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Abstract

In this paper we develop a novel model-based technique,
the Delphi algorithm, for inferring the instantaneous
volume of competing cross-traffic across an end-to-end
path. By using only end-to-end measurements, Del-
phi avoids the need for data collection within the In-
ternet. Unique to the algorithm is an efficient exponen-
tially spaced probing packet train and a parsimonious
multifractal parametric model for the cross-traffic that
captures its multiscale statistical properties (including
long-range dependence) and queuing behavior. The algo-
rithm is adaptive; it requires no a priori traffic statistics
and effectively tracks changes in network conditions. ns
(network simulator) experiments reveal that Delphi gives
accurate cross-traffic estimates for higher link utiliza-
tion levels while at lower utilizations it over-estimates
the cross-traffic. Also, when Delphi’s single bottleneck
assumption does mot hold it over-estimates the cross-

traffic.
1 Introduction

1.1 Edge-based estimation

A better understanding of the dynamic properties and
behavior of end-to-end paths would greatly benefit the
design and development of future network control al-
gorithms and protocols. It is unrealistic to expect in-
ternal routers to determine and report these proper-
ties, because this would require maintaining overwhelm-
ing amounts of per-flow state information. It becomes
necessary to infer the properties from edge-based mea-
surements, which are relatively easy and inexpensive to
make. In this light, several authors have proposed edge
based techniques for congestion control [1-3], estimat-
ing the bottleneck bandwidth [4-6], inferring multicast

*This work was supported by the NSF, grant no. ANI-9979465,
by ONR, grant no. N00014-99-10813, by DARPA, grant no. R
36400, and by Texas Instruments.

routing trees [6], performing admission control [7] and
detecting flows with the same congestion points [8].

In addition to their practicality, edge-based estima-
tion algorithms also provide a convenient abstraction of
network dynamics. Exactly modeling connections that
traverse multiple hops is hopelessly complex, both in
terms of overhead and analysis. If inference techniques
based on simplifying assumptions, for example a sin-
gle bottleneck assumption, are successful then it will be
possible to develop reduced complexity models that ac-
curately reflect network behavior.

Edge-based analysis and simplified end-to-end path
modeling are closely interwoven. Accurate estimates
of the volume of cross-traffic competing for the avail-
able bandwidth of a path have the potential to impact
a wide range of applications. Potential applications of
such estimates include (1) new end-to-end based con-
gestion control protocols, (2) workload balancing on
web servers (“rate based clocking”), (3) dynamic adjust-
ment of transmission rate to maximize quality of voice
and video-conferencing connections, and (4) pricing on
a connection basis according to the stress a transfer puts
on the network in its current state.

1.2 The Delphi algorithm

In this paper we propose and analyze the Delphi al-
gorithm, an inference procedure that uses the queuing
delay experienced by probe packets to estimate, over a
range of time scales, the load induced by cross-traffic
on the bottleneck link of an end-to-end path. The al-
gorithm is sender based requiring no collaboration from
the network and only little feedback from the receiver
as to when packets reach it.

Inherent in any probing scheme is an uncertainty prin-
ciple or “accuracy-sparsity” tradeoff. The volume of
cross-traffic entering a queue between two probes can
be computed exactly (assuming infinite clock precision)
from their delay spread at the receiver provided the
queue does not empty in between. Unfortunately, this
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situation is guaranteed only if the probes are very closely
spaced. However, sending long trains of narrowly spaced
probes will overwhelm the very cross-traffic we are try-
ing to measure. If probes are spaced far apart the queue
can empty in between which results in uncertainty in the
cross-traffic volume.

Delphi differs from earlier techniques for estimating
available bandwidth [9,10] in that it is model based. By
employing short bursts of packets these techniques are
naturally restricted to estimating cross-traffic only over
short time periods [9]. Other methods capable of dealign
with larger time scales use only an indirect measure
of the competing traffic load [3]. Delphi instead uses
probes spaced farther apart and improves the accuracy
in cross-traffic estimates by leveraging statistical knowl-
edge of network dynamics provided by a versatile traffic
model, the multifractal wavelet model (MWM) [11]. Ag-
gregated traffic on a link has been shown to be multi-
scale in nature (in a first approximation self-similar, or
fractal [12]) and more precisely multifractal [11,13-15].
The MWM captures the multifractal properties of traffic
that give it its bursty character.

Unique to Delphi is an efficient exponentially spaced
probing packet train that matches the binary tree struc-
ture underlying the MWM. “Chirp packet trains” bal-
ance the accuracy-sparsity tradeoff by being highly ac-
curate initially and highly sparse at their end. Probing
the path with a series of chirp trains, we use the inter-
packet delays at the receiver to estimate (using Bayesian
inference techniques) the cross-traffic load at a range of
scales. The efficiency of the MWM model and Delphi
allows them to be applied on-line, generating estimates
in real-time.

A significant advantage of Delphi is that it does not
require traffic statistics in advance. Starting with ar-
bitrary model parameters, Delphi estimates the cross-
traffic from which it updates its parameters.

To study the Delphi’s performance under different lev-
els of utilization and its parameter tracking capability,
we perform ns simulation experiments. Results indicate
that at higher utilization levels Delphi gives accurate
estimates of cross-traffic. Also, Delphi’s model parame-
ters converge to that of an MWM trained on the entire
cross-traffic trace from initial arbitrary values. At very
low utilization levels, however, Delphi gave less accurate
estimates and the model parameters did not converge to
those of the cross-traffic trace.

A fundamental assumption of Delphi is that most of
the queuing delay that probe packets face is at the bot-
tleneck queue. In a situation where the probe packets
are delayed at two queues, Delphi over-estimates the
cross-traffic and hence for congestion control purposes
is conservative.

1.3 Overview

We review the models underpinning the Delphi algo-
rithm (the MWM and simplified path model) in Section
2. Section 3 introduces Delphi by proposing methods
for dynamically estimating the critical parameters of the
MWM during the operation of the algorithm. We con-
duct a series of ns-2 simulations to study the Delphi’s
performance and demonstrate its practical applicability
in Section 4. Section 4 also explores the validity of the
simplified path model which lies at the core of the Del-
phi algorithm. Section 5 closes with a discussion and
conclusions.

2 Modeling Framework

In this section, we introduce Delphi’s intelligent probing
methodology. Its overall goal is the real-time inference
of end-to-end path network properties from measure-
ments made at the edge of the network. In particular,
Delphi attempts to estimate the cross-traffic intensity at
the bottleneck queue in the path, a concept we clarify
later in this section. Delphi is founded on the amalga-
mation of a simplified model of the end-to-end path and
a statistical model for the cross-traffic stream. In this
section, we first detail the simplified path model and
what can be deduced about traffic behavior on the ba-
sis of its adoption. We then explain and motivate the
traffic model.

2.1 Path modeling

After Bolot [4], we employ a simple model for the
path that captures its essential features (see Figure
1). Basically, we reduce the path to a single bottle-
neck link /router connected to source and receiver by in-
finitely fast links. In addition, we assume that the prop-
agation and processing delay of the path is constant and
use the constant D to represent this fixed component of
the overall end-to-end delay; a single-server queue with
finite buffer and FIFO service discipline models the vari-
able component of the delay. Entering this queue is both
the traffic between source and receiver and a cross-traffic
stream, which is the superposition of all the other con-
nections that share network resources utilized by the
path. The service rate C is related to the slowest link
speed or queue service rate along the path; this is the
bottleneck queue.

We now define some terminology. The intensity Br
at time-scale T' denotes the number of bytes of cross-
traffic that arrive in time-interval 7. We call the av-
erage amount of cross-traffic per second that could be
inserted by the source of the path over a time-interval
T the dynamic available bandwidth at time-scale T', and
denote it Dy. More specifically, if we use @) to denote
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Figure 1: Simplified cross-traffic model for an end-
to-end path.

the index set of the queues in the path, and C; and By (%)
to denote, respectively, the bandwidth and cross-traffic
intensity of the i-th queue (i € Q), then:

Dy = min [ (1)

CiT — Br(i)
1€Q '

T

Generally, we expect that this minimum arises at the
bottleneck queue.

We use the term virtual cross-traffic of an end-to-end
path to denote the aggregated cross-traffic that must
be inserted in the single queue model so that the dy-
namic available bandwidth measured using the simpli-
fied model is the same as that along the entire multi-hop
path obtained from (1). Figure 2 depicts the relation-
ship between dynamic available bandwidth and virtual
cross-traffic.

The specific aim of the Delphi algorithm is the dy-
namic inference of the intensity Bt of the cross-traffic
present at the bottleneck queue over a range of different
time scales T. In performing this inference, the algo-
rithm makes a fundamental assumption, namely that
the delay in excess to the constant propagation delay
observed on the path is due to the cross-traffic on the
bottleneck link alone. In many cases, this corresponds
to estimating the virtual cross-traffic of the path and
thus allows the development of a piecewise constant es-
timate of the path’s dynamic available bandwidth. Sec-
tion 4 explores the behavior of the algorithm when the
delay assumption is not valid. In such circumstances,
knowledge of the cross-traffic at the bottleneck queue
no longer leads to the dynamic available bandwidth; the
virtual cross-traffic of the path is then the quantity that
must be estimated.

If we transmit two probe packets of size P bytes at
times to and t; = tg + T, then provided the queue does
not empty between the queue-entry times of the first
and second probes, the time difference between the ar-
rival times ag and a; at the receiver is ideally identical
with the inter-departure time at the queue. This time
is proportional to the number of bytes in the queue over
the time-period T

Br = C(ay — ao) — P. 2)

mean traffic over T

dynamic available bandwidth
A

(@]

\ virtual
cross-traffic

bytes/sec—

T 2T 3T 4T time—

Figure 2: Dynamic available bandwidth at time-
scale T, together with a plot of virtual cross-
traffic of the path.

Unfortunately, if the queue does empty between probe-
packet arrivals, then the inter-arrival spread can sub-
stantially overestimate the cross-traffic arriving in the
period T'.

For probe packets of size P, we use Tnrgg = P/C
to denote the coarsest time-scale that ensures that the
queue cannot empty between the probe arrivals. If we
could send probe-trains that were this finely spaced,
then there would be no risk of underestimation. Unfor-
tunately, such fine scale probing is impossible because
it overwhelms the network after a short period and dis-
rupts the measured traffic. Rather, we propose the use
of a packet chirp as a probing device. The packet chirp
consists of probes sent in an exponential flight pattern,
with the first three probes spaced by a time T,, < TngqQ
and then the spacing between subsequent probes in-
creasing by a factor of two each time (see Figure 3).
The first three probes of the packet chirp thus provide
initial fine scale probing which can provide exact knowl-
edge of Bryp,-

The packet chirp probing strategy balances the trade-
off between (1) generating reliable and accurate esti-
mates and (2) overburdening and disturbing the net-
work. The fine-scale probing anchors cross-traffic esti-
mates made at coarser levels, but the rapid increase in
probe-spacing makes the probing efficient.

2.2 Multifractal wavelet model

Accurate estimation of the cross-traffic from a relatively
coarsely spaced train of probe packets is not possible
without some form of statistical model for the cross-
traffic. The cross-traffic stream is the superposition of
many data flows that share common Internet resources
with the probe connection. Such superpositions have
been shown to exhibit self-similarity [12], burstiness,
long-range dependence (LRD), and even multifractal be-
havior [11,13-15], all of which can have a major impact
on network performance. These characteristics can be
captured with an appropriate statistical traffic model.
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Figure 3: Packet chirp probe train has an expo-
nential flight pattern to balance the trade-off be-
tween accuracy and sparsity.

Our model of choice for the cross-traffic is the mul-
tifractal wavelet model (MWM) [11,14]. The MWM is
based on a computationally efficient tree structure which
represents the cross-traffic load at multiple aggregation
scales on a binary tree (see Figure 4(a)). The MWM’s
tree is closely related to the Haar wavelet system and
hence the term “wavelet” in its name [11].

We use Ty to denote the time-interval between the
first and last probes in the packet train. Within
this interval, the tree coefficients Ujg, 7 > 0, k =
0,1,...,29 — 1, correspond to the total sum of cross-
traffic bytes arriving at the model queue in the interval
[2=9kTy, 277 (k + 1)Ty]. Here j denotes the scale of in-
terest (see Figure 3). Note that each parent coefficient
is the sum of its two children

Ujk = Uji1,2k + Ujt1,2641- (3)

Note that we take a different normalization than in [11,
14]. Thus, we can move up the tree from some finest
scale to obtain all Uj x at coarser scales. To move down
the tree while ensuring that (3) is preserved, we model
the parent bytes Uj 1 as split between its children by a
random factor:

Ujt1,2¢ = Bjw Ujk s, Ujtroer = (1= Bj) Ui (4)

with Bj; a random variable distributed between 0 and
1 (see Figure 4(b)). The use of symmetric beta random
variables for the multipliers B, is proposed in [11].
So the MWM is a parametric model for bursty non-
Gaussian traffic. Its parameters are (1) a global mean-
rate parameter (the aggregate at the coarsest scale) and
(2) beta multiplier parameters (one for each scale).

To train the MWM to a target traffic data set, we
simply flow up the tree to form the Uj, collect their
statistics, and estimate the beta parameters (see [11,14]
for the details). Delphi does not have access to the Uj
(indeed, it is a subset of these that we are attempting

LL 1,2k+1

L‘f+2,4k+2 l'J+2,4k+3

Uj+1,2k+1

Figure 4: Multifractal wavelet model (MWM). (a)
Binary tree structure of aggregated traffic. (b)
Beta multipliers split parent aggregate into two
child aggregates at the next finer scale.

to infer); it becomes necessary to jointly infer the ap-
propriate beta parameters and the traffic. We outline
a sequential adaptive algorithm in Section 3 that per-
forms this estimation. The MWM can match the exact
multiscale second-order statistics of a traffic trace and
provides a much closer match of the higher-order statis-
tics (non-Gaussianity) that lead to burstiness than other
possible traffic models [12,16].

Most importantly, the MWM provides a natural and
efficient means to estimate, given the beta parameters,
the queuing behavior of a synthetic trace [17]. The mul-
tiscale quewing formula (MSQ) approximates the tail
queue probabilities for arbitrary buffer sizes (not just
asymptotic). We use the derivative of the MSQ to ob-
tain a probability density function for queue sizes. The
computational efficiency, and queuing formula approxi-
mation of the MWM make it a natural modeling frame-
work for our cross-traffic estimation algorithm.

3 MWM-based Inference Algo-
rithm

In this section, we present the Delphi algorithm itself
which estimates the amount of cross-traffic that arrives
in the time interval between the arrival at the queue in
our model (recall Figure 1) of the first and last probe
packets of a packet chirp. We model the cross-traffic as
an MWM process with unknown beta parameters. In a
simpler form, the Delphi algorithm uses fixed beta pa-
rameters that have been estimated from previous mea-
surements. In the latter part of this section we detail
a method for adaptively estimating the beta parameter
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estimates on the fly as traffic estimates are generated.

Delphi attempts to form reliable estimates whilst
transmitting as few packets as possible. It does this by
sending a packet “chirp” occupying the time-interval Tp;
the interval is partitioned according to the exponential
spacing of the probes. Figure 3 depicts this exponen-
tial flight pattern and its natural relationship with the
MWM tree. If we send n+ 2 probes in the packet chirp,
then Ty labels the interval between the first and last
probes, T} the interval between the first and second last,
and so on, such that T3, is the interval between the first
and second probes. The probe structure guarantees that
Tn < TnEQ, the maximum separation between probes
that ensures that the queue does not empty between
probe arrivals. For dynamic measurements, Delphi is-
sues a new chirp every Ty seconds to obtain a piecewise
constant, estimate of the cross-traffic load.

Estimation of the cross-traffic arriving in the inter-
val T, requires an estimate for the cross-traffic that ap-
peared in the interval T;, which in turn needs an esti-
mate of the cross-traffic that appeared in the interval T5
and so on. This recursive requirement flows down the
tree until it hits 7},—1, at which point the distance be-
tween probes is such that the queue is guaranteed not to
empty (recall (1)), and an exact measurement of cross-
traffic is available. Once this point has been reached,
the algorithm flows back up the tree, calling an inference
procedure to estimate U; for i = (n — 2),(n —1),...,0.
See Figure 5 for pseudo-code detailing the nature of the
Delphi algorithm.

The inference procedure (infer in Figure 5) develops
an approximate maximum likelihood estimate. When
we assume that the bottleneck bandwidth is known, the
delay each probe experiences ideally provides a instanta-
neous measure of the bottleneck queue size, which we de-
note g¢; for the i-th probe (see Figure 3). This measure-
ment is usually noisy due to the granularity of clocks,
the drift between sender and receiver clocks and addi-
tional queuing delays at other queues along the path.
At time scale n — 2, we wish to maximize the likelihood
of jointly observing both the measured traffic over T),_;
and the measured queue size q4:

p(CI4|Un—1; un—2) p(un—l |un—2)
(5)

We approximate the probability of observing ¢4 given
the traffic arriving in T,,_; and T,,_» as the probabil-
ity of observing g4 given the traffic arriving only in the
latter half of T;,_5. We are left with the expression

P(Un—1,q4|Un—2) =

P(Un—1,qs|Un—2) = P(gs|tn—2 — Un—1) P(Un—1|Un—2).

The first term on the right hand side can be approxi-
mately evaluated using the MSQ formula [17]; the sec-

ond term is equal to the appropriate beta distribution
in the MWM model. We maximize this likelihood over
the range of possible u,_o values (which is constrained
by the queue sizes g3 and ¢4). Now we have an esti-
mate u,_» that can be used to generate an estimate of
Un_3 by maximizing the approximate likelihood func-
tion p(in, s, qs|un_3). The process continues until an
estimate has been formed for ug.

Delphi uses the bandwidth C' to translate delays into
traffic volumes. Without C Delphi can still classify the
cross-traffic volumes as high or low but cannot scale
them to obtain the traffic in bytes. Also the value Txgg
depends on C'. However, Delphi does not require the ini-
tial probe packets to be spaced closer than Tngg and
can estimate cross-traffic at the finest time scale in the
same fashion as at coarser scales.

In the form proposed above the Delphi algorithm re-
lies on prior estimation of the beta multiplier parameters
of the MWM that best fits the traffic. We now propose
a method to adapt the beta parameters on-line while
the cross-traffic estimation is conducted. The method
is similar to parameter adaptation techniques that un-
derpin sequential estimation procedures in problems as
diverse as speech processing and target tracking. At the
commencement, of the Delphi algorithm, we choose an
initial estimate of the beta multipliers, which may be
based on previous measurements or may be completely
arbitrary. We then begin to estimate cross-traffic using
these initial parameters. After we have made K such es-
timates, we use the sample second-moments of the cross-
traffic estimates to obtain an instantaneous estimate of
multiplier variances using

E[B] = E[U},,]/E[U]]. (6)
We then update the MWM parameters using

new variance = « X instantaneous estimate

+(1 — @) x current variance (7)

where a € [0,1] is a constant. Smaller values of « give
rise to smoother changes in parameters. We could also
choose different values of alpha to update parameters
at different time scales depending on the smoothness
required. In this paper we set @ = 0.2. Figure 8 in Sec-
tion 4 demonstrates that this method generates multi-
plier estimates that converge to the same values derived
from model matching based on the entire traffic trace.

4 Simulation Experiments

In order to test Delphi we conduct several simulation
experiments using the LBNL Network Simulator (ns
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Delphi Algorithm
procedure main (q,To.C,n) {

ug = determine_traffic(q,To,C,n)
return ug

}

procedure determine_traffic(q,T,C k) {
if (T < 2TNEQ)
u=gqk—qk-1+ TC
return u

else
m = determine_traffic(q,T/2,C.k-1)

u = infer(q,T,C,m,k)

return u
end

}

procedure infer(q,T,C,m k)

m, g =0
m+qr + C—

maX(Qk—l + C - (T - l)Ca 0)7 Qk>0

u_max = m—+qx-qx_1 -C+TC

u_min =

return { € [u_min,u_max| that maximizes p(qx,m | u)

Figure 5: The Delphi algorithm: ¢ denotes the
vector of queue measurements, 7y the time in-
terval of interest, C the service rate of the model
queue, and n the number of probe-packets sent.
The range of possible values of traffic, that is
Umaz AN Uiy are computed assuming a discrete-
time FIFO queue taking into account the effect
of the previous probe on the queue size.

version 2) [18]. By varying the utilization, we ob-
serve that at higher utilization levels Delphi gives accu-
rate estimates with little bias while at low utilizations
it over-estimates the cross-traffic. Over-estimating the
cross-traffic corresponds to under-estimating the avail-
able bandwidth which is conservative for congestion con-
trol purposes. In addition, at higher utilization levels
the Delphi’s model parameters converged to those of an
MWM trained on the cross-traffic while at low utiliza-
tion the parameters did not converge. Experiments with
different buffer sizes showed little change in Delphi’s per-
formance so we do not report their details here.

To gain insight into Delphi’s performance when the
underlying assumption of a single bottleneck is invalid,
we perform trace driven simulations. Results indicate
that in situations where the probe packets experience
significant delay at links other than the one with the
smallest link speed on the path, Delphi gives conserva-
tive estimates for cross traffic and available bandwidth.

Figure 6: Network configuration for ns-2 simula-
tions with bottleneck link (A, B).

4.1 ns Experiments

We simulated a bottleneck network environment where
several concurrent connections are multiplexed over a
shared bottleneck link. Figure 6 shows the network
topology, comprising 420 web clients and 40 web servers.
Table 1 gives the link characteristics of all the links in
the network.

The clients engage in large-scale web traffic across the
bottleneck link to the servers. The simulation is carried
out for over 1500 seconds (simulation time) and number
of sessions is varied to obtain different link utilizations.
Each web session has 350 pages whose sizes are chosen
from a heavy tailed distribution. Node P sends chirps
of probe packets of size 900 bytes to node Q using the
UDP protocol.

The minimum spacing between probe packets is set to
TnEeg = 2.4 ms which corresponds to a bottleneck link
capacity of 3 Mbps and probe packet size of 900 bytes.
This ensures that the queue does not empty between the
first three probes in every chirp. We discarded the first
1000 seconds of the simulation to eliminate transients.
The Delphi algorithm assumes that the bottleneck band-
width C is known, so we supplied it with the configu-
ration value; alternatively it could have been estimated
beforehand using techniques outlined in [5].

Delphi computes the queuing delay of a probe packet
as

queuing delay = receive time — transmit time

—constant delay. (8)

The constant delay equals the sum of propagation delay
and service time. This is set equal to the minimum of
all delays experienced by probe packets while traversing
across the network. Note that in a simulation environ-
ment synchronized clocks and error free values of these
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Table 1: Link and source parameters for the net-
work configuration depicted in Figure 6 as used
in the ns-2 simulation experiments. Ula,b] de-
notes a uniform random variable over the range

[a, b].

Link Band Width | Latency
(Mbps) (ms)
AB 3 20
BD 10 20
DE 1.5 20
DF 1.5 30
DG 1.5 40
DH 1.5 60
DP 1.5 60
ES1 to GS10 10 U[10,100
FS11 to FS20 10 U[10,100
GS21 to GS30 10 U[10,100
HS31 to HS40 10 U[10,100
AC1 to AC420 U[22,32 U[10,100
AQ U[22,32 U[10,100

quantities are available unlike in a real world situation.
However, synchronized clocks at the sender and receiver
are not necessary in practice because the difference in
clocks at the sender and receiver can be incorporated
into the constant delay term. Other problems like clock
drift and resetting can however lead to errors in (8).

In all experiments we estimate the cross-traffic arriv-
ing over time-slots of 307.2ms (the 7th aggregation level
in the tree of Figure 4), sending a chirp of 8 probe pack-
ets in each time-slot. The probe traffic was thus equal
to 6.25% of the bandwidth. We set the parameter «
of (7) for updating the model parameters to 0.2. The
buffer size was fixed at 50 packets.

4.2 Utilization effects

We changed the number of web sessions to obtain dif-
ferent utilization levels. Variance-time plots [12] show
that the cross-traffic is LRD with Hurst parameters of
0.74, 0.73 and 0.61 for the experiments with 39%, 65%
and 96% utilization respectively.

Delphi performed better with increasing utilization
as we observe from Figure 7. Notice from Figure 7 that
the traffic is more bursty at the finer time scale than
at the coarse scale. Since in the process of estimating
the traffic at coarser time scales Delphi gathers statistics
at finer time scales too, it can serve target applications
that require information about the burstiness of traffic
at multiple time scales.

As a measure of accuracy we use the sample mean

and standard deviation of the the error which we nor-
malize by dividing by the sample mean of the entire
cross-traffic. See Table 2 for details. At high utilizations
Delphi gives accurate estimates with little bias while at
low utilizations it performs less accurately. Intuitively
at lower utilization levels the probe packets encounter
smaller queues more often and the smaller the queue size
the longer the queue can stay empty between the arrival
of two probe packets. This implies a greater uncertainty
in the cross-traffic volume.

From Table 2, we observe that at low utilization Del-
phi gives estimates with a positive bias, that is it over-
estimates the cross-traffic. This corresponds to under-
estimating the available bandwidth which is conserva-
tive for congestion control purposes. Also if competing
cross-traffic volumes are low, an error of the order of
magnitude of the cross-traffic will not significantly affect
the estimated available bandwidth. This result at low
utilization thus does not reflect a major short-coming of
Delphi.

4.3 Tracking capability

To test Delphi’s adaptive algorithm we initially set the
variance of the beta multipliers at all time scales equal
to 0.083. This corresponds to a beta parameter of 1
for the multipliers [11]. Notice from Figure 8(a) that
the variances of the multipliers track the correct val-
ues after few iterations. Also observe from Figure 8(b)
that the initial estimates of traffic have larger errors be-
cause of incorrect model parameters and that the error
reduces with improved model parameters. This demon-
strates that the Delphi does not require prior knowledge
of cross-traffic statistics. The utilization for this exper-
iment was 65%.

The improvement in inference with correct parame-
ter values indicates that the MWM parameters indeed
contain valuable statistical information about the cross-
traffic. It also suggests that incorrect statistical knowl-
edge or oversimplified traffic models can give erroneous
estimates.

Delphi uses cross-traffic estimates to update model
parameters. As a result, in the experiment with 39%
utilization the model parameters did not converge be-
cause of less accurate cross-traffic estimates.

4.4 Validity of the model

We used trace-driven experiments to explore the valid-
ity of some of the assumptions underpinning our model.
The use of the simplified path model depicted in Fig-
ure 1 hinges on the bottleneck queue providing the ma-
jor queuing delay in the path.

This assumption can be invalid if the cross-traffic at
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Figure 7: (a) Cross-traffic estimates for utiliza-
tion of 65%. Observe that the estimates are ac-
curate. (b) Cross-traffic estimates for 39% uti-
lization. Observe that the estimates give greater
errors but are generally conservative.

another queue in the path is substantially heavier than
that at the bottleneck queue. Therefore we experi-
mented with the two queue system depicted in Figure 9.
By applying independent cross-traffic streams (X; at
the bottleneck queue and X, at the second queue) to
the two queues, we were able to examine the effects of
heavy cross-traffic at the second queue.

A somewhat simple-minded view of the system pro-
vides valuable intuition. Say we send two probes and
neither queue empties between the arrivals of the probes.
If we denote the cross-traffic appearing between the two
probes at the first queue z; and that at the second queue
xa, then the total delay induced by the system (ignoring
propagation and service delays) is

d=m1/01+.1'2/02. (9)

The Delphi model assumes that this delay is entirely
due to the bottleneck queue; its estimate of cross-traffic
is £ = 1 + C122/Cs. The second term is an error term,
but because we assume that Cy > Cj, it only has a
substantial effect on the estimate if x5 is much larger
than z;.

We examined the effect of the error term by conduct-
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Figure 8: (a) Adaptive estimates of variance of
multipliers over time. The horizontal lines corre-
spond to the sample variances of the multipliers
estimated by matching the multifractal model to
the entire traffic trace (i.e., the best model pa-
rameters we can achieve). Observe that from an
arbitrary initial value of 0.083, the model param-
eters track the sample variances (b) Cross-traffic
estimates over time. Notice that the error in es-
timates decrease over time as the model param-
eters track those of the actual cross-traffic.

ing an experiment in which we set the bandwidth at the
two congestion points to C; = 1 and Cy = 5 bytes/time
unit. We used second-order self-similar MWM traces
with Hurst parameter H = 0.8 as the cross-traffic at
both queues [12]. The mean and standard deviation of
cross-traffic at the finest time-scale were chosen to equal
half the bandwidth at their corresponding queues.

Using this experimental setup, we applied the Delphi
algorithm to generate estimates of the cross-traffic at
the bottleneck queue. Figure 10(a) plots the estimates
(normalized by the true cross-traffic at the bottleneck)
against the ratio of the true cross-traffics. The lines
show the asymptotic values we anticipate from (9); for
low ratios, the first term dominates and for high ratios,
the second term dominates.

In Section 2, we explained that the dynamic available
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Table 2: The error of inference decreases with
increasing utilization. A positive mean error
implies generally conservative estimates at that
level of utilization.

Utilization || Mean Error | Std. of Error
(%) (normalized) | (normalized)
39.09 0.27 0.42
65.34 0.1 0.23
96.04 -0.023 0.044

X2
Probes Cc1 \ Cc2
O—0O0—— | [O—
/ Probes

X1
X1

Figure 9: A two queue system used to validate
model assumptions. The first queue is the bot-
tleneck with bandwidth C; the second has band-
width C>. The queues experience independent
cross-traffic streams X; and X,. Probe traffic
flows through both queues.

bandwidth is really related to virtual cross-traffic rather
than the cross-traffic at the bottleneck link. Virtual
cross-traffic and bottleneck cross-traffic are only equiv-
alent in our experiment when the ratio xz2/x; is small.
Figure 10(b) compares the dynamic available bandwidth
estimated using the Delphi algorithm to the true dy-
namic available bandwidth. Clearly even as x2 becomes
substantial (640 bytes is the maximum traffic that can
be sent on the link over the time-scale studied), the Del-
phi estimate remains reasonable. Moreover, it becomes
increasingly conservative, which is desirable behavior in
times of heavy load.

5 Discussion

The ability to estimate cross-traffic loads is key to the
development of a better understanding of Internet dy-
namics, and can potentially be used in the design of
bandwidth efficient transport protocols and rate-based
clocking methodologies.

We have introduced an algorithm (Delphi) that uses
a novel probing strategy to dynamically estimate the
cross-traffic load confronted along an end-to-end net-
work path. Delphi can adopt an efficient probing pat-
tern (the packet chirp) because our estimation proce-

w »
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o o

0 100 200 300 400 500 600
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Figure 10: (a) The ratio between the Delphi esti-
mate and the true value of the cross-traffic z; at
the bottleneck queue of the system in Figure 9
as a function of the ratio between z; and the
cross-traffic at the second queue z;. The lines de-
pict anticipate asymptotics from (9). (b) The er-
ror between Delphi-estimated and true dynamic
available bandwidth Dr (see (1)) as a function
of 2, with bottleneck bandwidth of 1 byte/time
unit.

dure is model-based. This is critical when we wish to
incorporate as much prior information about network
behavior as possible so that we can derive accurate es-
timates from few measurements. It is fully adaptive
and does not require a priori traffic statistics, is mainly
sender-based requiring minor timing information from
the receiver, and does not require synchronized clocks
at the sender and receiver.

Simulations showed that Delphi gave smaller errors
at higher utilization levels. This is not surprising, since
probe packets are likely to encounter larger queues at
high utilization levels. Larger queues imply a smaller
chance of the queue emptying between the probes and
hence a smaller uncertainty in cross-traffic volume. At
low utilizations the errors in traffic estimates prevented
Delphi from tracking the cross-traffic statistics. How-
ever at low utilization, errors as large as the traffic itself
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may not cause a large error in the estimated available
bandwidth. Moreover, at low utilizations the Delphi
generally over-estimates the cross-traffic which implies
that for control purposes it is conservative.

A number of issues must still be addressed, and
several algorithmic improvements suggest themselves.
There are numerous practical issues we have not dis-
cussed in detail here, such as time-stamping issues and
receiver /source-side algorithmic structure. Delphi needs
to be modified to take dropped probes into account.
At present chirps with dropped packets are discarded.
A number of potential inaccuracies could arise, includ-
ing the approximate nature of the multi-scale queuing
formula. Our algorithm assumes a knowledge of bot-
tleneck capacity; ideally capacity estimation should be
performed in conjunction with the cross-traffic estima-
tion. Knowledge about bottleneck capacity is however
not essential for using the algorithm. Delphi can pro-
vide estimates of relative cross-traffic, that is not in ab-
solute measure of bytes but as a relative comparison
between cross-traffic volumes over different time inter-
vals. There is also the question as to whether it is more
natural to characterize path behavior by quantities such
as dynamic end-to-end cross-traffic delays rather than
explicit traffic estimates. Different characterizations of
path behavior require new models portraying alternative
spectra of system effects. Moreover, other packet probe
configurations should be examined, including random
and protocol-determined (completely passive) flight pat-
terns.
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