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ABSTRACT

This paper considers the problem of determining which set of
2p leaf nodes on a binary multiscale tree model of depth N
(N > p) gives the best linear minimum mean-squared estima-
tor of the tree root. We find that the best-case and worst-case
sampling choices depend on the correlation structure of the
tree. This problem arises in Internet traffic estimation, where
the goal is to estimate the average traffic rate on a network path
based on a limited number of traffic samples.

1. INTRODUCTION

Computer networks, due to their sheer size and complexity,
give rise to several challenging signal processing problems.
Networks like the Internet transfer data (or traffic) in the form
of packets from one point to another through routers (see Fig.
1). Because privacy and security issues prevent the public
sharing of measurements made at routers, network users are
forced to solve inverse problems to infer internal network prop-
erties via packet delay measurements made solely at the edge
of the network.

An important inverse inference problem we study is that
of traffic estimation. Consider the simple network path con-
sisting of a traffic process X(t) entering a single router queue
with service rate C bits/s depicted in Fig. 2. The traffic X is
typically a bursty random process possessing fractal properties
like self-similarity and long-range-dependence (LRD) [1].

Our aim is to estimate R =
∫ T

0 X(t)dt, the total traffic vol-
ume entering the queue in time interval [0, T ], from the spac-
ings of specially injected packets called probes. If we inject
two probe packets of size P bits into the queue at times t = τ
and t = τ +∆ where ∆ = P/C, also known as a packet-pair,
then their spacing after the queue directly reflects the amount
of traffic arriving between them, that is

∫ τ+∆

τ
X(t)dt. Obvi-

ously one can estimate R by saturating the queue with packet-
pairs for the entire time interval [0, T ]. This solution is highly
impractical since we would use up the entire bandwidth with
probe traffic and congest the network! We are thus forced to
estimate R using only a few probe packet-pairs. Since X is
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Fig. 1. The Internet transmits data packets from sender to receiver.
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Fig. 2. Probing for competing traffic. The spacing between probe
packets gives the volume of competing traffic arriving between them.

not bandlimited in general, the problem of estimating R from
few traffic samples is ill-posed.

In this paper we determine what spacing between differ-
ent probe packet-pairs gives the optimal linear minimum mean
squared estimate (LMMSE) of R. Should packet-pairs be spaced
uniformly apart in [0, T ] or bunched together at one end of
[0, T ]? We restrict our analysis to traffic well-modeled by a
multiscale tree. In related work, the authors of [2] numerically
compared different probing schemes for certain stationary traf-
fic models.

The paper is organized as follows. We describe multiscale
tree models in Section 2 and state our optimality results and
a conjecture in Section 3. After presenting numerical simula-
tions in support of the conjecture in Section 4, we conclude in
Section 5. The Appendix contains the proofs.

2. MULTISCALE TREE MODELS

We model the traffic process X using a multiscale dyadic tree
(see Fig. 3). The tree nodes are defined by

Vj,k :=

∫ T (k+1)2−j

Tk2−j

X(t)dt (1)

for j = 0, . . . , N ; k = 0, . . . , 2j − 1. The tree-root value V0,0

thus equals R. In this paper we focus on 2nd-order statistical
trees.
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Fig. 3. Multiscale tree representation of a traffic trace. Nodes at each
horizontal level in the tree in (a) correspond to the sum (aggregates)
of the process X in non-overlapping blocks of sizes of powers of two
as in (b), with lower levels corresponding to smaller block sizes. Each
node is the sum of its two child nodes.

Definition 1 V is a 2nd-order statistical tree if the covariance
of any two of its leaf nodes depends only on their degree of
shared evolution, i.e., on the tree-depth of their closest com-
mon ancestor:

Cov(VN,i, VN,k) =: cn (2)

where n = max{b : bi/2N−bc = bk/2N−bc}, and cn, n =
0, . . . , N , is a fixed sequence of numbers.

Two binary tree models for network traffic, the wavelet in-
dependent Gaussian (WIG) [3] and multifractal wavelet model
(MWM) [4] are 2nd-order statistical trees. Both the WIG
and MWM parsimoniously capture traffic properties like self-
similarity and LRD and have fast O(M) synthesis algorithms
for M -point data sets. Note that while these models are 1st-
order stationary they are not 2nd-order stationary due to their
rigid tree structure.

Before solving the optimal sampling problem we define
two terms.

Definition 2 A tree process has a positive correlation progres-
sion if cm ≥ cm−1 for m = 1, . . . , N − 1.

Definition 3 A tree process has a negative correlation pro-
gression if cm ≤ cm−1 for m = 1, . . . , N − 1.

3. OPTIMAL PROBING SCHEMES

In this section we consider the problem of determining which
set of 2p (p ≤ N ) leaf nodes gives the best LMMSE of the tree
root R. In the traffic estimation scenario this corresponds to
using 2p probe packet-pairs with inter-spacing ∆ = T/2N to
estimate R, with the constraint that the probes enter the queue
at time instants equal to multiples of ∆.

Let L = [li], i = 1, . . . , 2p be a vector of 2p arbitrary
but fixed leaf nodes at depth N . Denote by SL = [si,j ] the
covariance matrix of L; that is si,j := Cov(li, lj).

Because of our assumption of a 2nd-order statistical tree,
the correlation between any leaf node and the root node is
identical:

Cov(li, R) = ρ. (3)

It is well known [5] that the LMMSE of R given L (assuming
zero-mean random variables) is given by

R̂ = ρ11×2kS−1
L L (4)

and1 that the resulting mean square error is

E = var(R) − Cov(L, R)T S−1
L Cov(L, R). (5)

Due to the special form of the covariance vector Cov(L, R)=
ρ11×2k we observe that minimizing E over all possible choices
of sample leaves L is equivalent to maximizing the sum of all
elements of the covariance matrix S−1

L .
We define two special choices of L. The first set, called

bunch samples, consists of all leaves belonging to a sub-tree
with root at depth N − p in the tree, that is,

L̂ = {VN,k : bk/2pc = K}, (6)

where the constant K ∈ {0, . . . , 2N−p − 1}. The second set,
called uniform samples, is such that each of its elements be-
longs to a different sub-tree rooted at depth p, that is,

L∗ = {VN,k, k ∈ G}, (7)

where G ⊂ {0, . . . , 2N − 1} such that ∀i, j ∈ G and i 6= j,⌊
i

2N−p

⌋
6=

⌊
j

2N−p

⌋
.

In the case of positive correlation progression, leaf nodes
closer to each other are more strongly correlated. Thus in-
tuitively L̂ possesses the most redundant information about
R among all choices L. We thus expect it to give the worst
LMMSE. Conversely L∗ should give the optimal LMMSE. A
similar reasoning holds for the negatively correlated progres-
sion case with the rôles of L̂ and L∗ reversed.

The following result vindicates our intuition regarding the
worst-case sampling choices.

Theorem 4 Assume that var(li|lj , j 6= i) > 0, ∀i, implying
that SL is positive definite ∀L. For a positively correlated pro-
gression, the sum of elements of S−1

L is minimized by L = L̂.
For a negatively correlated progression, the sum of elements
of S−1

L is minimized by L = L∗.

The theorem is proved in the Appendix. We conjecture that a
result similar to Theorem 4 holds for the case of the best-case
sampling choice.

Conjecture 5 For a tree with positive correlation progression,
the sum of elements of S−1

L is maximized by L = L∗. For a
tree with negative correlation progression, the sum of elements
of S−1

L is maximized by L = L̂.

This conjecture is supported by the experiments in Section 4.

4. EMPIRICAL COMPARISON OF PROBING
SCHEMES

This section provides numerical support for Conjecture 5. We
verify our claim using a WIG model of tree-depth 6 possess-
ing an fractional Gaussian noise-like correlation structure cor-
responding to Hurst parameter H = 0.8 and H = 0.3. To
be precise, we choose the WIG model parameters such that
var(Vj,k) = 2−2jH · constant (see [3] for further details).

1Here 1 refers to a matrix with all elements equal to 1.



Note that H > 0.5 corresponds to positive correlation pro-
gression while H ≤ 0.5 corresponds to negative correlation
progression. With this correlation structure the WIG satisfies
the assumption made in Theorem 4.

Fig. 4 compares the LMMSE error of the estimated root
node R̂ (normalized by the variance of the root) of the uni-
form and bunch sampling patterns. Since an exhaustive search
of all possible patterns is computationally expensive (for ex-
ample there are over 1018 ways of choosing 32 leaf nodes from
among 64) we instead compute the MSE for 104 randomly se-
lected patterns. Observe that the bunch pattern gives the small-
est LMMSE error for the negatively correlated process in Fig.
4(a) while the uniform pattern does so for the positively cor-
related one in Fig. 4(b), supporting our conjecture. As proved
in Theorem 4, the bunch and uniform patterns give the worst
LMMSE for the positive and negatively correlated processes
respectively.
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Fig. 4. Comparison of probing schemes for a WIG model with
(a) negative correlation progression and (b) positive correlation pro-
gression. Observe that the bunch is optimal in (a) while the uniform
is optimal in (b). The uniform and the bunch give the worst per-
formance in (a) and (b) respectively, which confirms our theoretical
results.

5. CONCLUSIONS

Our results have important implications for traffic estimation.
The main finding of this paper is that the optimal probing
scheme depends on the correlation structure of the traffic pro-
cess. Internet traffic measurements typically reveal a positive
correlation progression. Thus schemes like cprobe [6] that
send a stream of back-to-back probe packets will give poor
estimates of the average traffic rate. However in exceptional
cases where the traffic could possess negative correlation pro-
gression, we conjecture that the same scheme will be optimal!

This paper solves only the “tip of the iceberg” of the larger
problem of optimal sampling schemes on trees. What is the
optimal set of M nodes, not necessarily leaf nodes, to estimate
a specified node on a tree? How does the solution change if
the tree is no longer a 2nd-order statistical tree or even a binary
tree? These are questions waiting to be explored and could
have importance in several fields apart from networking.

Appendix

We now prove a Lemma which we then use to prove Theo-
rem 4. As a first step we compute the leaf arrangements L

which maximize and minimize the sum of all elements of SL.

Lemma 6 Assume a positive correlation progression. Then,∑
i,j si,j is minimized over all choices of L at L = L∗ and

maximized at L = L̂. For a negative correlation progression,∑
i,j si,j is maximized over all choices of L at L = L∗ and

minimized at L = L̂.

Proof Let hm = #{sij ∈ SL : sij = cm} be the number of
elements of SL equal to cm. Define am :=

∑m
α=0 hα, m ≥ 0

and set a−1 = 0. Then

∑

i,j

si,j =

N∑

m=0

cmhm =

N−1∑

m=0

cm(am − am−1) + cNhN

=

N−1∑

m=0

cmam −

N−2∑

m=−1

cm+1am + cNhN

=
N−2∑

m=0

(cm − cm+1)am + cN−1aN−1 − c0a−1

+cNhN

=

N−2∑

m=0

(cm − cm+1)am + constant, (8)

where we used the fact that aN−1 = aN − hN is a constant
independent of the choice of L, since hN = 2p and aN = 22p.

We now show that L = L∗ maximizes am, ∀m while L =
L̂ minimizes am, ∀m. First we prove the results for L = L∗.
Case (i) m ≥ p. Since every element of L∗ has distance at
most p − 1 with all other elements, am is maximized by L∗.
Case (ii) m < p (assuming p > 0). Let the number of el-
ements of L belonging to the sub-tree of Vm+1,q be gq, q =
0, . . . , 2m+1 − 1. We have

am =

2m+1
−1∑

q=0

gq(2
p − gq) = 22p−1+m −

2m+1
−1∑

q=0

(gq − 2p−1)

(9)
since every element of L in the sub-tree of Vm,q must have
distance at most m with all nodes not in the same sub-tree but
must have distance at least m + 1 with all nodes within the
same sub-tree.

The choice of gq’s is constrained to lie on the hyperplane∑
q gq = 2p. Obviously the quadratic form of (9) is max-

imized by the point on this hyperplane closest to the point
(2p−1, . . . , 2p−1) which is (2p−m−1, . . . , 2p−m−1). This is
clearly achieved by L∗.

Now we prove the results for L = L̂.
Case (i) m < N − p. For L̂ we have am = 0, the smallest

value it can take.
Case (ii) N−p ≤ m < N . Consider node li which without

any loss of generality belongs to the sub-tree of Vm+1,0. Let
am(li) be the number of elements of L to which li has distance
less than or equal to m. Now since li has distance less than
or equal to m only with those elements of L not in the same
sub-tree, we must have am(li) ≥ 2p − 2N−m−1. Since L̂



achieves this lower bound for am(li), ∀i and am =
∑

i am(li),
L̂ minimizes am in turn. 2

Let us now study, to what extent the above results transfer
to the actual matrix of interest S−1

L . We start with a useful
formula.

Lemma 7 Denote the eigenvalues of SL by λi. Assume that
no leaf node of the tree can be expressed as a linear com-
bination of other leaf nodes, implying that λi > 0, ∀i. Set
DL = [di,j ]2p

×2p := S−1
L . Then there exist positive numbers

fi with f1 + . . . + fp = 1 such that

2p∑

i,j=1

si,j = 2p
2p∑

i=1

fiλi, and (10)

2p∑

i,j=1

di,j = 2p
2p∑

i=1

fi/λi. (11)

Furthermore, for both special cases, L∗ and L̂, we may choose
the weights fi such that only one is non-zero.

Proof Since the matrix SL is real and symmetric there ex-
ists an orthonormal eigenvector matrix U = [ui,j ] that diag-
onalizes SL, that is SL = UΛUT where Λ is diagonal with
eigenvalues λj , j = 1, . . . , 2p. Define wj :=

∑
i ui,j . Then

∑

i,j

si,j = 11×2pSL12p
×1

= (11×2pU)Λ(11×2pU)T

= [w1 . . . w2p ]Λ[w1 . . . w2p ]T

=
∑

j

λjw
2
j .

Further, since UT = U−1 we have
∑

j

w2
j = (11×2pU)(UT

12p
×1) = 11×2pI12p

×1 = 2p.

(12)
Setting fi = w2

i /2p establishes (10). Using the decomposition
S−1

L = (UT )−1Λ−1U−1 = UΛ−1UT similarly gives (11).
Consider the case L = L∗. Since L∗ consists of a symmet-

rical set of leaf nodes (see (7)) the covariances of li ∈ L∗ with
its fellow leaf nodes does not depend on i, and we can set:

λ∗ :=

2p∑

j=1

si,j = cN +

p∑

m=1

2p−mcm. (13)

With the sum of the elements of any row of SL∗ being identi-
cal, the vector 12p

×1 with equal coordinates is an eigenvector
of SL∗ with eigenvalue λ∗ equal to (13).

Recall that we can always choose a basis of orthogonal
eigenvectors which includes 12p

×1 as the first basis vector. It
is well known that the rows of the corresponding basis trans-
formation matrix U will then be exactly these normalized eigen-
vectors. Since they are orthogonal to 12p

×1, the sum of their

coordinates wj (j = 2, . . . , 2p) must be zero. Thus, all fi but
f1 vanish. (The last claim follows also from the observation
that the sum of coordinates of the L2-normalized 12p

×1 equals
w1 = 2p2−p/2 = 2p/2; due to (12) wj = 0 for all other j.)

The reasoning is similar for S
L̂

, and we can define

λ̂ :=

2p∑

j=1

si,j = cN +

p∑

m=1

2mcN−m. (14)

2

Proof of Theorem 4 Note that the weights fi as well as the
eigenvalues λi of Lemma 7 depend on the arrangement of the
leaf nodes L. To avoid confusion, we denote by λi the eigen-
values of SL for an arbitrary fixed set of leaf nodes L, and by
λ∗ and λ̂ the only relevant eigenvalues of L∗ and L̂ according
to (13) and (14).

Assume a positive correlation progression, and let L be an
arbitrary set of leaf nodes. Lemma 6 and Lemma 7 then imply
that

λ∗ ≤
∑

j

λjfj ≤ λ̂. (15)

Since SL is positive definite, we must have λj > 0. We may
then interpret the middle expression as an expectation of the
positive “random variable” λ with discrete law given by fi.
Jensen’s inequality applies with the convex function 1/x (x >
0) and yields

∑

j

(1/λj)fj ≥
1∑

j λjfj
≥

1

λ̂
. (16)

In other words,
∑

i,j di,j is minimized by L̂; that is, bunching
the nodes at one end of the tree gives the worst error.

A similar argument holds for the case cm ≤ cm−1 which
proves the Theorem. 2
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