estimates reads:

dim(A) = dim(x(A4)) > a - dim(N?T o y(A)) = a - dim(¥ o M(A)) = o - dim(M(A)).

Similarly,
dim(A) > a - dim(M(A)) > a/a’ - dim(A)

and

Dim(A) < o' - Dim(M(A)) < o'/a - Dim(A).

This is the strongest result available with the arguments given here. As already men-
tioned, we loose details on the ‘Holder analysis’ by mapping with W and y. In particular,
the only accumulation points of a([l) (as I N\, {t}) which are preserved are the limsup
and the liminf. On the other hand, we need information on both of these accumulation
points since G/, [vF] = F,[vP1]. &

As an immediate consequence of step viii) above, we have

Corollary 23 Let o be a probability measure on [0,1] and let R denote its reqular points.
Then
M(Koo NR) = K], N R

In other words, for all but countably many t the following equivalence holds: a(t) = o if
and only if aT(M(t)) = 1/a.

Final Remark In the case of (discontinuous) self-similar measures, the explicit
construction of the measures ¢, with ¢,(K,) = 1 (Theorem 16) implies that K, is of
full f(a) -dimensional Hausdorff and packing measure. In other words, the inversion
formula is sharp for self-similar measures in the sense of giving ‘exact dimensions’. It
would be interesting to know whether this is true in general.

With the notion of discontinuous self-similar measures a new family of multifractals
have been introduced. While generalizations of self-similarity to infinite number of copies



156 R. H. Riedi & B. B Mandelbrot

and to randomly picked maps result in concave spectra, we find here for the first time self-
similar measures with non-concave fine multifractal spectra. So far, non-concave spectra
were known only for non-multiplicative measures where K, is no longer dense in the
support of the measure.
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