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Abstract

There are strong reasons to believe that the multifractal spectrum
of DLA shows anomalies which have been termed left sided [ME, M]. In
order to show that this is compatible with strictly multiplicative struc-
tures Mandelbrot et al. [M, MEH] introduced a one parameter family of
multifractal measures invariant under infinitely many linear maps on the
real line. Under the assumption that the usual multifractal formalism
holds, the authors showed that the multifractal spectrum of these mea-
sure is indeed left sided, i.e. increasing over the whole « range Jayin, 00[.
Here, it is shown that the multifractal formalism for self-similar mea-
sures does indeed hold also in the infinite case, in particular that the
singularity exponents 7(g) satisfy the usual equation 3 p;9A;” = 1 and
that the spectrum f(«) is the Legendre transform of 7(¢).

1 Introduction and Summary

In 1990, [M, MEH] introduced self-similar multifractal measures g which are
constructed with an infinitely multiplicative cascade. Data suggest that the
measures considered in [MEH] show the same anomalies as observed with DLA,
namely, the partition sum y(q,¢) fails to scale like =7 for ¢ < 0. This be-
haviour is linked with the existence of infinite Holder exponents and with
a multifractal spectrum which is increasing over the whole range |amin, 0o/,
hereafter called left sided spectrum. This observation had led some authors
to describe DLA as ‘non-multifractal’. On the other hand, the infinite multi-
nomial measures (1) show that left sided spectra are compatible with strictly
multiplicative, hence renormalizable structures. This paper provides a rigorous
mathematical frame for the statements made in [MEH].!

! Note added in proof. Infinite systems of conformal contractions are studied in [MU]
comparing packing and Hausdorff measures of invariant sets.
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The organization is as follows. Following Hutchinson [Hut] we will start by
defining the codespace I, a set of sequences iy15... suitable to model the in-
variant set of a given infinite family of contractions {w;};ew of IR?. There is
a probability distribution on [ such that an address picked randomly satisfies
1, = k with probability p; independent of n. Via the addressing this trans-
lates into a probability measure  on IR? which is the only one satisfying the
invariance

)= f;pipe(wi-l(-)). (1)

Its support is the (only) compact set satisfying

K = fj w;(K). (2)

The necessity of taking the closure (-) on the right hand side emphasizes the
difference from the ‘classical’ case. Having established p we proceed to esti-
mate the Hausdorff dimension dyp(K,) of the sets K, of points with Holder
exponent « (see (8) below). It is easy to show that dyp(K,) is bounded from
above by the Legendre transform f(«) of the function 7(¢) which is defined as
follows: Let A; := Lip(w;). For given ¢ € IR the implicit equation

> opitNT =1 (3)
=1

has either one or none solution. We define 7(¢) to be the solution of (3) if
there is one. Otherwise we set 7(¢) = oco.

Finally, we give two conditions which together imply dup(K,) = f(«). First,
the copies w;(K) of the support should not overlap too much. Hence, we
require a separation condition similar to the well known open set condition.
Secondly, we will use the spectra fy; of finite approximations pys of p as
lower bounds of dyp(K,). The intuitive idea behind this is the fact that
at a certain scale the details provided by the maps w; with too large ¢ can
not be observed. Indeed, the convergence of fy; to f is in agreement with
numerical measurements where one finds a sequence of preasymptotic spectra
which increase to f (Fig. 1). To perform the limit we require some control
on the rates with which {p;};ew and {A; };iew tend to zero. We consider this
second condition to be purely technical.
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Figure 1: The approximation of the spectrum f(«) as provided through fu
for the left sided multifractal measure of Ex. 1 for k = .5, 1 and 1.5. Note that
the different rate of convergence depending on the parameter x is in agreement
with the asymptotic behaviour of f(«a) for o — ag (Fig. 2). The approximation
resembles the convergence of the ‘preasymptotic’ spectra pr(a) + 1 (pr(a) is
the probability of finding a coarse Holder exponent a at resolution 27%) as

described in [M] (see also Figure 2).

10
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2 Codespace

As pointed out with (2), having infinite many copies of a set or a measure
requires one to consider the closure of sets. In other words, accumulation
points have to be taken into account which can contribute considerably to
the geometry of the invariant measure. Their influence, however, is captured
in the geometry of the fixpoints a, of the contractions w,. In order to have
‘primitive’ addresses for these fixpoints as well as for their accumulation points
we identify IN with {a;};ew through ¢ — a;. Being a subset of IR? the set IN®
of ‘points at infinity’ may contain more than one element. More precisely,

IN := {a;}iem C R? and IN® := IN\{@;}ien. (4)

Although IN is embedded in space we will still think of it as being the set
of natural numbers. As will be seen, it is essential for the construction of u
to assume that {a;};,civ is bounded, i.e. that IN is compact (see lemma 1).
Equivalently, we can require that there is a bounded open set O, called cell,
such that w;(O) C O for all ¢+ € IN. We recall some separation conditions
which are widely used and which apply to finite or countably infinite families
{w;}ics. They are said to hold if there is a cell which satisfies the indicated
condition: the open set condition (OSC)

w(O)Nw(0) =0  Vitjeld,

the disconnected open set condition (DOSC) if even the sets w;(0) (¢« € J) are
mutually disjoint and the strong open set condition (SOSC) if in addition to
the OSC the cell O intersects K.

The desired codespace is

[:=TN".
It is convenient to define for a« € IN“: w,(x) = a, i.e. a trivial contraction with
ratio A, := Lip(w,) = 0, and to set p, := 0. For ¢ € [ set g|n 1= 11...14,,
Aifn = Aiy t oo Ay Pijn 2= Diy t et Dy Wil 2= W4, O ... 0wy, and, once a cell

O has been chosen, Vj}, := wﬂn(a).

Lemma 1 Assume that IN is compact and that Lip(w;) = A; — 0 (i — ).
This is certainly satisfied if the OSC holds. Then, N,eWVjj, s a singleton, say
{z;}, for every given i € I. Moreover, the coordinate map 7 : [ — R i — x;
s continuous.

Proof: Since Vjj, = wjjn—1 0 w;,(O) C wiju1(0) = Viju_1, the compact sets
Vij» form a decreasing sequence. So, their intersection cannot be empty but
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has diameter zero since |Vj,| = Ay, - [O] = 0 (n — o). This proves the
first part. The continuity of 7 is a direct consequence of our choice of the
metric on IN, which we denote by d(-,-). Take z = 7(i) € K and & > 0.
We have to find a neighbourhood U of ¢ which is mapped into B.(x). First,
there is a ng such that Vj,, C B.(x). In case 1, € IN for all n < ng it is
enough to choose U = {j € I : 5 = 4 (1 < k < ng)}. Otherwise let
ny be such that 1 € IN for all & < ny and that @ := 7,, € IN°. Since
Ai = 0 (i = o0), there is mg € IN s.t. [Vi] < ¢/3 for all & > mg. Now,
we can choose § < ¢/3 such that m € IN and d(m,a) < § imply m > my.
Set A := {a € IN : d(a,a) < §}. We claim that it is enough to choose
U={jel: =1 (1<k<ny),j, € A}. Note first that the fixpoint of
w, lies in V, = w,(O) for all @ € IN. So, since |V,| < ¢/3 and d(a,a) < /3 for
a € A, the union U, 4V, is a subset of B.(a). Finally, a = wz(a) = w(k) for any

k starting with a. Consider k = 4, 45,41 . ... Then, wjj,,_1(a) = wy,, (@) = 7(z)
and we have 7(U) = wjjn, —1(Useawa(K)) C wyp, —1(B-(a)) = Bo(m(2)) with
e = Ajjn,—16 < e &

3 The invariant measure

Let {p;}iem be a probability vector. i.e. 0 < p; and Y ;cypi = 1. Due to
Kolmogorov’s consistency theorem [Pth, p 144] there is a probability measure
ft on I corresponding to the measures Y, o Pnda, (05 is the Dirac measure
concentrated in ) on the factors IN of I. More precisely,

AL ET = iny = jiyeeesing, = jn)] = Piim (5)

for all 7, k € I and m € IN. Due to its product structure (5), /i is invariant
under the shift operators o, : 2 > aiqiy... of I:

= % pai(na70) = wid(57'0). (6
ae]N =1

Provided 7 is continuous

po= () (7)
is a Borel measure, more precisely a probability measure, and (6) translates
immediately into (1). Moreover, K = w([) is the support of x and the shift
invariance I = U g{a} x I yields

K= |J wi(K) = G w; (K,

aem =1
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hence (2).

Proof: The first equation is immediate. Since 7 is continuous K is compact
and the second ‘D’ follows. For a € IN® we have w,(K) = {a} C IN = {a; }ie.
Together with a; = m(iii...) = wi(mw(iei...)) € w;(K) this implies the second
‘C7. <>

Lemma 2 Assume that the SOSC holds. Then (i(Vy,.) = py, for all i € I and
all n € IN.

Proof: First note that it is enough to prove u(0) = 1. Indeed,

) = g:pku(wk Hw; (O

since supp(p) C O and wy,~*(w;(0))NO
given 7 € IN the sets V; and w;(0) (5 €
by the OSC. So,

_p]/“b _pjv

= () (k # j) due to the OSC. Moreover,
IN, j # 1) are mutually disjoint again
= p(RY) = p(Vi) + 3 pj = p(Vi) + (1= i)
J#
With p(Vi) > p({j : j1 = i}) = p; we obtain equality. The same argument
applies to words i1 ...4, of length n instead of i. To show p(O) = 1 pick a
point @ = 7(2) in O. In case that z contains letters from IN° let ¢,y = a € IN°
denote the first one. Then, = w;),(a) and by definition of IN® there is m € IN
such that the open set O also contains w2|n(am) =m(iy...ipmmm...). So, we
always find € IN™ with 7(2) € O. Since O is open, there is n € ]N such that
Vil C O. By switching to the iterated family w;, . ., (11...1, € w" ) we can
assume that n = 1. For simplicity we assume 7; = 1. In particular, V; C O and
p(O) > u(Vi) > p1 > 0. Since O is a cell we have V1 = w;(V}) C w;(0O) C O.
From w;(O)NVy =0 (j # 1) and wu(Vj1) > pj1 = pjp1 we conclude
p(O) = pi+ D pipy =p1+pi(l = p1).
J#1

Similar, Vkﬂ C wkj(O) C wk(O) C O and wk]‘(O) NV = 0 (k 7£ 1). SO7 Vkﬂ,
Vi1 and V; are all disjoint provided k, 7 # 1. Hence,

1(O) >pr+pi(L—p)+ Y. pepipr = p1+pi(1—p1) +pi(1 —pr)*
k21

By induction, ¢(O) > p1 > ,ew(l — p1)* = 1 which was to show. &

For convenience we focus on the following class of measures:
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Definition 3 We will call v an infinite self-similar measure if it is defined by
(7), {w; }iem being a family of similarities with |w;(x) —w;(y)|/|e —y| = A\ €
(0,1) and such that the SOSC holds.

A straightforward generalization of the fixpoint argument given by Hutchinson
[Hut, p 733] shows that (1) and (2) define p and K uniquely.

4 Upper bound

Our results concern the sets

. . log (Vi)
[Xa = {l’ = W(l) : W

is defined for all n and tends to o },  (8)
where |E| denotes the diameter of the set £. The limit @ = «; involved is
called the Hélder exponent of p at @ = m(2) and depends on the address i.
As with the examples in the last section points with multiple addresses can
often be disregarded. The definition implies that we disregard the set E of all
addresses containing any letter from IN° and focus on the set of points with
‘finite addresses’ m(F'), where

F=INN=1\E.

Note, that E is a fi-nullset since IN® is a compact subset of IN of zero mea-
sure in each factor. The corresponding points require a special treatment. In
the example considered here, however, this turns out to be trivial. Moreover,
although FE is always uncountable, 7(F) is certainly countable if IN° is. Dis-
regarding such a set does not affect Hausdor{l dimensions [F2]. Finally, it is
impossible to observe infinitely many maps in simulations but rather some fi-
nite approximations like pp; defined below and their behaviour with increasing
M. For these measures pys the usual definition of Holder exponent coincides

with ours [CM] [R, th. 18 iii].

An upper bound of dyp(K,) is easy to obtain. Let

B, = n({z € I\E : limsup(log u(V;},)/log |Vjj.|) < a})
n—00
Co = m({e € I\E : liminf(log (Vi) /log [Vi|) > a})

Proposition 4 [For any infinite self-similar measure we have
dup(B.) <inf{7(¢) + ga : ¢ >0},  dup(Cs) <inf{r(q)+qa : ¢ <0}
Moreover, dyp(K) < 7(0).
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Remark: The same result holds if we barely impose |w;(z) — w;(y)| <
iz =yl

Proof: For simplicity assume that the cell O has diameter |O| = 1, hence
|Viln| = Aijn. The SOSC implies A :=max{); : ¢ € IN} <1 and p(Vi},.) = pijn.
Take ¢ € IR. If 7(¢q) = oo there is nothing to show. Otherwise take ¢ > 0. Let

Ly :=m({i € I\E : py," > Ag,"**) for all n > N}.

First we estimate dgp(Ly). Forn > N let A, = {j = j1,...,J, € IN" : Pt >
)\Zq(a"'s)}. We have

1= (Z piq)\f(q))n > Z piq)\iT(q) > Z )\iqa+qs+7(q) — Z (|‘/i|)qoz+q6-|—7'(q)‘

i€IN JEAR JE€EAR JEAR

Since (V});ea, provides a covering of Ly with |V;] < X", this implies dyp(Ly) <
qa+ qe 4+ 7(q) for all N. The union Uyew Ly contains B, if ¢ > 0, resp. C,, if
q < 0. Recalling that dup(UnewLn) = supyen dup (L) [F2] and then using
that € > 0 was arbitrary the first two estimates follow. Finally, for ¢ = 0
the collection (V});jeca, covers the whole support K of p. This completes the

proof. &

Corollary 5 For any infinite self-similar measure we have

dyp (K.) < inf{7(q) + ga : ¢ € R}.

Proof: K, C B, NC,. &

5 Separation condition

To estimate dyp( K, ) from below we consider ‘finite approximations’ of , i.e.
self-similar measures py; invariant under the first M maps wy,...,wy. In
a certain sense, the spectra fys of pp approximate f from below which is
again very helpful from the point of view of application. Fix a natural number
M and let pps be the unique self-similar measure invariant under the maps
(w1,...,wy) and the probabilities (p(lM), . ,pg\]y)) where pggM) = pr/Ny and
Ny = Zf\il p;. Hence

M
i =3 M g (w0 ().
=1
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Assuming that wy, ..., wy; satisfies the DOSC, Cawley et Mauldin [CM] showed
that the multifractal formalism holds for pps. This means that the spectrum
fur(@) equals the Legendre transform fas(«) of the singularity exponents mas(q)

which are given by
M

D (9)

=1
In particular,
dup (KM) = far(a) = Tar(q) — q7hy(q)
!

for a = —713,(¢). (A short proof and the spectrum obtained by box counting
are given in [R].) The separation condition we require is therefore the following
one.

Definition 6 (Finite Separation Condition) A family {w;}ien and its self-
stmilar measure p is called finitely separated if for all M € IN there is a
bounded open set Oy such that the sets w;(On) (1 = 1,..., M) are mutually
disjoint subsets of Oy, i.e. (wy,...,wy) satisfies the DOSC.

Of course, a family {w; };ew satisfying the DOSC is finitely separated, but not
vice versa. Even connected supports K are possible, provided the copies w;(K)
accumulate ‘nicely’ at the boundary of a cell:

Proposition 7 Let {w;}iew by a family of similarities on the line, i.e. w;(x) =
O:\ix + w; with §; € {—1,1}. Assume that the OSC holds with some open
interval O =Ju,v[. If IN® contains both boundary points of O then {w;}icNn is
finitely separated. The same is true if all 0; are equal and at least one boundary
point of O lies in IN“.

Proof: The basic idea is to shrink O to become a smaller open set Oyy. First,
consider the case u € IN°. We show that u cannot lie in any V; = w;([u,v])
(1 € IN). Assume the contrary. This implies that V; = [u,u + A;(v — u)]. By
definition of IN° there is k € IN such that |u — ai| < Xi(v —u)/2. Since ay, €
Vi C [u,v] the fixpoint a; must lie in the interior of V; which contradicts the
OSC. Now take any M € IN. Since no V; contains u there is ¢ = (M) such that
Vi C Oy i=Ju+e,v[C O fori=1,...,M. Since w;(Op) C Vi, Op satisfies
the OSC for wy, ..., wy. Finally, the OSC for O and the equal signs of the 8;
imply that the sets w;(Oy) (i = 1,..., M) are mutually disjoint. This was to
show. In case v € IN°, a similar argument applies to some Oy :=Ju,v — e[ If
u and v are both contained in IN® then we can choose Oy :=]u+¢,v — €[ and
the signs of the #; are not important. &



141
6 Lower bound

Now we proceed to estimate dyp (K, ). We recall some details of the proof of
(9) which are useful here. Fix ¢ and set p, := (pggM))q()\k)TM(q). The main
idea is to focus on the words ¢ which produce the desired Holder exponent
a = ap(q) where according to (9)

() o= S o@D S gl
M Tog(A) (pM a0 S log (AP Y

As in (5), let fi,m be the product measure on the product space [y :=
{1,..., M}™ corresponding to the factor measures p,d; + ... + Pys0ar. The
tool to observe the Holder exponent are the random variables X, := log pgiw)

and Y, := log A;, which are i.i.d. due to the product structure (5) of f, .
Consider the set R’;M) of all words 7 € {1,..., M}™ such that simultaneously

1 1 &
glogpgm - ZXk — FE[X Zlog ﬁk (10)

and (1/n)log A, — E[Y,] = 2N log(X\i)p,. Obviously, K(M) = 7T([§7(§M)).
By the Law of Large Numbers (10) is a fi, p-almost sure event. Hence,
/qu7M([§’§M)) = 1 and Frostman’s lemma [F2, pr. 4.9] yields dyp(KM)). For
we conclude that

log (u(Vijn) _ log pijn log(Nw)
= = Bulq) = amlq
log | Vi log A;j, wl4) mlg)+ M Jog(A\)(p (M))q)\TM()

for every 1 € ]&’éM). Hence KC(YM) C KBM(q) and

dun (K (0)) > ™a(q) — qmh4(q)- (12)
It remains to consider the limit M — oco. Let

ID :={g € IR : 7 is finite in a neighbourhood of ¢}.
Lemma 8 For all g with finite 7(q) we have Ta(q) — 7(q) as M — oo.

Proof: Assume there is v > 0 and a sequence of integers (M, ),emw such that
™, (q) > 7(q) + v for all n. Then, using monotonicity, (3), Nas — 1 and (9)
we obtaln

1> lim szq)\ @+ > {im (Nas,) Z A () = 1

n—00 4 - n—)oo
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a contradiction. A similar argument shows that lim infa; . Tar(q) > 7(q).

%

Lemma 9 Let p be an infinite self-similar measure. Assume there are num-
bers v, R such that —oco < logr < (1/n)logp, < logR < 0 ¥Yn. Then, we
distinguish two cases:

a) (left sided) If lim I/nlog A, =0, then ID = (0, 00).
b) (right sided) If lim I/nlog A, = —o0, then ID = (—o0, 1).
In both cases

Siem log(pi)pI AT
Siem log(A)pIAT@

locally uniform in ID. In particular, 7'(q) = —a(q) for ¢ € ID. Moreover, all

Jm Bulg) = lim an(q) = alq) = (13)

statements remain true if the sequences {p; }ien and {\;}iew are exchanged.

Remark: The case a) is called left sided, since 7(q) is not defined for ¢ <
0 and its Legendre transform f(«) has only an increasing (=left) part. If
(1/n)log p, and (1/n)log A, are both bounded away from —oo and 0 then
ID = IR. In this case, a sufficient condition for (13) is that (1/n)logp, and
(1/n)log A, both converge with limits different from 0 and —oc. Then, f
has the usual N-shape. Finally, it is easy to construct examples which have

D = (0,1).

Proof: First, note that Sy(q) and ap(g) converge simultaneously with the
same (uniform) limit as M — oo. Indeed, N)y — 1 and a mean value argument
gives

M
[ > log(A) (M)A ™| > — log(max{Ai : i € IN}) > 0. (14)
=1

Let us compute ID. Due to monotonicity and convexity of the exponential ID
must be an interval and 7 is decreasing and convex, hence continuous in ID. We
show that (0,1) C ID without further assumption. Let ¢; € (0,1). Due to the
0SC Yiem P A’ < Tiem MY <1< Siempi®. Also, h(x) 1= Yiem i A" <
Yiem it converges uniformly for « € [0, d]. Hence, h is continuous. Since it is
strictly decreasing there must be a (unique) solution 7(¢;) of (3) which must

lie in |0, d[.

Now, assume that (1/n)log A, — 0. Let g2 > 1. There is 29 < 0 such that
p122A" > 1. Choose s € (0,1) such that v := R?s™ < 1. By assumption
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there is ig(s) such that A; > s’ for 1 > ig. So, Siem i\ converges to a
number > 1. Since Y ;o pi®? < 1, there must be a solution 7(g;) of (3) which
must lie in [z, 0]. Due to monotonicity, (3) has a solution 7(¢) which must lie
in [z, d] for all ¢ € [¢1, ¢2]. Similar estimates show that (3) has no solution for
g < 0. Hence, ID = (0,00). For further use note that for every ¢ € [¢1, ¢2] and
every ¢ > ig(s)

piq)\;(q) < pAT < (qusl’o)i _ ’Yi-

In order to show Ba(q) — a(q) it is enough to prove that
Zlog Nyay Tl — 3 log(ai)pNT@ — 0 (M — o) (15)
1€IN

for {z; }iemw = {pi }iemw and for {z;}iem = { A fiemw. We split the difference (15)

into two parts A + B. A mean value argument yields

i

A= Zlog 1/a:)p Zlog 1/a)pi A7 = log(1/éu) Z — it
Z 1 :
with min{z; : 1 <i < M} < &y <max{r; : 1 <i < M}, Since XM, 5, = 1,
we have

A = log(1/Ex) Z P
i=M4+1

For both choices of {x;};emw we must have &y > ™ for large M. Hence,

0 <A< Mlog(l/r)- Z’y—>0 (M — o)
i=M4+1

The rest of the difference (15) can be treated with similar arguments:

ST dog(1/z)p™ 7P <N dlog(1/r)y =0 (M — o).
i=M4+1 i=M4+1

This proves that (15) holds uniformly for ¢ € [¢1, ¢z] which implies (13). In
fact, using (14) and (11) one obtains that 74,(¢q) converges uniformly to —a(q)
in every compact subset of ID.

Next, assume (1/n)log A, — —oo. Again, straightforward estimates yield ID.
The locally uniform convergence of (15) can be proven in a similar manner as
above, but with one adoption. In this case the ‘strong’ sequence is {A;}ien
the rate of convergence of which is not known. But we may assume that it
is monotonuously decreasing since reordering changes neither the geometry
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nor the value of positive sums. Fix ¢z < 0 and choose S € (0,1) such that
v = r©S7@)/2 < 1 Recall that 7(¢;) > 0. By assumption ); < S for
i > i1(5). For both choices of {z;}ie, the estimate

log(1/&x) < log(1/Anr) < log(1/X;) < X7(@)/2

holds for M > My, My depending on ¢; and on {p; };em, and for i > M. For
q € g3, 1] we obtain

log(1/6y) S0 piAT@ < 3 ped @@z < S ugreli = 3 o

i=M4+1 i=M4+1 i=M4+1 i=M4+1
provided M > max(Mo,1). It is now easy to complete the proof of b).

Finally, exchanging the sequences {p; }ienv and {); };ew means to exchange 7
and ¢, hence to switch the left and right sided case. Indeed, the additional
assumption on the asymptotic behaviour of the sequences were only used to
prove (15) which is symmetric in p and A, so to say. The only break of symme-
try is Y;en pr = 1 while Yo A? < 1. So, precisely speaking, 7 becomes ¢ - d
and {\; };ew has to be ‘normalized’ by multiplication with a suitable constant.
Then, the same argumentation applies to give the obvious results. &

7 Main result

Theorem 10 (Multifractal Formalism) Let p be a finitely separated infi-
nite self-similar measure.? Assume there are numbers r, R such that —co <
logr < (1/n)logp, <log R < 0Vn. Furthermore, assume that li_>m (1/n)log A,

exists and is either zero or —oo. Then, for o = a(q) = —7'(q) (¢ € D),

dyp(K.) = f(a) :==inf{7(q¢) + qo : ¢ € R}.

The same holds if there are numbers s, S such that —oo < logs < (1/n)log A, <
log S < 0 Vn and li_>m (1/n)log p, is either zero or —oc.

Remark: Together with proposition 4 we get the Hausdorff dimensions of
B, and C, at o = a(q) for ¢ > 0 and ¢ < 0 respectively.

To give a more precise statement let us agree on the notation dyp () = —occ.

2According to the recent result of Arbeiter and Patzschke [AP] the finitely separation
condition can be replaced with the weaker OSC.
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Corollary 11 Let p be a finitely separated infinite self-similar measure. As-
sume there are numbers r, R such that —oo < logr < (1/n)logp, <log R <0
Vn.

Then,
a) left sided If nli_)rgo(l/n)log A =0 then

7(0) = dH/D(K) Z:fa >
dyp(K,) = TD(i) —q7'(q) ZZ Zo:>a0(é;)oz(q) > ao0)
-0 if o < a(oo)

where ag 1= a(04) = —7'(04), a(o0) := limye a(q) = inf{a(q) : ¢ €
IR} and Do, is defined through ¥’ \;"~ = 1, the sum Y' running over
all i with log p;/log Ai = a(o0). Note that oy may be infinite.

b) right sided If lim (1/n)log A, = —oo then

a if0<a<a
e (K) = E(fzzo— q97'(q) ZZ 31;;;_:03)@)@(—%)
—00 if a > a(—o0)

where oy = a(l—) = —7'(1-), a(—o0) :=lim,_, _~ a(q) = sup{a(q) :
g € R} and D_., is defined through " AP =1, the sum 3 running
over all i with log p;/log \; = a(—00). Note that oy may vanish.

Remark: For any left sided infinite self-similar measure ¢ on the line with
> A; = 1 there is a right sided ‘inverse’ measure p* obtained by exchanging
probabilities p; and ratios A;. Inverse measures can be defined in more general
situations which will be discussed in a forthcoming paper [MR].

Proof: Case a): Since A; := logp;/log\; — oo as ¢ — oo it must reach
its minimum, say Ax. Obviously, Ay is the smallest Holder exponent under
consideration here (8). It is known [CM, R] that ap(o0) = min{log p;/log A; :
1 <i¢ < M} =inf{an(q) : g € IR} is the minimal Holder exponent of fips.
Consequently, ap(o0) = Ay for M > k. This shows that a(oo) = Ay exists
trivially and also that K, = @ for o < a(c0).

It is clear that only words ¢ with log p;, /log A, = Ay, for all n > ng(i) have a
Holder exponent a(oc). Moreover, there is an integer [ such that A; > «a(o0)
for all 2 > [. Hence, Ko U/wjl...jn(Kc(yll) _y) with the union U’ running over all
finite sequences ji ... j, of integers. Recall that o;(oc0) = a(o0). In particular,
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U’ is countable. It is known [R] that dHD([&”Sl)(OO)) = filau(o0)+) = v, where
S/A™ = 1 with Y’ running over all 7 < [ with A; = ay(o0). Since any set
E has the same dimension as w;(F£) and since dyp(Un)F, = supy dup(FE,)
for any countable collection of sets E, [I'2], we obtain dup (K s(«)) = 1. Note
also, that we can choose [ as large as we wish without changing the result. This
shows that the definition of D, makes sense and that D., = ~;. In particular,
dup (K o(0)) = f(a(oc0)+) = v for every large enough /.

To compute the limit of the left hand side of (12) we have to use the continuity
of f which is guaranteed by lemma 9. Let 3 = a(q) with ¢ € ID. Recall that
ID is an interval and that a(-) is continuous and monotonous. Hence, there
are g1 and ¢z such that a(¢q;) < 8 < a(¢z). From lemma 9 we conclude that
there is My such that apn(g1) < 8 < am(qe) for all M > My. Due to concavity
of far and due to (12) dup(Kz) > min{far(an(q)), far(aar(qz))}. Letting
M — oo, lemmata 8 and 9 give dyp(K ) > min{f(a(q1)), f(a(g))}. Letting
(g2 — q1) — 0 we obtain dup(Kg) > f(B) by continuity of f. Proposition 4
gives equality.

The well known fact dup (supp(par)) = 7ar(0) and corollary 5 imply dup(K) =
7(0).

If ap = oo there is nothing more to show. Otherwise, i.e. if ap < oo, note
that ap(o0) = limyy—oo ap(q) = sup{am(q) : ¢ € IR} = max{logp;/log A, :
1 <1< M} = oo (m — o0). From the concavity of fy and (12) one
obtains dup(Kg) > lyy(a) where o and [ are related through (11), where
[ryg is the line through the points (aar(q), fa(aa(q))) and (ap(o0),0) and
where ap(q) < a < apy(oo). Fix ¢ > 0 and let M — oo. Lemma 9 gives
dup(Kp) = fla(q)) for 8> a(q). Finally, as ¢ | 0, a(q) T ao and f(a(q)) =
7(q) — q7'(¢) = 7(0) = 0 - ag = dup(K).

Case b) The conditions on the asymptotic behaviour of the sequences {p; }icn
and {\;};en are only used to determine ID and to prove fy; — f. According
to lemma 9 exchanging the two sequences means basically to exchange ¢ and
7, hence to exchange left and right sided case. &

8 Examples

Three examples of spectra are given which cannot be observed with finite self-
similar measures. The first is the left sided spectrum given in [MEH]. The
second one is left sided as well showing that infinite Holder exponents can
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occur for multiplicative cascades with ‘binomial’ structure (see Ex. 2). The
third example gives a kind of ‘inverse’ left sided spectrum what we called right
sided. It shows that Holder exponent zero is possible without presence of
atoms. This possibility has already been mentioned in [M].

Example 1 The left sided spectrum of [MEH] The infinite multinomial
measure considered by Mandelbrot et al. [MEH] fits perfectly into our frame-
work. Proposition 7 and theorem 10 apply with the cell O := (0,1) showing
that the usual multifractal formalism holds. Let

1 1 1 1
7 = o e — d D = o
w ([L’) (l _I_ 1)/1 —I_ (Zﬁ (Z _I_ 1)H)x aln p 22
where £ > 0 is a parameter. The support of p is K = [0,1]. Some lengthy but
straightforward calculations show [MEH, Appendix| that the spectrum is left
sided, in particular f(«) T 1 for o — oo. It is worth noting that the rate of
approach of f(«) towards 1 depends on s as indicated in Fig. 2. Set

= —r(04) =4 = therus
o 1= —T T Siemw log(pi)hi/ Tiem log( M)A otherwise.

As a T ag we have

1 —clag —a) ifr>1,
fla)=<{ 1 —cexp(—ca) ifr=1,

1

1 —ca” if Kk < 1,
where £’ = max{2,x/(k — 1)} and k" = &/(k — 1).

Let us add some remarks on the peculiar Holder exponent o = oo. First of
all, IN° = {0}. The Holder exponent is obviously infinite there and at all the
iterated images, i.e. at the boundary points 1/i" of the intervals appearing in
the construction. These points are the one with multiple addresses and with
‘infinite addresses” from FE. Furthermore, the measure is supported by K =
[0,1]. Disregarding the countable number of points with multiple addresses we
have

log u(Vign) _ 1og pijn

log [Vial — log Ay

— a(0) = —7'(04)

for (Lebesgue) almost every @ = m(z). This Holder exponent «(0) is infinite
for k < 1.

The arguments given in the proof of theorem 10 and in Fig. 1 show that this
behaviour can be observed also in numerical simulations since the spectrum is
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Figure 2: The spectrum f(«) of the infinite multinomial measure from Ex. 1
tends towards 1 with a rate that depends on the parameter « [M].

determined by ‘finite approximations’. On the other hand, this ‘finite approx-
imations’ are constituted by points with bounded addresses, i.e. with 7, < M
for all n, which lie on fractal sets of dimensions Dy, strictly less than 1, in par-
ticular M, )\ZDM = 1. Hence, these points form a Lebesgue nullset. Finally,
note that

>iem log(pi)pi
D ielN 10%()‘2')}72'

log u(Vijn) _ log pin
log [Via| — log Ay

— o :=7(1) =

for 1 almost every @ = m(1).

Proof: The argument is essentially the same as (10) with ‘M = oo’. Pick any
g > 0 and let fi, be the product measure on [ corresponding to the probabilities
7 = pi'A7 @, Then, tg = fig(m7(+)) satisfies (1) with p; instead of p;.
Consider the i.i.d. random variables X, :=logp;, and Y, :=log A;,. Then,
log e _ 3 1o8(pye) _, BIX] _ Siewloglp)p?A7®
log A+ 1og(Apn) Bl Siemlog(A)piaa@
[ty almost surely. Note that the denominator E[Y;] is always finite and that
the LLN holds also if the numerator F[X,] is infinite. Since only countably
many points have multiple addresses this translates into the desired p,-almost

sure statement. Finally, gy = p is obvious. For ¢ = 0 we have p, = A; and the
Lebesgue measure restricted to [0, 1] satisfies (1) with p; = A;. By uniqueness
it must be yo. &
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Example 2 A left sided spectrum with binomial structure An example
of a self-similar measure with geometrically decreasing ratios A; and left sided
spectrum is given by

1 1
- 2n—l—1 —I_ 2n—l—1x

wn ()

where £ > 0 is a parameter and p is the obvious normalization constant.
Similar calculations as in [MEH] give exactly the same behaviour of f(«) as
in Ex. 1. This example has been included for its transparent geometry. In
particular, it shows the binomial structure as found with the binomial measure
invariant under wq () = x/2 and wy(x) = x/2+ 1/2, however, with a different
mass distribution. O

Example 3 (A right sided spectrum) Exchange the ratios A; and the
probabilities p; of Ex. 1. Again, similar calculations as in [MEH] give the
different rates of convergence of f(a) — a as (a | ay) where oy := —7'(14).
In particular, if K > 1 then « is positive, otherwise it is zero. As a | «; the
difference f(a) — o behaves like a power of a — oy for £ > 1 (and vanishes for
a < ay), like an exponential of « for k = 1 and like a power of « for k < 1.

But it is even simpler to argue in the following way: Let us denote the singu-
larity exponents and the spectrum of Ex. 1 by 7" and f* respectively. Then
7 is simply the inverse function of 7*. In other words 7 = ¢* and ¢ = 7.
Applying the Legendre transform shows that the spectrum f(«) is related to
J7(a) by

fla) =af*(1/a).
This relation is generally valid for ‘inverse’ measures which is proven in a

forthcoming paper. Here, it shows that the different rates of f(a) — o are
directly related to the one of f* — 1. Compare Fig. 1.

In conclusion: with this measure one finds the Holder exponent zero without
presence of atoms, a possibility which has been mentioned in [M]. O
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