Version 2, June 14, 2000 COST257TD(99)31

Multifractal products of stochastic processes:
A preview

Petteri Mannersalo* Ilkka Norros' Rudolf Riedit

Abstract

Motivated by the need for multifractal processes with stationary in-
crements we introduce a construction of random multifractal measures
based on iterative multiplication of stationary stochastic processes.
We establish conditions for the £2-convergence and non-degeneracy
of the limit process in a general setting. Proceeding then to multiply-
ing piecewise constant processes, we proof continuity of the limit and
show some other interesting properties.

1 Introduction

This study is strongly motivated by the seek of new models for teletraffic.
In various recent papers (see e.g. [RLV97, LVR97, MN97, FGW98)), it has
been demonstrated that teletraffic exhibits multifractal properties. There
are many ways to construct random multifractal measures varying from the
simple binomial measures to measures generated by branching processes (see
e.g., [Man72, Man74, Fal94, AP96, Pat97, RCRB98]. In teletraffic model-
ing, we would like to have, in addition to simplicity of the construction,
also stationarity of the increments. Unfortunately, most of the multifractal
models introduced so far lack this property. Although, Jaffard has shown
that Lévy processes are multifractal [Jaf96], but unfortunately (from the
point of teletraffic modeling) increments of a Lévy process are, in addition
to stationary, also independent. Moreover, Lévy processes have a linear mul-
tifractal spectrum while real data traffic exhibits strictly concave spectra
[RLV97, LVR97, MN97, RCRB98].
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In its simplest form our model is based on the multiplication of inde-

pendent rescaled stochastic processes A®)(-) L A(b*-) which are piecewise
constant. It is instructive to compare it to a Fourier decomposition where
one represents or constructs a process by superposition of oscillations sin(\;t).
In multiplying rather than adding rescaled versions of a ‘mother’ process we
obtain a process with novel properties which are best understood not in an
additive analysis, but in a multiplicative one.

Moreover, processes emerging from multiplicative construction schemes
have positive increments and exhibit typically a ‘spiky’ appearance. The so-
called multifractal analysis describes the local structure of a process in terms
of scaling ezponents, accounting for (being adapted to) the multiplicative
structure.

With our scheme we generalize the construction of the binomial cascade’
in randomizing it in a natural and stationary way. As with the cascades,
an infinite product of random processes will typically be zero, and one has
to take a distributional limit rather than pointwise limit. In more simple
words, a multiplier A®¥(¢) should not be evaluated in points but should be
seen as redistributing or re-partitioning mass. Again in other words, A®(t)
can be thought of as a local change in the arrival rate where one is interested
actually in the integrated ‘total load’ process. Consequently, we set

a0 = [ o) as= | tﬁA(i) (5) ds.

This paper is a preview of [MNR99]. First, a construction of multifractal
measures based on iterative multiplication of stationary stochastic processes
is introduced. After that the case of piecewise constant processes with ex-
ponentially distributed sojourn times is analyzed. Finally, a glance of the
related multifractal analysis is given.

2 Construction

Let us consider a family of independent positive stationary processes {A® (¢)}
with

EAO(t) = 1, (1)

cov(AD(t), AV (s)) = o®p; (s —1) (2)

!A deterministic generalization of binomial cascades was introduced by Coppens and
Mandelbrot [CM99]. Their construction of multifractal measures is based on multiplication
a periodically extended function with copies itself.



for all + and s in R. In this paper, we assume that the scaled covariance

functions p;, i = 0,1, ..., satisfy following assumptions:
pi(0) = 1, (3)
pi(z) > 0, VreR, (4)
pi(z) = p(-z), VzekR (5)
pi(x) < pi(y), whenever [z] > |y|. (6)

Thus all the processes are positively correlated and they have the same finite
variance o?. Furthermore, we assume that correlation decreases as index i

grows, more precisely, for all z #£ 0
pi(r) < pi(z), whenever i > j. (7)

Such a family can be constructed, for example, from a single positive
correlated process with stationary increments simply by changing time scale.
In other words, by setting

AD @) L A(g(i)t), i=0,1,...,

where ¢ is an arbitrary positive monotonically increasing unbounded func-
tion. Usually we have g(i) = b, b > 1.
Let us consider a product of processes satisfying assumptions (1)—(7)

An(t) = f[ AD (1),

This process is almost surely degenerate at the limit, since E(A,,(¢)) = 1 for
all n and the limit process lim,_,o, A,(f) = 0 almost surely. The latter is
seen by taking logarithm of the product,

log A (t) = > log AD(1),
=0

and interpreting it is as a random walk. Because of the negative drift, this
random walk will end up in minus infinity almost surely.
In stead of point wise limits, one can consider the cumulative process

A1) = /0 A(s) ds = /0 [1A9 s) ds. (8)

and its limit. The main result of this paper is a sufficient condition for
existence of a non-degenerate limit A,.

Recall the following two basic properties of martingales (for proofs see,
e.g. [Wil91]).



Lemma 2.1. Let M be a supermartingale bounded in Ly: sup, E(|M,]) <
oo. Then, almost surely, M., = lim M,, exists and is finite.

Lemma 2.2. Let M = (M, : n > 0) be a martingale for which M, € Ly for
all n. Then M 1is bounded in Lo if and only if

> E [(My — My_1)*] < oo (9)

and when this obtains M, — M., almost surely and in L.

Interpreting A(t) = (A,(t) : n > 0) as a discrete martingale, it is
straightforward to show that A, (¢) exists and is finite almost surely. This
does not guarantee the £; convergence, as seen in the case of A,(t), and
we need something more. The question of non-degeneracy in a very gen-
eral setup is studied by Kahane [Kah87]. He considers random measures
Voo (E) = limy, o |, » Andv for arbitrary Radon measures v and positive mar-
tingales A,,. In our work, v is the Lebesgue measure and our interests are in
local scaling structure of the limiting process f(f dvs. To this end, we study
the Lo-case only. This is natural since in applications one often relies or is
interested in second order statistics.

Proposition 2.1. For allt > 0, A(t) = (A,(t) : n > 0) is bounded in Lo if
and only if

Zan(t) < 00, (10)

where ap(t) = fot pn (@) T102) (1 + 0 pi(x))da. Furthermore, Ay(t) — Aoo(t)
almost surely and in Lo if condition (10) holds true.

Proof. Fix t > 0. Clearly, by Fubini, A(t) = {A,(¢)} is a martingale with re-
spect to {(F,,P)}, where F,, = a(A@ (), AD(¢),... ,A™(¢)) (an increasing
sequence of o-algebras). A, (t) € L, for all finite n and thus it is enough to
study when inequality (9) is valid.

Let us define

dn(t) =E [(An(t) - Anfl(t))ﬂ )
By the definition of A, and assumptions (1) and (2),

dn(t) = E/Ot /Ot (A(n) (t’) _ 1) (A(n) (6) _ 1) Anfl(t,) An—l(f) dtldf
= /Ot /Ot cov (A(n) (t), A®) (g) E (A1 (#)An_1 (€)) di'de

n—1

t t
B /0 /0 o on(lt' = &) [J(1 + (|t — €]) dt'dg.

1=0



The change of variables, x = t' — &, gives

—

d.(t) = 202/0(t—x)pn(x)H(lJrUQpi(x)) dz.

i=0
Thus,

n—1

d,(t) < 207t /Ot pn(@) || (1 + 0%pi(2))dx = 20%ta,(t)

i

Il
=)

and by assumption (6)

n—1

t/2
do(t) > a2t/0 on(@) [1(1 + 02 = o*tan(t/2). (1)

i=0
Combine the above with a,(t) < 2a,(t/2) to get

1

50%% (t) < dn(t) < 20%ta,(t).

Since A, is positive, nondecreasing process, the statement holds for all
t. O

In many applications, simplified forms of the previous proposition are
more usable. The following lemmas show that p;(¢) = f[f pi(z)dz plays an
essential role in the boundedness of A(t).

Corollary 1. A(t) = (A,(t) : n > 0) is bounded in Ly if

o0

Z(l + 0?2)"p,(t) < 0. (12)

n=0

Proof. Since p;(z) <1 for all z,

n—1

) = [ s [T+t ds

i=0
< 2071+ 02)"pa(t).
0

As a direct application of the previous results consider a family of pro-
cesses with exponentially decaying covariances.



Corollary 2. If covariance of process A is
cov (AD (1), AD(s5)) = o exp(—vb'|t — s]), i=0,1,...,

then A(t) = (A, (t)) is bounded in Ly if and only if b > 1 + 0. When this
happens A, — Ay almost surely and in L.

Proof. The sufficiency follows directly from corollary 1, just insert p,(z) =
e ""7% into the definition of p,(t).
To prove necessity we need a little more. Since

1 g .
dn(t) > 5O_Qt/ €_b ux(1+o_2€—ub x)n dl‘,
0

integration gives

o > 4F o) ({ _ (L4 %N (1+07)"
" v (1+ o2)ntl (n+1)b"
1+0* (1+0%)"
> 13
- 2 (n+ 1) (13)
if n is large enough. Thus >~ d,, () diverges if b < 1 + o2 O

If the covariance decays slower then the convergence condition is naturally
stricter.

Corollary 3. If covariance of process A is
cov (A(i)(t),A(i)(s)) ~ a?b'(t — s)| 7", i=0,1,..., (n>0),

then A(t) = (A,(t)) is bounded in Ly if b > (1 + 02)max{1’%}. When this
happens A, — As almost surely and in L.

Proof. Two different cases are recognized. If n € (0,1), then the processes
are long range dependent, otherwise only sort range dependence is seen.
The original scaled covariance function can be bounded above by choosing
constant C' so that p(z) = min{l,C|z|~"} > p(x) for all x. Assume that

t>Cub™, then
n o

¢ 1
Pn(t §/ () de =Cnb™""——+ CHb™ " —n0o.
< [ nlo) e

If n € (0, 1) the second term dominates and the £, condition is b > (1+02)/",
Otherwise, the first term is dominant and the condition is same as in the
exponential case, i.e., b > 1 4 o2, O



The following corollary gives a simple condition when we do not have £,
convergence.

Corollary 4. A = (A,(t) : n > 0) is unbounded in Lo if > > (1402 p,(t))"pn(t)
diverges.

Proof. By the decrease of p;(z), x € [0, 00),

n—1

w) = [ s [T+t ds

1=0
t

> u+a%4mjAp4@m. (14)

O

Notice that we have considered only conditions for £, boundedness. If
A(t) is not bounded in Ly, it is still possible that the limit measure is non-
degenerate, i.e., the limit may exist in the £; sense. The sufficient condition
for £; convergence is uniform integrability of the family {A,(¢)}. The study
of this case is left for the future.

3 Product of Markov jump processes

Let us consider product processes which are constructed by taking indepen-
dent rescaled copies of the original (“mother”) process:

A LAGY), i=0,1,...,

where b > 1. Assume that the mother process A is a stationary piecewise
constant Markov process which has independent exponentially distributed
constant periods. We allow the length distribution of a constant period to
depend on the underlying state of the process, but we require transition rates
to be bounded both above and below:

P(A(t) constant on [t,t + A) | A(t) = z) = exp(—v(z)A),
where
Vmin < V() < Vmax Y x. (15)

Furthermore, we assume that the variance of A is finite and its covariance
decays exponentially.

Since the decay of the covariance is exponential, corollary 2 gives a suffi-
cient and necessary condition for L, boundedness, i.e., b > 1 + o2.
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As the first example, consider a stationary two-state Markov process A(t)
with transition rates v and v, on the state space S = {5, S2}. In order to
E(A(t)) = 1 the transitions rates must satisfy the equation

V951 1159

Vit v+

=1.

The covariance is given by
COV(A(t), A(s)) — 0-26—(u1+1/2)\s—t|,

where

S? S3
o? = 2Ly
V) + Uy

Constructing a family {A®} satisfying (1)-(7) from the “mother pro-
cesses” A by changing time

A LAGY), i=0,1,....

means that processes A(®), i = 0,1,. .., are independent birth-dead-processes
with transition rates b'v; and b'v,. The cumulative process A,(t) is as defined
in (8). A realization of this construction is seen in figure 1.
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Figure 1: Product of 2-state Markov processes. On the left, a realization of
process Az (t) with vy =2, v, =1/2, 51 =1/3, Sy =7/6 and b = 4. On the
right, the corresponding incremental process at resolution 0.001.

As the second example, let the mother process A be a piecewise constant
process with Exp(v) distributed i.i.d. lengths of periods. For each interval
we draw independently a random value M (multiplier) from a common dis-
tribution satisfying E(M) = 1. Thus process A™(t) is a piecewise constant
process whose covariance is given by

cov(A™(0)A™ () = var(M)e "1l = o2 p,, ().
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Figure 2: Independent multipliers. On the left, a realization of process A;(t)
with v = 1, b = 4, and multipliers from Gamma(3,1). On the right, the
corresponding incremental process at resolution 0.001.

3.1 Some properties

It easy to see that the limit process A, satisfies the “recursive” equation

A= /0 As) dA(bs), (16)

where
(i) the processes A and A are independent, and
(ii) the processes A and A are equally distributed.

This is the counterpart to equation (3) in [KP76]. Kahane and Peyriere
derive all their results from this equation. As regards their theorem 1, the
equivalence of conditions («), () and () is easy to establish in our case as
well with exactly same argument as theirs. The main result, the existence he
existence condition (§), remains an open problem in our case. We can only
state the existence condition in £, sense (see proposition 3.3).

Proposition 3.1. The following are equivalent:

(a) the a.s. martingale limit A (1) satisfies EA(1) = 1;

)

(b) the a.s. martingale limit Ay (1) satisfies EAx (1) > 0;

(c) the equation (16) has a solution such that EA(1) = 1.

Proof. Assume (c). By assumption, A can again be written as

At) = % /0 R(s) dA(bs),



where A is independent from A, ete. Denote A = A, A® = A ete. Then

1 n
B(A(D)AD, .. A0 = / [ AO@s) ds
0 =1

This martingale is uniformly integrable — but it is the same (in distribution
at least) as A,,(1)! Thus, (a) holds. The remaining implications (a)=-(b)=>(c)
are obvious. O

Proposition 3.2. Assume that the non-trivial integrable limit A = A ez-
ists and that EAlog A < logb and EA(1)log A(1) > oo. Then A is continu-
ous.

Proof. Denote by B the pure jump part of A:
= AA(s)
s<t

By proposition 3.1, (16) holds. Since no “new” jumps can be created in the
integration, (16) holds for B as well. Denote g(z) = zlogx. Now,

EYg(AB() = EX g (5A6)AB0s) )

s<1 s<1

= bEZg( (s/b)AB(s )>

s<1

_ bEZ[ (5/b)AB( )(logA(s/b)JrlOgABb(S))]

= EY A(s/b)AB(s) log +EZ (s/b) log A(s/b))AB(s)

= E)Y g(AB(s)) —log(b)EB(1) + E(A log A)EB(1).

s<1

where the second equality uses the fact that B has stationary increments. We
have EB(1) < EA(1) < oo and, since g is superadditive, EY ., g(AB(s)) <
Eg(B(1)) < Eg(A(1)) < co. If B is non-trivial, it follows that EAlogA =
log b, which is against assumptions. Thus, B = 0. O

Proposition 3.3. {A,(t)} is bounded in Ly if and only if b > 1+ c*. When
this happens A, — A almost surely and in L.

Proof. See corollary 2. O

In order to be able to say more about the behavior of the second moment,
we need the following technical lemma.

10



Lemma 3.1. If cov(A(s),A(t)) = o exp(—v|t—s|) for some constants o <
00, 0 < v < oo, then

(Aoo(t)— bofloo(bt)> < OfE [An (b1)?] . (17)

where

A (t) = lim HA (z/b)dx

n—00

Proof. By the recursion equation (16)

1 ~

Aalbr) = 3 /0 {(AO(s) — A©(0)) dA(bs).

Denote Z(s) = A0 (s) — A©(0). If 5,5, < ¢, then

EZ(s1)Z(s2) = 0*(p(0) + p(s1 — s2) — p(s1) — p(s2))
< 20%(1 — p(t)) < vt

Proposition 3.4. There exist constants C7 and Cy such that
Cit' P < BAL(t)2 < Cut'™ teo,1],

where § = 1 — log, EA%

11



Proof. Let us write the process Ay () in two parts

; 0 A (bt) + (Aoo(t) i fioo(bt)> :

where

Ao (t) = lim HA (z/b)dx

n—oo

Denote g(t) = EA? (t). Then

o) = “ETBAZ )+ (1)
= 1T 0+ ho),

where

(0) - 2
W) = E <Aoo(t) _A b(O)Aoo(bt)>

- [A“’; ) 10 <Aoo(t) - A(U;(O)Aw(bt))}

Let us first study how ¢(¢) behaves when ¢t = b=". Consider the ratio

g(t) B 1+0%  h(t)
gbt) gty

denote z,, = ¢g(b™") and z, = %, and take logarithm:

1+ 0?2
logz, = logx,_;+log 72 + 2

& 1+ o2
= logxg + Zlog ( = + zz>
i=1
o? & b?
= +;log< 1+02'Z”>

2

1
= logxy + nlog

+o

b2

1
= b, +nlog

where

b, = log$0+Zlog<1+1+022n>.

=1

12



Thus

n 1+0%\"
g(b ):ebn< b2 )

Trivially, e’ > zy = EA,(1)%. Neither the upper bound is too difficult
to find. By Holder’s inequality and lemma 3.1, h(t) < Cg(bt)(t + /1), thus
zn < (b7 +b""?) and

n b2
b, =1 1 1 n
og:vg—l—; og< +1+02z>

< logxy +/ log(1 4+ Cb */?)dx
1

o

< logxg—i-/ Ce3elosbdy,
1

< logxy+ —.

Next transform back by writing b™" = t,,:

1_|_0_2 —logtn/logh
g(tn):ebn(tn)< b2 )

9_ 10g(1+0’2)

= B(t,)t*" et = B(t,)t,",

where B(t) is bounded and § =1 — %. Then it is an easy exercise show

that the claim holds for an arbitrary ¢ € [0, 1]. O

The processes A, i = 0,1,...n — 1 determine the natural partitioning
of the real axis J" = {J'}, where J}'’s are the largest intervals with A, (¢) =
175 A9 (t) constant. We index intervals from left to right and J? denotes
the interval that contains the origin. A suitable scaling gives us a strong
control over the lengths of intervals on different partitions.

Lemma 3.2. For all n, there exists i.i.d. Exp(vimax/(b— 1)) distributed ran-
dom wvariables X, and i.i.d. Exp(vmin/b) distributed random variables X,
such that

Xy, <O"|Jp| < X,
for all k.

Proof. Let n be fixed. Given the states of processes A, i =0,...,n — 1,
on the intervals J;', the interval lengths |.J}’| are independent exponentially
distributed random variables. Let Z,, ; denote states of the n first processes
on interval J}, i.e.,

Zngk = (AOR), ..., AP=D(m).

13



The transition rate from state Z, j, is denoted by v(Z, ). Then the cumula-
tive distribution function (cdf) of b"™|.J}| is

ank(x) =P0"|J;| <) =1—exp(—v(Zy)x).

Although v depends on the underlying state process, it is always bounded
above

—_

— . 1—0b"
I/(Zn,k) S blymax = ﬁymax S Vmax/(b - 1)

Il
o

3

(all processes in the most rapidly changing state). Correspondingly, v is
bounded below

n—1
: 1-—-0b"
V(Zn,k) Z Zbll/min — ﬁymin Z Vmin/b

1=0

(all processes in the most stable state).

When generating process {|.J]'|}, we have freedom to choose whether to
first draw the length of an interval and after that the state on the next
interval, or vice versa. For our purposes the former suits better. With
the knowledge of the states of A®’s on JP | |JP| can be generated from
Uniform(0,1) distributed random variable {U } by setting b"[.J}'| = F, ' (Uy).
Associate a sequence of independent random variables {Uy} with seqilences
{X,} and {X}} by setting X, = G~ (Uy) and X, = F~'(U,), where

{ G(x) =1—exp (—pe*)
F(z) =1—exp (—%mal),

By the very definition X,’s are mutually independent, and so are X,’s too.
From

F(z) < Fg, , (v) < G(x) forall x>0,
follows that

Xy <O < X
for all k. 0

The above lemma means that we can approximate each partitioning path-
wise by a Poisson process with intensity ~ b".

14



4 Multifractal analysis

This section is strongly under construction. At the present stage, only some
basic ideas are shown and the details will be found in [MNR99]. The goal is to
developed multifractal machinery to deal with processes which automatically
form natural partitionings. The preliminary results given here concern only
processes constructed from a product of pathwise constant Markov jump
processes.

Let A, be generated by a product of piecewise constant processes and
consider the restriction of A, on the interval [0,1]. Each realization deter-
mines a random measure

proo([0, 7)) = Aso(?)-

An essential property of our processes is their multifractal scaling struc-
ture. As we already alluded to, the process A, is nowhere differentiable, in
other words A, (t) converges either to 0 or co. With this in mind it is most
informative to study the local regularity of A,,. To this end, we set

_ 10g piso (Ju (1))

) = g [ s)

where J,,(t) is the unique interval JJ' containing ¢. Then, the local Holder
exponent of ji, at t is defined as
a(t) == lim a,(1). (19)
n—o00
One should think of a/(t) as giving approximately? the degree of Holder reg-
ularity of A, at t.

A process is said to be multifractal, if a(t) changes erratically in time,
more precisely, the sets

Koi={t : an(t) - a} (20)

are all dense and, thus, highly interwoven. Assuming stationarity of incre-
ments only one of them can have full Lebesgue measure and the others must,
hence, have dimension strictly less than one. The multifractal spectrum

dim(K,) (21)

as a function of « gives a compact description of the ‘size’ of K, and the
multifractal structure of fio.

2Here we approximate balls with random intervals J"(t). We are working on proofing
that a(t) gives exact Holder regularity expect for a set of dimension zero if lengths of
intervals J;* behave enough uniformly.

15



To obtain a formula on dim(K,) we imitate the usual procedure of mul-
tifractal analysis which is to take g-th powers of the multipliers A® and to
consider the so obtained limiting measure 1. In order to have convergence
we define the auxiliary function

B(q) == q — 1 —log, IE[AY] (22)

and let A := A%P@-9t1 The peculiar form of 3 and A will become clear
instantly.

The basic tool for obtaining dim(K,) is a Frostman type lemma: One
shows that for o = (3'(q) the set K, has (almost surely) full 7-mass and that
the local scaling exponent of 7z is* 3*(«). The usual Frostman lemma allows
then to conclude that the Hausdorff dimension of K, is bounded below by
[*(a). This explains the peculiar form of £.

However, care has to be taken in this result as it speaks actually about
the Hausdorff dimension of K, which is computed by the random partition
Ji. In order to obtain the usual Hausdorff dimension we define

K, = {t : an(t) = a and (1/n)log|J,(t)| — —log(b)} (23)

The global scaling properties are captured by the asymptotics of ensemble
moments. We can deal either with the expectations

T(q) :=inf{y: E Z too ()Y TR|T — 0 as n — oo},
JrcClo,1]
or pathwise notions
7(q) == inf{~ : Z poo (S TE|™Y — 0 as n — oo}.

JRClo,1]

Usually the following inequalities hold

T () > () > dim(K,) > dim(K,) > 5% ().

We conjecture that in the case of piecewise constant Markov processes, one
can show that, instead of inequalities, all the above multifractal spectra are
equal. Unfortunately, some details ares still missing in the proof.

5 Concluding remarks

The mathematical analysis of multifractal products of stochastic processes
is far from complete. [MNRI9] tries to give a rigorous treatment to some

3Here (3* is the Legendre transform of 3: 8*(a) = inf,(qa — 8(q)).

16



easy cases like piecewise continuous processes with exponentially distributed
sojourn times. Extending to long range dependent processes and maybe even
to continuous processes is worth of own study. Another interesting question
is the distribution of A,: it would be quite natural that in many cases it
would be approximately log-normal.

The second path leads to engineering-applications. Modeling of real traffic
based on multifractal products of stochastic processes is a topic which seems
to be very promising. As a matter of fact, there have been some plans to
look at things like queuing experiments, parameter estimators and synthesis
algorithms for matching real data traffic.
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