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1.1 INTRODUCTION

Since the statistical analysis of Ethernet LAN traces in [20], there has been
significant progress in developing appropriate mathematical and statistical
techniques that provide a physical-based, networking-related understanding
of the observed fractal-like or self-similar scaling behavior of measured data
traffic over time scales ranging from hundreds of milliseconds to seconds and
beyond. These techniques explain, describe, and validate the reported large-
time scaling phenomenon in aggregate network traffic at the packet level in
terms of more elementary properties of the traffic patterns generated by the
individual users and/or applications. They have impacted our understand-
ing of actual network traffic, to the point where we now know why aggregate
data traffic exhibits fractal scaling behavior over time scales from a few hun-
dreds of milliseconds onwards. In fact, a measure of the success of this new
understanding is that the corresponding mathematical arguments are at the
same time rigorous and simple, are in full agreement with the networking
researchers’ intuition and with measured data, and can be explained read-
ily to a non-networking expert. These developments have helped immensely
in demystifying fractal-based traffic modeling and have given rise to new in-
sights and physical understanding of the effects of large-time scaling properties
in measured network traffic on the design, management and performance of
high-speed networks.

However, to provide a complete description of data network traffic, the
same kind of understanding is necessary with respect to the dynamic na-
ture of traffic over small time scales, from a few hundreds of milliseconds
downwards. Because of the predominant protocols and end-to-end congestion
control mechanisms that play a central role in modern-day data networks and
determine the flow of packets over those fine time scales and at the different
layers in the TCP/IP protocol hierarchy, studying the fine-time scale behavior
or local characteristics of data traffic is intimately related to understanding
the complex interactions that exist in data networks such as the Internet
between the different connections, across the different layers in the protocol
hierarchy, over time as well as in space. In this chapter, we first summarize
the results that provide a unifying and consistent picture of the large-time
scaling behavior of data traffic and discuss the appropriateness of self-similar
processes such as fractional Gaussian noise for modeling the fluctuations of
the traffic rate process around its mean and for providing a complete descrip-
tion of the traffic on individual links within the network. Then we report on
recent progress in studying the small-time scaling behavior in data network
traffic and outline a number of challenging open problems that stand in the
way of providing an understanding of the local traffic characteristics that is
as plausible, intuitive, appealing and relevant as the one that has been found
for the global or large-time scaling properties of data traffic.
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1.2 THE LARGE-TIME SCALING BEHAVIOR OF
NETWORK TRAFFIC

In this section, we demonstrate why the empirically observed large-time scal-
ing behavior or (asymptotic) self-similarity of aggregate network traffic is an
additive property, with the additional requirement that the individual com-
ponent processes that generate the total traffic exhibit certain high-variability
or heavy-tailed characteristics.

1.2.1 Additive structure and Gaussianity

When viewed over large enough time scales, the number of packets or bytes
per time unit collected off a link in a network originate from all those con-
nections that were active during the measurement period, utilized this link,
and actively generated traffic during this time. In other words, if for “time
scales” or “levels of resolution” m >> 1, X(m) = (X(m)(k) : k ≥ 0) denotes
the overall traffic rate process, i.e., the total number of packets or bytes per
time unit (measured at time scale m) generated by all connections, then we
can write

X(m)(k) =
∑

X
(m)
i (k), k ≥ 0 (1.1)

where the sum is over all connections i that are active at time k and where
X

(m)
i = (X(m)

i (k) : k ≥ 0) represents the total number of packets or bytes
per time unit (again measured at time scale m) generated by connection i.1

Thus, Equation (1.1) captures the additive nature of aggregate network traffic
by expressing the overall traffic rate process X(m) as a superposition of the
traffic rate processes X(m)

i of the individual connections.
Assuming for simplicity that the individual traffic rate processes X(m)

i are
independent from one another and identically distributed, then under weak
regularity conditions on the marginal distribution of the X(m)

i ’s (including for
example the existence of second moments), Equation (1.1) guarantees that the
overall traffic rate process (or its deviations from its mean) exhibits Gaussian
marginals, as soon as the traffic is generated by a sufficiently large number of
individual connections.

1.2.2 Self-similarity through heavy-tailed connections

Focusing on the temporal dynamics of the individual traffic rate processes
X

(m)
i , suppose for simplicity that connection i sends packets or bytes at a

constant rate (say, rate 1) for some time (the “active” or “on” period) and does
not send any packets or bytes during the “idle” or “off” period; we will return

1Note that the processes X(m) and X
(m)
i are defined by averaging X and Xi over non-

overlapping blocks of size m.
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to the challenging problem of allowing for more realistic “within-connection”
packet dynamics in Section 1.3 below. For example, in a LAN environment,
a connection corresponds to an individual host-to-host or source-destination
pair and the corresponding traffic patterns have been shown in [38] to conform
to an alternating renewal process where the successive pairs of on- and off-
periods define the inter-renewal intervals. On the other hand, in the context
of wide-area networks or WANs such as the Internet, we associate individual
connections with “sessions,” where a session starts at some random point in
time, generates packets or bytes at a constant rate (say, rate 1) during the
life time of the connection and then stops transmitting packets or bytes. Here
a session can be an ftp application, a telnet connection, a Web session,
sending email, reading Network News, etc., or any imaginable combination
thereof. In fact, over 1/2- to 1-hour periods, session arrivals on Internet links
have been shown to be consistent with a homogeneous Poisson process; e.g.,
see [25] for ftp and telnet sessions, and [12] for Web sessions. Note that
in the present setting, only global connection characteristics (e.g., session
arrivals, life times of sessions, durations of the on/off periods) play a role,
while the details of how the packets arrive within a connection or within an
on-period have been conveniently modeled away by assuming that the packets
within a connection are generated at a constant rate.

To describe the stochastic nature of the overall traffic rate process X(m),
the only stochastic elements that have not yet been specified are the distribu-
tions of the lengths of the on/off-periods (in case of the LAN example) or the
distribution of the session durations (for the WAN case) associated with the
individual traffic rate processes X(m)

i . Based on measured on/off-periods of
individual host-to-host pairs in a LAN environment (e.g., see [38]) and mea-
sured session durations from different WAN sites (e.g., [25, 37, 12]), we choose
these distributions to be heavy-tailed with infinite variance. Here, a positive
random variable U (or the corresponding distribution function F ) is called
heavy-tailed with tail index α > 0 if it satisfies

P [U > y] = 1− F (y) ≈ cy−α, as y →∞, (1.2)

where c > 0 is a finite constant that does not depend on y. Such distribu-
tions are also called hyperbolic or power-law distributions, and include, among
others, the well-known class of Pareto distributions. The case 1 < α < 2 is of
special interest and concerns heavy-tailed distributions with finite mean but
infinite variance. Intuitively, infinite variance distributions allow random vari-
ables to take values that vary over a wide range scales and can be exceptionally
large with non-negligible probabilities. Hence, heavy-tailed distributions with
infinite variance allow for compact descriptions of the empirically observed
high-variability phenomena that dominate traffic-related measurements at all
layers in the networking hierarchy; e.g., see [12].

Mathematically, the heavy-tailed property of, for example, the durations
during which individual connections actively generate packets implies that the
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temporal correlations of the stationary versions of an individual traffic rate
processes X(m)

i and, because of the additivity property (1.1), of the overall
traffic rate process X(m), decay hyperbolically slowly; that is, they exhibit
long-range dependence. More precisely, if r(m) = (r(m)(k) : k ≥ 0) denotes
the autocorrelation function of the stationary version of the overall traffic
rate process X(m), then property (1.2) can be shown to imply long-range
dependence (e.g., see [4] and [38]; for similar results obtained in the context
of a fluid queueing system under heavy traffic, see Brichet’s chapter in this
book; that is, for all m ≥ 1, r(m) satisfies

r(m)(k) ≈ ck2H−2, as k →∞, 0.5 < H < 1, (1.3)

where the parameter H is called the Hurst parameter and measures the
degree of long-range dependence in X(m); in terms of the the tail index
1 < α < 2 that measures the degree of “heavy-tailedness” in (1.2), H is
given by H = (3 − α)/2. Intuitively, long-range dependence results in peri-
ods of sustained greater-than-average or lower-than-average traffic rates, ir-
respective of the time scale over which the rate is measured. In fact, for a
zero-mean covariance-stationary process, Equation (1.3) implies (and is im-
plied by) asymptotic (second-order) self-similarity; that is, after appropriate
rescaling, the overall traffic rate processes X(m) have identical second-order
statistical characteristics and “look similar” for all sufficiently large time scales
m. In other words, Equation (1.3) holds if and only if for all sufficiently large
time scales m1 and m2, we have

m1−H
1 X(m1) ≈ m1−H

2 X(m2), (1.4)

where the quality is in the sense of second-order statistical properties and
where 1/2 < H < 1 denotes the self-similarity parameter and agrees with the
Hurst parameter in Equation (1.3).

The ability to explain the empirically observed self-similar nature of aggre-
gate data traffic in terms of the statistical properties of the individual connec-
tions that make up the overall traffic rate process shows that (asymptotically)
self-similar behavior (i) is an intrinsically additive property (i.e., aggregate
over many connections), (ii) is mainly caused by user/session/connection char-
acteristics (i.e., Poisson arrivals of sessions, heavy-tailed distributions with
infinite variance for the session sizes/durations), and (iii) has little to do with
the network (i.e., the predominant protocols and end-to-end congestion con-
trol mechanisms that determine the actual flow of packets in modern data
networks). In fact, for the self-similarity property of data traffic over large
time scales to hold, all that is needed is that the number of packets or bytes
per connection is heavy-tailed with infinite variance, and the precise nature
of how the individual packets within a session or connection are sent over the
network is largely irrelevant.

Note that this understanding of data traffic started with an extensive anal-
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ysis of measured aggregate traffic traces, followed by the statistically well-
grounded conclusion of their self-similar or fractal characteristics, and trig-
gered the curiosity of networking researchers who wanted to know ”Why self-
similar or fractal?” In turn, this question for a physical explanation of the
large-time scaling behavior of measured data traffic resulted in findings about
data traffic at the connection level that are, at the same time, mathematically
rigorous, agree with the networking researchers’ experience, are consistent
with data, and are intuitive and simple to explain in the networking context.
In this sense, the progression of results proceeded the opposite of how traffic
modeling has been traditionally done in this area; that is, by first analyzing
in great detail the dynamics of packet flows within individual connections
and then appealing to some mathematical limiting result that allowed for a
simple approximation of the complex and generally over-parameterized aggre-
gate traffic stream. In contrast, the self-similarity work has demonstrated that
novel insights into and new and unprecedented understanding of the nature of
actual data traffic can be gained by a careful statistical analysis of measured
traffic at the aggregate level and by explaining aggregate traffic characteristics
in terms of more elementary properties that are exhibited by measured data
traffic at the connection-level.

1.2.3 Self-similar Gaussian processes as workload models

Notice that in the Gaussian setting discussed in Section 1.2.1, the self-similarity
property (1.4) implies that for 1/2 < H < 1 and for all sufficiently large time
scales m, the traffic rate process X(m) (or more precisely, the deviations from
its mean) satisfy

m1−HX(m) ≈ X, (1.5)

where in this case, the equality is understood in the sense of finite-dimensional
distributions, and where X = (Xk : k ≥ 1) denotes fractional Gaussian noise
(FGN), the only stationary (zero-mean) Gaussian process that is (exactly)
self-similar in the sense that Equation (1.5) holds for all m ≥ 1. Equivalently,
FGN is uniquely characterized as the stationary (zero-mean) Gaussian process
with autocorrelation function r(k) = 1/2 [(k+ 1)2H − 2k2H + (k− 1)2H ], k ≥
1, 1/2 < H < 1.

For the purpose of modeling the dynamics of actual data traffic over a
link within a network, FGN has the big advantage of providing a complete
description of the resulting traffic rate process; that is, specifying its mean,
variance, and Hurst parameter H suffices to completely characterize the traf-
fic. Given this advantage over other – typically incomplete – descriptions of
network traffic dynamics, it is important to know under what conditions FGN
is an adequate and accurate process for modeling the deviations around the
mean of actual data traffic. To this end, Erramilli et al. [8] note that the FGN
model can be expected to be an appropriate model for data traffic provided
(i) the traffic is aggregated over a large number of independent and not too
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wildly fluctuating connections (i.e., ensuring Gaussianity of expression (1.1)),
(ii) the effects of flow control on any one connection is negligible (i.e., requir-
ing, in fact, that we consider the traffic only over sufficiently large time scales
where (1.4 holds), and (iii) the time scales of interest for the performance
problem at hand coincide with the scaling region (i.e., where (1.5) holds). In
practice, these conditions are often satisfied in the backbone (i.e., high levels
of aggregation) and for time scales that are larger than the typical round-trip
time of a packet in the network.

1.2.4 Toward self-similar non-Gaussian workload models?

One of the conditions mentioned above that justify the use of FGN as an ade-
quate and accurate description of actual data traffic traversing individual links
in a network states that the traffic over a specific link is made up from a large
number of (more or less) independent connections, where each connection’s
own traffic rate cannot fluctuate too wildly; that is, X(m)

i is chosen from a dis-
tribution with finite variance. While this condition is generally applicable in
many legacy LAN and WAN environments and can often be validated against
measured traffic, due to changes in networking technologies, applications and
user behavior, it can no longer be taken for granted in today’s networks. For
example, advanced networking technologies such as 100 Mbps Ethernets or
Gigabit Ethernets can be expected – despite the presence of TCP, for example
– to allow the traffic rates of individual connections to vary over many orders
of magnitude, from Kbps to Mbps and beyond, depending on the networking
conditions. Thus, for understanding modern-day network traffic, processes
that combine heavy tails both in time and space (i.e., the distributions of the
durations as well as of the rates at which individual connections emit packets
are heavy-tailed with infinite variance) may become relevant in practice and
may see genuine applications in the networking area in the near future.

To illustrate, let X(m)
i denote an on/off-type connection described earlier,

where in addition to the duration of the on/off-periods, the rate at which
the connection emits packets during the on-period is also heavy-tailed with
infinite variance (with tail index β, say). Focusing on this modification of the
renewal reward model investigated by Mandelbrot [22] and Taqqu and Levy
[34], Levy and Taqqu [21] recently showed that when studying the overall
traffic rate process X(m) defined in (1.1); i.e., aggregating many such inde-
pendent connections, one can obtain a dependent, stationary process that has
a stable marginal distribution with infinite variance and which is self-similar
as in (1.5) with self-similarity parameter H given by

H =
β − α+ 1

β
. (1.6)

Here β denotes the index characterizing the heaviness of the tail of the traf-
fic rate of the individual connections, and α denotes the tail index associated
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with the distributions of the durations of on- and off-periods which we assume
for simplicity to be identical. Observe that in the finite variance case (β = 2),
Relation (1.6) reduces to the familiar H = (3−α)/2 ∈ (1/2, 1) which appears
in connection with fractional Gaussian noise considered earlier. However, in
contrast to FGN, the superposition process obtained under the assumption
of heavy tails with infinite variance on the durations and rates is not Gaus-
sian but has heavy-tailed marginals instead, implying that there is a much
higher probability than in the Gaussian case that the overall traffic rate can
differ greatly from the average value and that it can take extreme values (a
phenomenon also known as intermittency). Being non-Gaussian, one of the
obstacles at this stage for using these kinds of stable superposition processes
in the context of modeling data traffic is that their statistical parameters α
(which specifies the marginals) and H (1.5) do not define them completely;
there exist a number of different dependent, stationary increment processes
with stable marginals with the same α and same self-similarity parameter H
– see for example [33]. This is in stark contrast to FGN where knowing the
second-order statistical characteristics (i.e., variance and Hurst parameter H)
uniquely defines the process, due to Gaussianity.

1.3 THE SMALL-TIME SCALING BEHAVIOR OF
NETWORK TRAFFIC

The analysis of measured network traffic and resulting understanding of some
of its underlying structure outlined in Section 1.2 above have led to the real-
ization that while wide-area traffic is consistent with asymptotic self-similarity
or large-time scaling behavior, its small-time scaling features are very different
from those observed over large time scales. Thus, to provide an adequate and
more complete description of actual network traffic, it is necessary to deal with
these small-time scaling features and to ultimately understand their cause and
effects. To this end, we summarize in this section our current understanding
of this very recent development in network traffic analysis and modeling by
introducing concepts that are novel to the networking area, e.g., multifrac-
tals, conservative cascades, and multiplicative structure, and illustrate their
relevance to networking.

1.3.1 Multifractals

From a networking perspective, it comes as no surprise that protocol-specific
mechanisms and end-to-end congestion control algorithms operating on small
time scales and at the different layers in the hierarchical structure of modern
data networks give rise to structural properties that are drastically differ-
ent from the large-time scaling behavior which has been shown earlier to be
mainly due to global user and/or session characteristics. Since these net-
working mechanisms determine largely the actual flow of packets across the
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network, they are likely to cause the traffic to exhibit pronounced local varia-
tions and irregularities which, per se, cannot be expected to have any obvious
connection to the self-similar behavior of the traffic over large time scales.

To quantify these local variations in measured traffic at a particular point
in time t0, let Y = (Y (t) : 0 ≤ t ≤ 1) denote the process representing the
total number of packets or bytes sent over a link up to time t, and for some
n > 0, consider the traffic rate process Y ((kn + 1)2−n) − Y (kn2−n); kn =
0, 1, . . . , 2n − 1; that is, the total number of packets or bytes seen on the
link during non-overlapping intervals of the form [kn2−n, (kn + 1)2−n). We
say that the traffic has a local scaling exponent α(t0) at time t0 if the traffic
rate process behaves like (2−n)α(t0), as kn2−n → t0 (n → ∞). Note that
α(t0) > 1 corresponds to instants with low intensity levels or small local
variations (Y has derivative zero at t0), while α(t0) < 1 is found in regions
with high levels of burstiness or local irregularities. Informally, we call traffic
with the same scaling exponent at all instants t0 monofractal (this includes
exactly self-similar traffic, for which α(t0) = H, for all t0), while traffic with
non-constant scaling exponent α(t0) is called multifractal.

More formally, the degree of local irregularity of a signal Y or its singularity
structure at a given point in time t0 can be characterized to a first approxi-
mation by comparison with an algebraic function, i.e. α(t0) is the best (i.e.,
largest) α such that |Y (t′) − Y (t0)| ≤ C|t′ − t0|α, for all t′ sufficiently close
to t0. Since our process Y has positive increments, this singularity exponent
can be approximated through the somewhat simpler quantity

α(t) = lim
n→∞

αn(t), (1.7)

where – assuming the limit exists – for t ∈ [kn2−n, (kn + 1)2−n),

αn(t) := αn
kn

:= − 1
n

log2

∣∣Y ((kn + 1)2−n)− Y (kn2−n)
∣∣ . (1.8)

The aim of multifractal analysis (MFA) is to provide information about these
singularity exponents in a given signal and to come up with a compact de-
scription of the overall singularity structure of signals in geometrical or in
statistical terms. Before describing in more detail some of the commonly used
MFA methods, we note that since wavelet decompositions contain informa-
tion about the degree of local irregularity of a signal, it should come as no
surprise that the singularity exponent α(t) is related to the decay of wavelet
coefficients wj,k =

∫
Y (s)ψj,k(s) ds around the point t, where ψ is a band-

pass wavelet function and where ψj,k(s) := 2−j/2 ψ
(
2−js− k

)
(e.g., in the

case of the well-known Haar wavelet, psi(s) equals 1 for 0 ≤ s ≤ 1, −1 for
1 ≤ s ≤ 2, and 0 for all other s; for a general overview of wavelets, we refer to
[5]). Indeed, assuming only that

∫
ψ(s) ds = 0 one can show as in [18] that

2n/2w−n,kn ≤ C · 2−nα(t), as kn2−n → t. (1.9)
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Moreover, it is known that under some regularity conditions (for a precise
statement see [18] or [5, Theorem 9.2]), relation (1.9) characterizes the degree
of local irregularity of the signal at the point t. This suggests to define α̃(t)
as in (1.8) but with αn(t) replaced by α̃n(t), where

α̃n(t) := α̃n
kn

:=
1

−n log 2
log

(
2n/2|w−n,kn

|
)
. (1.10)

In general, this may give a different but nevertheless useful description of the
singularity structure of Y , particularly for non-monotonous processes (for an
example, see [13]). Using wavelets may also have numerical advantages. The
remainder of this section remains true if α(t) is replaced by α̃(t) and (1.8) by
(1.10), i.e. increments by normalized wavelet coefficients.

Conceptionally, the geometrical formulation of MFA in the time-domain is
the most obvious one. Its objective is to quantify what values of the limiting
scaling exponent α(t) appear in a signal and how often one will encounter the
different values. In other words, the focus here is on the “size” of the sets of
the form

Kα = {t : α(t) = α}. (1.11)

To illustrate, since for FGN there exists only one scaling exponent (i.e., α(t) =
H), the set Kα is either the whole line (if α = H) or empty, and FGN
is therefore said to be “mono-fractal.” Similarly, for the concatenation of
several FGNs with Hurst parameters Hi in the interval Ii = [i, i + 1], we
have KHi = Ii. In general, however, the sets Kα are highly interwoven and
each of them lies dense on the line. Consequently, the right notion of “size”
is that of the fractal Hausdorff dimension dim(Kα) which is, unfortunately,
impossible to estimate in practice and severely limits the usefulness of this
geometrical approach to MFA. Therefore, we will focus below on different
statistical descriptions of the multifractal structure of a given signal.

One such description involves the notion of the coarse Hölder exponents
(1.8). To illustrate, fix a path of Y and consider a histogram of the αn

k (k =
0, . . . 2n−1) taken at some finite level n. It will show a non-trivial distribution
of values, but is bound to concentrate more and more around the expected
value as a result of the LLN: values other than the expected value must occur
less and less often. To quantify the frequency with which values other than
the mean value occur, we make extensive use of the theory of large deviations.
Generalizing the Chernoff-Cramer bound, the large deviation principle (LDP)
states that probabilities of rare events (e.g., the occurrence of values that
deviate from the mean) decay exponentially fast. To make this more precise
consider a sequence of i.i.d. random variables W, W1, W2, . . . and set Vn :=
W1 + . . .+Wn. Using Chebyshev’s inequality and the independence, we find
for any q > 0,

P [(1/n)Vn ≥ a] = P
[
2qVn ≥ 2nqa

]
≤ IE2qVn

2nqa
=

(
IE[2qW ]2−qa

)n
. (1.12)
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Since q > 0 is arbitrary, we can replace the right hand side in (1.12) by its
infimum over q > 0. A symmetry argument shows that P [b ≥ (1/n)Vn] ≤
(IE[2qW ]2−qb)n, for all q < 0. Combining all this yields the following two
upper bounds

1
n

log2 P [b ≥ (1/n)Vn ≥ a] ≤
{

infq>0{ log2 IE[2qW ]− qa}
infq<0{ log2 IE[2qW ]− qb} . (1.13)

For a discussion of this simple result, let L(q) = IE[2q(W−a)]. Since log(·)
is a monotone function, finding the infimum of L is the same as finding the
infimum of log(L). We note first that L′′(q) > 0, for all q ∈ IR, whence L
is a strictly convex function and must have a unique infimum for q ∈ IR.
From L(0) = 1 we conclude that this infimum must be less than or equal
to 1. Focusing now on q > 0, we infer from L′(0) = log(2)(IE[W ] − a) that
infq>0 L(q) is assumed in q = 0 and equals 1 if and only if IE[W ] ≥ a. On
the other hand, infq>0 L(q) < 1 if IE[W ] < a. An analogous result holds for
the second bound. In summary, if b > IEW > a then the bounds on the
right hand side in (1.13) are both zero and reflect, thus, the LLN which says
that (1/n)Vn → IE[W ] almost surely. On the other hand, if IE[W ] is not
contained in [a, b] and when P [b ≥ (1/n)Vn ≥ a] is the probability of (1/n)Vn

deviating far from its expected value, then exactly one of the bounds will
be negative proving (at least) exponential decay of this probability. LDP-
theorems extend this result to a more general class of random sequences Vn

and establish conditions under which the bound in (1.13) is attained in the
limit n→∞ [7, 6].

To apply the LDP approach to our situation, we fix a realization of Y and
consider the location t, encoded by kn via t ∈ [kn2−n, (kn + 1)2−n), as the
only randomness relevant for the LDP. Since kn can take only 2n different
values which we will assume to be all equally likely, the relevant probability
measure for t is the counting measure Pt. The sequence of interest for our
purpose is

Vn := − log2 |Y ((kn + 1)2−n)− Y (kn2−n)| = nαn
kn
.

Trying to obtain more precise information about the singularity behavior and
aiming at simplifying (1.13), we let not only n tend to ∞ but also let [a, b]
shrink down to a single point α = (a + b)/2 which unifies the two bounds in
the limit. All this suggests that the following limiting “rate function” f will
exist under mild conditions [27, Theorem 7]:

f(α) := lim
ε→0

lim
n→∞

1
n

log2 fn(α, ε), (1.14)

with

fn(α, ε) := 2nPt

[
α+ ε ≥ αn(t) ≥ α− ε

]
= #{αn(t) ∈ (α− ε, α+ ε)} (1.15)
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The counting in (1.15) relates to the notion of dimension: if f(α) = 1 then
all or at least a considerable part of the αn

k ’s are approximatively equal to α,
i.e., fn(α, ε) ' 2n. Such is the case for FGN with α = H; but we also have
f(α) = 1 if only a certain constant fraction of αn’s equals α, as is the case
with the concatenation of FGNs described earlier [36]. Only if certain values
of αn are considerably more spurious than others will we observe f(α) < 1. In
fact, it can be shown [29, 28] that the rate function f(α) relates to dim(Kα)
and that we have

dim(Kα) ≤ f(α). (1.16)

It is in this sense that f provides information on the occurrence of the various
“fractal” exponents α and has been termed multifractal spectrum. Also, note
that the rate function f is a random element because it is defined for every
path of Y .

Although f can, in principle, be computed in practice, it is a very del-
icate and highly sensitive object, mainly because of its definition in terms
of a double limit (see (1.14)). Fortunately, the LDP-result suggests to use
the RHS of (1.13), with IE[2qW ] replaced by (IE[2qVn ])1/n as in (1.12), as an
alternative method for estimating f that avoids double-limit operations and
is generally more robust because it involves averages. In fact, consider the
partition function τ(q) defined by

τ(q) := lim
n→∞

−1
n

log2

(
2nIEt[2qVn ]

)
= lim

n→∞

−1
n

log2 Sn(q), (1.17)

where the so-called structure function Sn(q) is given by

Sn(q) :=
2n−1∑
k=0

|Y ((k + 1)2−n)− Y (k2−n)|q =
2n−1∑
k=0

2−qnαn
k . (1.18)

According to the theory of LDP we will have equality in (1.13) under mild
conditions, at least in the limit as n→∞ and b→ a. Appealing to such results
it is possible to establish conditions under which f(α) = inf(qα − τ(q)). In
fact, collecting the terms k in Sn(q) with αn

k (t) approximately equal to some
given value, say α, for varying α and noting that we have about 2nf(α) such
terms yields

Sn(q) =
∑
α

∑
αn'α

2−nqα '
∑
α

2−n(qα−f(α)) ' 2−n infα(qα−f(α));

that is,
τ(q) = f∗(α) := inf

α
(qα− f(α)), (1.19)

where ∗ denotes the Legendre transform of a function (for a mathematically
rigorous argument, see [27, 28]).

While the partition function τ(q) is clearly easier to estimate than f it has
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to be noted, though, that f may contain more information than τ . In fact,
the Legendre back-transform yields only

f(α) ≤ f∗∗(α) = τ∗(α) = inf
q

(qα− τ(q)) (1.20)

where f∗∗ is the concave hull of f (compare (1.13)2). The questions are when
and for which α the equality f∗∗(α) = f(α) holds. A simple application of
the LDP theorem of Gärtner-Ellis [7] provides an answer to these questions –
under the assumption that τ(q) is differentiable everywhere (see [27]). In this
particular case, we obtain the appealing formula

f(α) = τ∗(α) = qα− τ(q) at α = τ ′(q). (1.21)

Since τ(q) is the Legendre transform of f , it must always be concave. This
follows also from the fact that Sn(q) is a log-convex function of q. Conse-
quently, τ(q) is differentiable in almost all q a priori. For FGN, however, we
obtain the degenerate case of a concave function: with probability one, we
have

τ(q) = qH − 1 q > −1. (1.22)

This is consistent with the fact that α(t) = H for all t, i.e. the set KH has
dimension 1. The formula (1.22) can be guessed directly from ergodicity and
self-similarity:

Sn(q) '
2n−1∑
k=0

IE|Y ((k + 1)2−n)− Y (k2−n)|q ≈ 2n−nqHIE|Y (1)|q.

For the example considered earlier where we concatenated a number of FGNs,
we find τ(q) = mink(qHk − 1) which is again consistent with α(t) taking the
values Hk on sets of dimension 1 (compare (1.33), see also [36] for more
details). This example shows also how non-concavity in τ(q) can result in loss
of information: τ(q) and its Legendre transform reflect only the minimal and
the maximal of the Hk. In contrast, truly concave behavior of τ(q) indicates
that there is a whole interval of α-values present in the signal and not just a
few (hence the term multifractal).

1.3.2 Multiplicatively generated multifractals or cascades

A construction that fragments a given set into smaller and smaller pieces
according to some geometric rule and, at the same time, divides the measure
of these pieces according to some other (deterministic or random) rule is called
a multiplicative process or cascade (e.g., see [9]). The limiting object generated

2The factors 2n appearing in f and τ(q) are for convenience. The sign of τ(q) is chosen as
to render (1.20) and (1.19) symmetrical.
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by such a multiplicative process defines, in general, a singular measure or
multifractal and describes the highly irregular way the mass of the initial set
gets redistributed during this simple fragmentation procedure. The generator
of the cascade specifies the mass fragmentation rule, and we consider in the
following the class of conservative cascades, introduced by Mandelbrot [23]
characterized by a generator that preserves the total mass of the initial set
at every stage of the construction (i.e., mass conservation). To illustrate, we
will construct a binomial conservative cascade or measure µ on the interval
I := [0, 1]. More precisely, we will construct its distribution function Y (t) =
µ([0, t]) and since the underlying generator will be random, Y will define
a stochastic process. By construction it will have positive increments and
Y (0) = 0 almost surely.

This iterative construction starts with a uniform distribution on the unit
interval of total mass M0 and then ‘redistributes’ this mass by splitting it
among the two subintervals of half size in the ratio M1

0 to M1
1 where M1

0 +
M1

1 = 1. Proceeding iteratively one obtains after n steps a distribution which
is uniform on intervals In

kn
:= [kn2−n, (kn + 1)2−n]. The mass lying in In

kn

is redistributed among its two dyadic subintervals In+1
2kn

and In+1
2kn+1 in the

proportions Mn+1
2kn

and Mn+1
2kn+1 where Mn+1

2kn
+Mn+1

2kn+1 = 1 almost surely.
To summarize, for any n let us choose a sequence k1, k2, . . . , kn such that

the interval I l
kl

lies in Ii
ki

whenever i < l. In other words, the ki are the n
first binary digits of any point t ∈ In

kn
. We call this a nested sequence, and it

is uniquely defined by the value of kn. Then we have

Y ((kn + 1)2−n)− Y ((kn)2−n) = µ(In
kn

) = Mn
kn
·Mn−1

kn−1
· · ·M1

k1
·M0

0 . (1.23)

The various M i
l , which collectively define the generator of the conservative

cascade, may have distributions which depend on i and l and which are arbi-
trary, as long as they are positive and provided that for all i and all m,

M i
2m +M i

2m+1 = 1, (1.24)

almost surely. Note that this mass conservation condition introduces a strong
dependence between the two “children” of any parent node. Furthermore, we
will require that for all n and kn (n = 1, 2, . . .), all the multipliers appearing
in (1.23) are mutually independent. We will call this property nested inde-
pendence. As long as these two requirements on dependency are satisfied one
is completely free in how to introduce further correlation structure.

It is obvious from this iterative construction and from relation (1.23) that a
multiplicatively generated “multifractal process” has approximately lognormal
marginals. Indeed, as a sum of independent random variables, the logarithms
of the increments of Y are approximately Gaussian, provided that the random
variables logM i

l have finite second moments.
Note that as we move from stage n to n + 1 in our construction of a

conservative cascade, the conservation property (1.24) insures that the values
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of Y at dyadic points of order less than n are not changed. As we let n tend
to infinity, we see from (1.23) that the increments of Y between dyadic points
tend to zero, whence Y is continuous (µ has no atoms) and well-defined.
Moreover, Y has increments of all lags but no (meaningful) derivative in
the usual sense. As we will see, α(t) equals the expected value α almost
everywhere with α > 1, whence in these points, the product in (1.23) behaves
like 2−nα and the conventional derivative Y ′ is zero. Thus, the essential
growth of Y happens “in” the points where Y ′ does not exist. In other words,
the true derivative of Y is a distribution or singular measure, i.e. µ.

To study the singularity structure of Y using α(t), we calculate the partition
function τ(q) of the binomial conservative measure “in expectation”. To this
end, we assume that the Mn

k (k = 0, . . . , 2n − 1) are identically distributed
with M (n). Note that M (n) is necessarily symmetrically distributed around
1/2 due to (1.24). Then, (1.23) is equally distributed as M (n) · . . . ·M (1) ·M0

for each of the 2n nested sequences k1, . . . kn of length n. Using the “nested”
independence we find

IE[Sn(q)] = 2n · IE(M (n))q · IE(M (n−1))q · . . . · IE(M (1))q · IE(M0)q (1.25)

Assuming now further that the M (n) converge in distribution, say to M , we
have

T (q) := lim
n→∞

−1
n

log2 IESn(q) = −1− log2 IE[Mq]. (1.26)

Using the relations (1.16), (1.20), and τ∗ ≤ T ∗ (see [28]), and combining them
with results in [10, 1, 3, 31], we get that for every α,

dim(Kα) = f(α) = τ∗(α) = T ∗(α) almost surely. (1.27)

To demonstrate how MFA applies to conservative cascades and what sort
of numerical results it can yield in this case, we use the wavelet-based ap-
proach mentioned earlier. For convenience, we will also deal with the wavelet
coefficients of the distribution µ rather than the ones of Y . The former are
given by

wj,k :=
∫
ψj,k(t) dµ(t). (1.28)

Using the Haar wavelet, we get with (1.23) the explicit expression

2−n/2w−n,kn = µ(In+1
2kn

)− µ(In+1
2kn+1) = (Mn+1

2kn
−Mn+1

2kn+1)
n∏

i=0

M i
ki
. (1.29)

Thus, we compare the increment-based MFA (in terms of α, S and τ) of Y to
the wavelet-based MFA (in terms of α̃, S̃ and τ̃) of µ . Due to the fact that
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Mn+1
2kn

−Mn+1
2kn+1 = 2Mn+1

2kn
− 1 we have

IES̃n(q) = IE
2n−1∑
kn=0

|2n/2w−n,kn
|q = 2nqSn(q) · IE|2M (n+1) − 1|q.

This gives immediately
T̃ (q) = −q + T (q). (1.30)

More generally, this relation holds for any choice of mother wavelet which is
supported on [0, 1], provided the multipliers Mn

k are all identically distributed.
This holds because the scaling properties (1.23) of µ allow us to write the
wavelet coefficients in this case as 2n/2 ·Mn

kn
· . . . ·M1

k1
times a random factor

which is independent of M i
ki

and which is distributed as w0,0 (compare also
[2]).

In order to be able to say more about τ̃(q) for the Haar wavelet, we make an
assumption which guarantees that the Haar wavelet coefficients don’t decay
too fast (compare (1.9)), i.e. the prefactor RHS in (1.29) doesn’t become too
small. Therefore, let us assume in addition that there is some ε > 0 such that
for all n, |2M (n+1) − 1| ≥ ε almost surely. Then for all t, (1/n) log(2Mn+1

2kn
−

1) → 0, and

α̃(t) = −1 + lim
n→∞

1
−n log 2

log
(
2−n/2|µ(In

kn
|
)

= −1 + α(t). (1.31)

Observe that this is precisely the relation we expect between the scaling ex-
ponents of a process and its (distributional) derivative – at least in nice cases.
Moreover, differentiating (1.30) and recalling (1.21), we get T̃

′
(q) = −1+T ′(q)

which is in agreement with (1.31). Thus, both the increment-based and
wavelet-based MFA yield the same results for conservative binomial cascades
with multipliers bounded away from 1/2. For a more detailed wavelet-based
analysis of conservative cascades, we refer to [14, 28].

1.3.3 On the multifractal nature of network traffic

While multifractals are new to the networking area, they have been applied in
the past – mainly for descriptive purposes – to such diverse fields as the statis-
tical theory of turbulence, the study of strange attractors of certain dynamical
systems, and more recently, to physical based rain and cloud modeling; see for
example [9, 17] and references therein. In the networking context, multifrac-
tals and their ability to account for time-dependent scaling laws offer great
promise for describing irregular phenomena that are localized in time. The
latter are typically associated with network-specific mechanisms that operate
on small time scales and – depending on the state of the network – can be
expected to have a more or less severe impact on how the packets within indi-
vidual connections are sent across the network. Empirical evidence in support



THE SMALL-TIME SCALING BEHAVIOR OF NETWORK TRAFFIC xvii

of complex within-connection or local traffic characteristics in measured wide-
area traffic that can be traced to the dominant TCP/IP protocol hierarchy of
IP networks has been reported in the original comprehensive analysis of WAN
traces by Paxson and Floyd [25], and more recently, in work by Feldmann et
al. [12]. The original findings of multifractal scaling behavior of measured
aggregate WAN traffic are due to Riedi and Levy-Vehel [30] (see also [36]),
followed by a similar study by Mannersalo and Norros [24] involving mea-
sured ATM WAN traces (for an earlier discussion on multifractal scaling and
measured LAN traffic, see also [35]).

Motivated by the empirically observed multifractal scaling behavior in mea-
sured WAN traffic by Riedi and Levy-Vehel [30], Feldmann et al. [11] (see also
[14]) present a more detailed investigation into the multifractal nature of net-
work traffic and bring multifractals into the realm of networking by providing
empirical evidence that WAN traffic is consistent with multifractal scaling be-
cause IP networks appear to act as conservative cascades. In particular, they
demonstrate that (i) conservative cascades are inherent to wide-area network
traffic, (ii) multiplicative structure becomes apparent when studying data traf-
fic at the TCP layer, and (iii) the cascade paradigm appears to be a traffic
invariant for WAN traffic that can co-exist with self-similarity. By systemati-
cally investigating the causes for the observed multifractal nature of measured
network traffic, they observe that the packet arrival patterns within individual
TCP connections (where one or more TCP connections make up a session)
appear to be consistent with a multiplicative structure. The latter, they ar-
gue, seems to be mainly caused by networking mechanisms operating on small
time scales, and results in aggregate network traffic that exhibits multifractal
scaling behavior over a wide range of small time scales. Although it is tempt-
ing to invoke the TCP/IP protocol hierarchy of modern data networks for
motivating the presence of an underlying conservative cascade construction
(e.g., a web session generates requests, each request gives rise to connections,
each connection is made up of flows, flows consist of individual packets), Feld-
mann et al. demonstrate that the multiplicative structure associated with a
conservative cascade construction is most apparent when studying network
traffic at the TCP layer, where the network behavior (i.e., the way the pack-
ets within a TCP connection are sent across the network) is largely decoupled
from the user behavior. Moreover, Feldmann et al. suggest that the tran-
sition from multifractal to self-similar scaling occurs around time scales on
the order of the typical round-trip time of a packet within the network under
consideration.

While this work leaves open the “big” question “Why are packets within
individual TCP connections distributed in accordance with a conservative cas-
cade construction?” it clearly identifies the TCP layer as the most promising
place in the networking hierarchy to search for the physical reasons behind
the observed multifractal scaling behavior of measured network traffic and/or
behind the conjecture that modern data networks act in a manner consistent
with conservative cascades. Clearly, progress on these problems will require
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a close collaboration with networking experts. Realizing that it is difficult to
think of any other area in the sciences where the available data provide such
detailed information about so many different facets of behavior, there exists
great potential for coming up with intuitively appealing, conceptually simple
and mathematically rigorous statements as to the causes and effects of multi-
fractals in data networking. Put differently, for multifractals to have a genuine
impact on networking, their application has to move beyond the traditional
descriptive stage and has to be able to answer question as to why network
traffic is multifractal (i.e., physical explanation in the network context) and
how it may or may not impact network performance (i.e., engineering).

1.3.4 Multiplicative structure and log-normality

The observed multifractal nature of measured WAN traffic over small time
scales and the empirical evidence discussed above in support of an underlying
conservative cascade mechanism responsible for the multifractal scaling phe-
nomenon imply that over those fine time scales, network traffic is multiplica-
tively generated. In other words, at the microscopic level where the network
(via the underlying protocols and end-to-end congestion control mechanisms)
determines how the individual packets of a connection are sent across a given
link in the network, the traffic rate process (i.e., total number of packets or
bytes per small time unit) is the product of a large number of more or less
independent “multipliers.” In contrast, we have seen that at the macroscopic
level or over large time scales, user and/or session characteristics are mainly
responsible for the observed self-similar scaling behavior of network traffic and
that over those time scales, the traffic rate process is additive in nature; that is,
the sum of a large number of more or less independent “summands” where the
individual summands or connections exhibit heavy-tailed distributions with
infinite variance for their sizes or durations.

Intuitively, this distinction between the additive and multiplicative struc-
ture of measured network traffic over large and small time scales, respectively,
can be best explained when considering an individual TCP connection. When
viewed over large enough time scales, all we observe is the total workload M0

(in bytes or packets) that is sent over the network during the connection’s
lifetime and for simplicity, we assume in general that the connections traffic
rate X(m)

c is constant and that the connection’s duration is unity. However,
when zooming in onto finer time scales, we observe that a certain fraction of
the total workload was sent during the first half of the connection’s lifetime
and the rest in the second half. Continuing inductively, we find that the work-
load emitted by the connection during a time interval of length 2−n (which
corresponds to a certain level of aggregation m) is of the form

X(m)
c := Mn ·Mn−1 · · ·M1 ·M0, (1.32)

where the multipliers Mk reflect the “state of the network” and determine
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the amount of workload that the connection can send across the link at any
given point in time. Small multipliers suggest heavy competition for the link,
while large multipliers indicate that the connection can temporarily transmit
at close to full speed.

As we have seen earlier, the idea of successively fragmenting the total work-
load into parts leads naturally to a multiplicative process or cascade. While
the networking application justifies our choice of considering conservative cas-
cades, our focus on an underlying binomial structure for the cascades is for
simplicity. On mild independence assumptions on the multipliers (they should
form a certain martingale) we are assured that we can talk about the limit
of infinitely fine scales (n → ∞) and that this limit has interesting statis-
tical properties. In fact, by experimenting with turning a constant bit-rate
connection into a highly bursty one via an appropriately chosen conservative
binomial cascade construction [14], we find that the latter can closely match
the way networking mechanisms operating on small time scales determine the
actual flow of packets/bytes over the duration of a TCP connection. More-
over, when the traffic rate over a small time interval is described in terms
of a conservative binomial cascade, it is explicitly multiplicative in nature
(1.32); and as a result, the marginals of the traffic rate process over small
time scales will automatically be approximately lognormal (e.g., apply CLT
to the random variables logMk).

1.4 TOWARD COMPLETE DESCRIPTIONS OF NETWORK
TRAFFIC

The empirical finding that measured WAN traffic contains an additive com-
ponent as well as a multiplicative component provides new motivation for
and insights into developing a more complete description of the dynamic na-
ture of actual network traffic. In the following, we discuss a simple workload
model that exhibits self-similar as well as multifractal scaling but is not con-
sistent with measured network traffic. Then we illustrate the changes that
are required to turn this simple model into one that is consistent with actual
traffic, not only with respect to the large-time and small-time scaling behavior
of measured aggregate traffic rate processes, but also at the different layers in
the IP protocol hierarchy.

1.4.1 A simple multifractal workload model

To start, we consider the workload model discussed in Section 1.2.3 where (i)
user-initiated sessions arrive in accordance to a Poisson process, (ii) bring with
them a workload (e.g., number of bytes, packets, flows, or TCP connections,
session duration) that is heavy-tailed with infinite variance, and (iii) distribute
the workload over the lifetime of the session at a constant rate. A result by
Kurtz [19] states that over large enough time scales, the fluctuations of the
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aggregate traffic rate around its mean value are well described by FGN, for
a very general class of within-session traffic rate processes that includes the
special case of constant bit-rate sessions. Recall that the self-similar scaling
property over large time scales (or equivalently, long-range dependence) is
essentially due to the fact that the session sizes exhibit infinite variance, and
that approximate Gaussianity follows from an application of the CLT, i.e.,
from aggregating over a large number of independent sessions whose individual
traffic rates are sufficiently “tame.”

To incorporate multiplicative structure into this simple traffic description,
we simply modify property (iii) above and require that the constant within-
session traffic rate processes are replaced by multiplicative processes, or more
precisely, by independent and identically distributed multifractals generated
by appropriately chosen conservative binomial cascades with associated par-
tition function τ(q) (or the more informative multifractal spectrum f). This
modified workload process is a generalization of Kurtz’s model by allowing
within-session traffic rates to be multifractals. Since Kurtz’s model is known
to be insensitive to the particular within-session traffic dynamics, the self-
similar scaling property over large time scales remains intact, even for mul-
tifractal within-session structure, and represents the additive component of
network traffic, which is mainly due to the global characteristics of user-
initiates sessions. However, when viewed over small time scales, this modified
work load process will also exhibit multifractal scaling, not only at the session
level, where it does so by definition, but also at the aggregate level. In fact, it
can be shown that the superposition of i.i.d. conservative binomial cascades
also exhibits multifractal structure, with a multifractal spectrum that is iden-
tical to the one of a “typical” session-related conservative binomial cascade.
To illustrate, let µ and ν be two multifractals generated by two (possibly dif-
ferent) conservative binomial cascades. It is easy to see that independent of
their supports, for the multifractal µ + ν obtained by superposing µ and ν,
we have

τµ+ν(q) = min(τµ(q), τν(q)), (1.33)

for all q ≥ 0. For a proof, simply use that for all positive a, b and q, we have
(aq + bq)/2 ≤ (max{a, b})q ≤ (a + b)q ≤ (2 max{a, b})q ≤ 2q(aq + bq), and
hence

Sµ
n(q) + Sν

n(q) ≤ 2 · Sµ+ν
n (q) ≤ 2q+1 (Sµ

n(q) + Sν
n(q)) .

If the supports of µ and ν are disjoint, we have Sµ+ν
n (q) = Sµ

n(q) +Sν
n(q) and

(1.33) holds for all q. However, for more general cascades with overlapping
support, we will typically see τ(q) > min(τµ(q), τν(q)) for negative q.

Assuming now that µ and ν have the same τ(q) and taking the Legendre
transform we see that the superposition µ+ ν has the same spectrum f(α) in
the increasing part, that is for small α (α < α) which correspond to the bursty
part of the multifractal. For α larger than the expected value α, corresponding
to the smoother parts, we may observe a smaller f(α). In other words, the
superposition has a tendency towards more bursts and fewer smooth parts.
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This is natural since bursts of one multifractal may overwhelm some smooth
parts of the other.

Thus, the built-in multifractal within-session structure causes the overall
traffic rate process to be multiplicative over small time scales, thereby ac-
counting in a parsimonious manner for the effect that the network has on
the small-time scale dynamics of traffic rates on individual links within the
network.

1.4.2 The additive and multiplicative nature of network traffic

Note that the above generalization of Kurtz’s workload model that allows
for multifractal within-session traffic rates is not consistent with measured
data. In fact, Feldmann et al. [11] present empirical evidence that the ob-
served within-session structure is itself a complicated mixture of additive and
multiplicative components, and only by investigating network traffic at the
TCP level (e.g., in terms of port-to-port flows) is it possible to clearly isolate
the multiplicative structure in measured network traffic. Using the findings
from yet another empirical traffic study (see Feldmann et al. [12]), we also
know that the overall number of TCP connections per time unit exhibits self-
similar scaling behavior for time scales on the order of seconds and beyond.
Thus, to get a workload model for wide-area traffic that combines additive
and multiplicative structure and is consistent with measured data, we simply
modify the multifractal version of Kurtz’s process and require that (i) TCP
connections arrive in accordance to a self-similar process, i.e., the fluctuations
around the mean of the total number of TCP connection arrivals per time
unit follows a FGN; (ii) the TCP connections’ workload is heavy-tailed with
infinite variance; and (iii) the workload of a TCP connection is distributed
over the connection’s lifetime in a multifractal fashion, i.e., according to a
conservative binomial cascade.

To see that the latter model has the desired large-time and small-time
scaling properties and hence is in agreement with the observed additive and
multiplicative properties of actual network traffic, we keep (ii) and (iii) as is,
but note that the self-similar scaling property for the aggregate TCP con-
nection traffic rate can be accomplished by relying on the underlying session
structure of the original Kurtz model. That is, user-initiated session continue
to arrive in a Poisson fashion, but the session workload is now expressed in
terms of the number of TCP connection that make up a particular session
and remains to be heavy-tailed with infinite variance; for consistency, we as-
sume that the TCP connections within a session arrive in such a way that
they don’t overlap with one another. It is then easy to see that this two-tier
approach to describing aggregate WAN traffic yields the additive traffic com-
ponent via the TCP-connection-within-session structure and the multiplica-
tive component via the dynamics prescribed for the packets within individual
TCP-connections. Moreover, this two-tier approach is also fully consistent
with measured Internet traffic at the different layers in the TCP/IP protocol
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hierarchy (e.g., see [12]).

1.4.3 Toward a comprehensive study of network performance

The attractive feature of the above structural model for wide-area traffic is
that it is consistent with measured traffic at all levels of interest and that it
accounts in a parsimonious manner for both the global or large-time scale as
well as local or small-time scale characteristics observed in measured WAN
traffic. While the global scaling behavior is already part of Kurtz’s original
model (via the relationship between heavy-tailed sizes or durations of the
individual sessions and the asymptotic self-similarity of the aggregate packet
stream) and is captured by the Hurst parameter H, the original model does
not incorporate local scaling behavior. However, we have seen earlier that
by choosing an appropriate generator for the generic underlying conservative
binomial cascade for the within-connection traffic rate process, we are able to
obtain the same overall multifractal scaling as captured by the multifractal
spectrum associated with the generic cascade model for the individual TCP
connections.

The practical relevance for such a structural workload model is that it al-
lows for a more complete description of network traffic than exists to date
in cases where higher-order statistics or multiplicative aspects of the traffic
play an important role but cannot be adequately accounted for by tradi-
tional, strictly second-order descriptions of network traffic. By aiming for
a complete description of traffic, a more comprehensive analysis of network
performance-related problems becomes feasible and desirable. In the past,
thorough analytical studies of which aspects of network traffic are important
for which aspects of network performance have often been prevented due to
a lack of models that provide provably complete descriptions of the traffic
processes under study. This situation can lead to misconceptions and misun-
derstandings of the relevance of certain aspects of traffic for certain aspects
of performance (e.g., see [15], [16], and [32]).

In a first attempt to allow for a more complete description of network
traffic, Riedi et al. [31] (see also [26]) emphasize performance aspects of de-
scriptive traffic models with additive and multiplicative structures. Working
in the wavelet domain, they discuss in [31] a multiplicative model based on
binomial cascades which exhibits the multifractal properties observed in mea-
sured network traffic at small scales and, in addition, matches the self-similar
behavior of traffic over large time scales. Their model becomes approximately
additive at large scales, as the variance of the cascade generator decreases
with increasing scale, explaining why a purely multiplicative model can be
consistent with an additive property in the limit of large scales. Riedi et al.
also provide initial evidence that models which allow for a more complete de-
scription of network traffic, in particular its multifractal behavior, typically
outperform additive Gaussian models in the context of specific performance
problems [26].
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1.5 CONCLUSION

One of the implications of the discovery of self-similar or multifractal scaling
behavior in measured network traffic has been the realization that network
traffic modeling and performance analysis can and should no longer be viewed
as exercises in data fitting and queueing theory or simulations. Instead, rel-
evant traffic modeling has become a natural by-product of a renewed effort
that aims at gaining a physical (i.e., network-related) understanding of the
empirically observed scaling phenomena. Moreover, the novel insights gained
from such a physical-based understanding of actual network traffic dynamics
often allows for a qualitative assessment of their potential impact on net-
work performance, when more quantitative methods appear to be mathe-
matically intractable or are not yet available. While traditional performance
modeling has mainly lived in the confines of mathematically tractable queue-
ing models, the observed scaling properties of measured network traffic and
the constantly changing nature of today’s networks strongly suggest a shift
away from focusing exclusively on quantitative methods for assessing the wide
range of network performance-related problems towards achieving instead a
more qualitative understanding of the implications of the dominant features
of measured network traffic on relevant networking issues. While supporting
such a qualitative knowledge –where possible– through quantitative analysis
is clearly desirable, we believe that the development of an ubiquitous, sta-
ble, robust and high-performance networking infrastructure of the future will
depend crucially on a qualitative rather than quantitative understanding of
networks and network traffic dynamics.

Finally, in terms of practical relevance, we also argue that by incorporating–
via multifractals–local scaling characteristics of the traffic into a workload
model, it may become in fact feasible to adequately describe traffic in a
closed system (like the Internet) with an open model. The vast majority
of currently used models for network traffic completely ignore the fact that
the dynamic nature of packet traffic over a given link is the result of a com-
bination of source/user behavior and highly nonlinear interactions between
the individual users and the network. The search for a physical explanation
of the observed multifractal nature of measured traffic at the packet-level is
intimately related to trying to sort out these complicated interactions and to
abstract them to a level that is intuitively appealing, conforms to networking
reality, and captures and explains in a mathematically rigorous manner em-
pirically observed phenomena. Clearly, a pre-requisite for succeeding in this
endeavor is a close collaboration with networking experts who are familiar
with the details of the various protocols and control mechanisms that operate
at the different layers within the hierarchical structure of modern-day data
networks and who are aware of the problems that are associated with the
highly dynamic, constantly changing, and extremely heterogeneous nature of
today’s communication networks.
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