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ABSTRACT
This paper has two main objectives. First, it develops the multifractal formalism in a

context suitable for both, measures and functions, deterministic as well as random, thereby
emphasizing an intuitive approach. Second, it carefully discusses several examples, such as
the binomial cascades and self-similar processes with a special eye on the use of wavelets.
Particular attention is given to a novel class of multifractal processes which combine the
attractive features of cascades and self-similar processes. Statistical properties of estimators
as well as modelling issues are addressed.
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1 Introduction and Summary

Fractal processes have been instrumental in a variety of fields ranging from the theory of
fully developed turbulence [73, 64, 36, 12, 7], to stock market modelling [28, 68, 69, 80],
image processing [61, 21, 104], medical data [2, 98, 11] and geophysics [36, 65, 47, 92]. In
networking, models using fractional Brownian motion (fBm) have helped advance the
field through their ability to assess the impact of fractal features such as statistical self-
similarity and long-range dependence (LRD) to performance [60, 81, 90, 89, 96, 34, 88].

Roughly speaking, a fractal entity is characterized by the inherent, ubiquitous oc-
currence of irregularities which governs its shape and complexity. The most prominent
example is certainly fBm BH(t) [71]. Its paths are almost surely continuous but not
differentiable. Indeed, the oscillation of fBm in any interval of size δ is of the order δH

where H ∈ (0, 1) is the self-similarity parameter:

BH(at)
fd
= aHBH(t). (1.1)

Reasons for the success of fBm as a model of LRD may be seen in the simplicity of its
scaling properties which makes it amendable to analysis. The fact of being Gaussian
bears further advantages. However, the scaling law (1.1) implies also that the oscil-
lations of fBm at fine scales are uniform∗ which comes as a disadvantage in various
situations (see Figure 1). Real world signals often possess an erratically changing os-
cillatory behavior (see Figure 2) which have earned them the name multifractals, but
which also limits the appropriateness of fBm as a model. This rich structure at fine
scales may serve as a valuable indicator, and ignoring it might mean to miss out on
relevant information (see references above).

This paper has two objects. First, we present the framework for describing and
detecting such a multifractal scaling structure. Doing so we survey local and global
multifractal analysis and relate them via the multifractal formalism in a stochastic
setting. Thereby, the importance of higher order statistics will become evident. It might
be especially appealing to the reader to see wavelets put to efficient use. We focus
mainly on the analytical computation of the so-called multifractal spectra and on their
mutual relations. Thereby, we emphasize issues of observability by striving for formulae
which hold for all or almost all paths and by pointing out the necessity of oversampling
needed to capture certain rare events. Statistical properties of estimators of multifractal
quantities as well as modelling issues are addressed elsewhere (see [41, 3, 40] and
[68, 89, 88]).

Second, we carefully discuss basic examples as well as Brownian motion in multi-
fractal time, B1/2(M(t)). This process has recently been suggested as a model for stock
market exchange by Mandelbrot who argues that oscillations in exchange rates occur
in multifractal ‘trading time’ [68, 69]. With the theory developed in this paper, it be-
comes an easy task to explore B1/2(M(t)) from the multifractal point of view, and with

∗This property is also known as the Lv́ey modulus of continuity in the case of Brownian
motion. For fBm see [5, Thm. 8.3.1.].
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FIGURE 1. Fractional Brownian motion, as well as its increment process called fGn (displayed
on top in T5), has only one singularity exponent h(t) = H, a fact which is represented in
the linear partition function τ (see T2) and a multifractal spectrum (see T3) which consists
of only one point: for fBm (H, 1) and for fGn (H − 1, 1). For further details on the plots see
(1.9), (1.6) and Figure 7.

little more effort also more general multifractal ‘subordinators’. The reader interested
in these multifractal processes may wish, at least at first reading, to content himself
with the notation introduced on the following few pages, skip the sections which deal
more carefully with the tools of multifractal analysis, and proceed directly to the last
sections. The remainder of this introduction provides a summary of the contents of the
paper, following roughly its structure.

1.1 Singularity Exponents

In this work, we are mainly interested in the geometry or local scaling properties
of the paths of a process Y (t). Therefore, all notions and results concerning paths
will apply to functions as well. The study of fine scale properties of functions (as
opposed to measures) has been pioneered in the work of Arneodo, Bacry and Muzy
[7, 78, 79, 1, 2, 80], who were also the first to introduce wavelet techniques in this
context. For simplicity of the presentation we take t ∈ [0, 1]. Extensions to the real line
IR as well as to higher dimensions, being straightforward in most cases, are indicated.

A typical feature of a fractal process Y (t) is that it has a non-integer degree of
differentiability, giving rise to an interesting analysis of its local Hölder exponent H(t)
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FIGURE 2. Real world signals such as this geophysical data often exhibit erratic behavior
and their appearance may make stationarity questionable. One such feature are ‘trends’
which sometimes can be explained by strong correlations (LRD). Another such feature are
the sudden jumps or ‘bursts’ which in turn are a typical for multifractals. For such signals
the singularity exponent h(t) depends erratically on time t, a fact which is reflected in the
concave partition function τ (see T2) and a multifractal spectrum (see T3) which extends
over a non-trivial range of singularity exponents.

which is roughly defined through

|Y (t′) − P (t′)| � |t′ − t|H(t) (1.2)

for some polynomial P which in nice cases is simply the Taylor polynomial of Y at t.
A rigorous definition is given in (2.1).

Provided the polynomial is constant, H(t) can be obtained from the limiting behavior
of the so-called coarse Hölder exponents, i.e.,

hε(t) =
1

log ε
log sup

|t′−t|<ε

|Y (t′) − Y (t)|. (1.3)

For rigorous statements we refer to (2.2) and lemma 2.3.
However, as the example t2+t2.7 shows, the use of hε(t) is ineffective in the presence of

polynomial trends. Then, hε(t) will reflect the lowest non-constant term of the Taylor
polynomial of Y at t. For this reason, and also to avoid complications introduced
through the computation of the supremum in (1.3), one may choose to employ wavelet
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decompositions or other tools of time frequency analysis. Properly chosen wavelets are
blind to polynomials and due to their scaling properties they contain information on
the Hölder regularity of Y [51, 23]. Their application in multifractal estimation has
been pioneered by [7, 53, 30]. Furthermore, wavelets provide unconditional basis for
several regularity spaces such as Besov spaces (see (2.14) and (6.2)) whence their use
bears further advantages.

Yet, the ‘classical’ choice of a singularity exponent is

α
(n)
k =

1

−n log 2
log

(M((k + 1)2−n) −M(k2−n)
)
. (1.4)

It is attractive due to its simplicity and becomes actually quite powerful when studying
monotonously increasing processes M(t), in particular the distribution functions of
singular measures, such as cascades.

In this chapter we will introduce the exponents w
(n)
k emerging from a wavelet based

analysis and elaborate on the relation between these different singularity exponents
h

(n)
k , α

(n)
k and w

(n)
k .

1.2 Multifractal Spectra

As indicated we are mainly interested in the geometry or local regularity of the paths
of Y (t). Let us fix such a realization for the time-being.

Local analysis

Ideally, one would like to quantify in geometrical as well as statistical sense which
values H(t) appear on a given path of the process Y , and how often one will encounter
them. Towards the first description one studies the sets

E
[a]
h = {t : H(t) = a} (1.5)

for varying a. Similarly, one could consider sets E
[a]
α and E

[a]
w defined through the

limiting behavior of the singularity exponents α
(n)
k or w

(n)
k , respectively. If no confusion

regarding the choice of h
(n)
k , w

(n)
k or α

(n)
k can arise, we simply drop the index.

The sets E[a] form a decomposition of the support of Y according to its singularity
exponents. We say that Y has a rich multifractal structure if these sets E [a] are highly
interwoven, each lying dense on the line. Typically, only one of the E [a] has full Lebesgue
measure, while the others form dusts, more precisely, sets with non-integer Hausdorff
dimension dim(E[a]) [32]. Dimensions are always positive, and the smaller the dimension
of a set the ‘thinner’ the set. In this sense, the function

a �→ dim(E[a]) (1.6)

gives a compact representation of the complex singularity structure of Y . It has been
termed the multifractal spectrum of Y and is studied extensively in the ‘classical’ liter-
ature.
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To develop some intuition let us consider a differentiable path. To avoid trivialities
let us assume that this path and its derivative have no zeros. Then, dim(E [a])-spectrum
reduces to the point (1, 1). On the other hand, if H(t) is continuous and not constant
on intervals then each E[a] is finite and dim(E [a]) = 0 for all a in the range of H(t).
A spectrum dim(E[a]) with non-degenerate form is, thus, indeed indication for rich
singularity behavior. By this we mean that H(t) changes erratically with t and takes
each value a on a rather large set E[a].

Global analysis

A simpler way of capturing the complex structure of a signal is obtained when adapting
the concept of box-dimension to the multifractal context. As the name indicates, one
aims at an estimate of dim(E[a]) by counting the intervals – or boxes – over which Y
increases roughly with the ‘right’ Hölder exponent. Therefore, we need to introduce
grain exponents, a discrete approximation to hε(t) (see (1.3)):

h
(n)
k := −(1/n) log2 sup{|Y (s) − Y (t)| : (k − 1)2−n ≤ s ≤ t ≤ (k + 2)2−n} (1.7)

and define the grain (multifractal) spectrum as [73, 46, 45, 91]

f(a) = lim
ε→0

lim sup
n→∞

log N (n)(a, ε)

n log 2
, (1.8)

where N (n)(a, ε) = #{k : |h(n)
k −a| < ε} counts, how many of the grain exponents h

(n)
k

are approximately equal to a. Similarly, one may define such spectra for the singularity
exponents α

(n)
k and w

(n)
k . If confusion may arise, we will indicate the chosen exponent

by writing explicitly fh(a), fα(a), or fw(a).
This multifractal spectrum can be interpreted (at least) in three ways. First, as

mentioned already it is related to the notion of dimensions. Indeed, a simple argument
shows that dim(E[a]) ≤ f(a) [94]. The essential ingredient for a proof is the fact that the
calculation of dim(E[a]) involves finding an optimal covering of E [a] while f(a) considers
only uniform covers. In short, f(a) provides an upper bound on the dimension and,
thus, the ‘size’ of the sets E[a].

Second, (1.8) suggests that the re-normalized histograms (1/n) log2 N (n)(a, ε) should
all be roughly equal at small scales 2−n to the scale independent f(a). It should be
remembered that this is foremost (by definition) a property of the paths of the given
process. We stress this point because it is tempting to argue that –at least under suitable
ergodicity assumptions– one should see the marginal distribution of h

(n)
k reflected in f .

However, one should not overlook that the logarithmic re-normalization implemented in
f(a) is aimed at detecting exponential scaling properties rather than the marginals on
multiple scales themselves. For fBm (see (1.1)) this re-normalization indeed causes all
details of the Normal multi-scale marginals to be washed out into a virtually structure-
less f(a) which gives notice of the presence of only one scaling law, the self-similarity
(1.1) with parameter H. Thus, f expresses that fBm is ‘mono-fractal’, as mentioned
above. To the contrary with ‘multi-fractal’ processes such as multiplicative cascades,
for which f reflects the presence of an entire range of scaling exponents (see (5.32)).



1 Introduction and Summary 7

The third natural context for the coarse spectrum f is that of Large Deviation
Principles (LDP) [29, 91]. Indeed, N (n)(a, ε)/2n defines a probability distribution† on

{h(n)
k : k = 0, . . . , 2n − 1}. Alluding to the Law of Large Numbers (LLN) we may

expect this distribution to be concentrated more and more around the ‘most typical’
or ‘expected’ value as n increases. The spectrum f(a) measures how fast the chance
N (n)(a, ε)/2n to observe a ‘deviant’ value a decreases, i.e., N (n)(a, ε)/2n � 2f(a)−1.

The close connection to LDP leads one to study the scaling of ‘sample moments’
through the so-called partition function [45, 46, 36, 91]

τh(q) := lim inf
n→∞

log S
(n)
h (q)

−n log 2
where S

(n)
h (q) :=

2n−1∑
k=0

2−nqh
(n)
k , (1.9)

which are defined for all q ∈ IR. Similarly, replacing h
(n)
k by α

(n)
k , one defines τα(q) and

S
(n)
α (q). The latter takes on the well-known form of a partition sum

S(n)
α (q) = 2−nqα

(n)
k =

2n−1∑
k=0

∣∣Y (
(k + 1)2−n

) − Y (k2−n)
∣∣q . (1.10)

Again similarly, one defines τw(q) and S
(n)
w (q) by replacing h

(n)
k by wavelet based ex-

ponents w
(n)
k (see (2.11)). Again, if no confusion on the choice of h

(n)
k , w

(n)
k or α

(n)
k can

arise, we simply drop the index h, α or w .

1.3 Multifractal Formalism

The theory of LDP suggests f(a) and τ(q) are strongly related since 2−nS(n)(q) is the

moment generating function of the random variable An(k) := −nh
(n)
k ln(2) (recall foot-

note †). For a motivation of a formula connection f(a) and τ(q) consider the heuristics

S(n)(q) =
∑

a

∑
h
(n)
k �a

2−nqh
(n)
k �

∑
a

2nf(a)2−nqa =
∑

a

2−n(qa−f(a)) � 2−n infa(qa−f(a)).

Assuming that
∑

a has only finite many terms the last step simply replaces the sum by
its strongest term. Making this entire argument rigorous we prove in this paper that

τ(q) = f ∗(a) := inf
a

(qa − f(a)). (1.11)

Here (·)∗ denotes the Legendre transform which is omnipresent in the theory of LDP.
Indeed, by applying a theorem due to Gärtner and Ellis [27] and imposing some reg-
ularity on τ(q) theorem 3.5 shows that the family of probability densities defined by
N (n)(a, ε)/2n satisfies the full LDP [26] with rate function f meaning that f is actually
a double-limit and f(a) = τ ∗(a). Corollary 4.5 establishes that always

f(a) = τ ∗(a) = qa − τ(q) at points a = τ ′(q). (1.12)

†Recall that we fixed a path of Y . Randomness is here understood in choosing k.
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Going through some of the explicitly calculated examples in Section 5.5 will help de-
mystify the Legendre transform. A tutorial on the Legendre transform in contained in
Appendix A of [89].

From (1.11) follows, that f(a) ≤ f ∗∗(a) = τ ∗(a) and also that τ(q) is a concave
function, hence continuous and almost everywhere differentiable.

1.4 Deterministic Envelope

So far, all that has been said applies to any given function or path of a process. In the
random case, one would often like to use a simple analytical approach in order to gain
intuition or an estimate of f for a typical path of Y .

To this end we formulate a LDP for the sequence of distributions of {h(n)
k } where

randomness enters now through choosing k ∈ {0, . . . , 2n − 1} as well as through the
randomness of the process itself, i.e., through Yt(ω) where ω lies in the probability

space (Ω, PΩ). The moment generating function of An(k, ω) = −nh
(n)
k (ω) ln(2) with k

and ω random is 2−nIEΩ[S(n)(q)]. This leads to defining the ‘deterministic envelope’:

T (q) := lim inf
n→∞

−1

n
log2 IEΩS(n)(q) (1.13)

and the corresponding ‘rate function’ F (see (3.23)). As with the pathwise f(a) and
τ(q) we have here again T (q) = F ∗(q). More importantly, it is easy to show that
τ(q, ω) ≥ T (q) almost surely (see lemma 3.9). Thus:

Corollary 1.1. With probability one the multifractal spectra are ordered as follows: for
all a

dim(E[a]) ≤ f(a) ≤ τ ∗(a) ≤ T ∗(a), (1.14)

provided that they are all defined in terms of the same singularity exponent.

Great effort has been spent on investigating under which assumptions equality holds
between some of the spectra, as a matter of fact mostly between spectra based on differ-
ent scaling exponents. Indeed, the most interesting combinations seem to be dim(E [a])

with scaling exponents h
(n)
k and α

(n)
k , and τ ∗(a) with scaling exponents w

(n)
k and α

(n)
k ,

the former for its importance in the analysis of regularity, the latter for its numerical
relevance. It has become the accepted term in the literature to say that the multifractal
formalism holds if any such spectra are equal; indeed they are in a generic sense [52].
However, this terminology might sometimes be confusing if the nature of the parts of
such an equality is not indicated. We prefer here to call (1.14) the multifractal formal-
ism: this formula ‘holds’ for any fixed choice of a singularity exponent as is shown in
the paper.

1.5 Self-similarity and LRD

The statistical self-similarity as expressed in (1.1) makes fBm, or rather its increment
process a paradigm of long range dependence (LRD). To be more explicit let δ denote
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some fixed lag and define fractional Gaussian noise (fGn) as

G(k) := BH((k + 1)δ) − BH(kδ). (1.15)

Having the LRD property means that the auto-correlation rG(k) := IEΩ[G(n+k)G(n)]
decays so slowly that

∑
k rG(k) = ∞. The presence of such strong dependence bears

an important consequence on the aggregated processes

G(m)(k) :=
1

m

(k+1)m−1∑
i=km

G(i). (1.16)

They have a much higher variance, and variability, than would be the case for a
short range dependent process. Indeed, if X(k) are i.i.d., then X(m)(k) has variance
(1/m2)var(X0+. . .+Xm−1) = (1/m)var(X). For G we find, due to (1.1) and BH(0) = 0,

var(G(m)(0)) = var

(
1

m
BH(mδ)

)
= var

(
mH

m
BH(δ)

)
= m2H−2var (G(0)) . (1.17)

For H > 1/2 this expression decays indeed much slower than 1/m. As is shown in [19]
var(X(m)) � m2H−2 is equivalent to rX(k) � k2H−2 and so, G(k) is indeed LRD for
H > 1/2 (this follows also directly from (7.3)).

Let us demonstrate with fGn how to relate LRD with multifractal analysis using only
that it is a zero-mean processes, not (1.1). To this end let δ = 2−n denote the finest
resolution we will consider, and let 1 be the largest. For m = 2i (0 ≤ i ≤ n) the process
mG(m)(k) becomes simply BH((k +1)mδ)−BH(kmδ) = BH((k +1)2i−n)−BH(k2i−n).
But the second moment of this expression —which is also the variance— is exactly
what determines Tα(2) (compare (1.10)). More precisely, using stationarity of G and
substituting m = 2i, we get

2−(n−i)Tα(2) � IEΩ

[
Sn−i

α (2)
]

=
2n−i−1∑

k=0

IEΩ

[|mG(m)(k)|2] = 2n−i22ivar
(
G(2i)

)
. (1.18)

This should be compared with the definition of the LRD-parameter H via

var(G(m)) � m2H−2 or var(G(2i)) = 2i(2H−2). (1.19)

At this point a conceptual difficulty arises. Multifractal analysis is formulated in the
limit of small scales (i → −∞) while LRD is a property at large scales (i → ∞). Thus,
the two exponents H and Tα(2) can in theory only be related when assuming that
the scaling they represent is actually exact at all scales, and not only asymptotically.
When this assumption is violated, the two approaches may provide strikingly different
answers (compare Example 7.2).

In any real world application, however, one will determine both, H and Tα(2), by
finding a scaling region i ≤ i ≤ i in which (1.18) and (1.19) hold up to satisfactory
precision. Comparing the two scaling laws in i yields Tα(2) + 1 − 2 = 2H − 2, or

H =
Tα(2) + 1

2
. (1.20)
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This formula expresses most pointedly, how multifractal analysis goes beyond second
order statistics: in (1.26) we compute with T (q) the scaling of all moments. The formula
(1.20) is derived here for zero-mean processes, but can be put on more solid grounds
using wavelet estimators of the LRD parameter [4] which are more robust than the ones
obtained through variance of the increment process. The same formula (1.20) reappears
also for multifractals, suggesting that it has some ‘universal truth’ to it, at least in the
presence of ‘perfect scaling’ (see (1.29) and (7.25), but also Example 7.2).

1.6 Multifractal Processes

The most prominent examples where one finds coinciding, strictly concave multifractal
spectra are the distribution functions of cascade measures [64, 56, 15, 33, 6, 82, 49, 91,
95, 86] for which dim(E[a]) and T ∗(a) are equal and have the form of a ∩ (see Figure 6
and also 3 (e)). These cascades are constructed through some multiplicative iteration
scheme such as the binomial cascade, which is presented in detail in the paper with
special emphasis on its wavelet decomposition. Having positive increments, however,
this class of processes is sometimes too restrictive. fBm, as noted, has the disadvantage
of a poor multifractal structure and does not contribute to a larger pool of stochastic
processes with multifractal characteristics.

It is also notable that the first ‘natural’, truly multifractal stochastic process to be
identified was Lévy motion [54]. This example is particularly appealing since scaling
is not injected into the model by an iterative construction (this is what we mean by
the term natural). However, its spectrum is, though it shows a non-trivial range of
singularity exponents H(t), degenerated in the sense that it is linear.

Construction and Simulation

With the formalism presented here, the stage is set for constructing and studying new
classes of truly multi-fractional processes. The idea, to speak in Mandelbrot’s own
words, is inevitable after the fact. The ingredients are simple: a multifractal ‘time
warp’, i.e., an increasing function or process M(t) for which the multifractal formalism
is known to hold, and a function or process V with strong mono-fractal scaling prop-
erties such as fractional Brownian motion (fBm), a Weierstrass process or self-similar
martingales such as Lévy motion. One then forms the compound process

V(t) := V (M(t)). (1.21)

To build an intuition let us recall the method of midpoint displacement which can
be used to define simple Brownian motion B1/2 which we will also call Wiener mo-
tion (WM) for a clear distinction from fBm. This method constructs B1/2 iteratively
at dyadic points. Having constructed B1/2(k2−n) and B1/2((k + 1)2−n) one defines
B1/2((2k + 1)2−n−1) as (B1/2(k2−n) + B1/2((k + 1)2−n))/2 + Xk,n. The off-sets Xk,n are
independent zero mean Gaussian variables with variance such as to satisfy (1.1) with
H = 1/2. Thus the name of the method. One way to obtain Wiener motion in multi-
fractal time WM(MF) is then to keep the off-set variables Xk,n as they are but to apply
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them at the time instances tk,n defined by tk,n = M−1(k2−n), i.e., M(tk,n) = k2−n:

B1/2(t2k+1,n+1) :=
B1/2(tk,n) + B1/2(tk+1,n)

2
+ Xk,n. (1.22)

This amounts to a randomly located random displacement, the location being deter-
mined by M. Indeed, (1.21) is nothing but a time warp.

An alternative construction of ‘warped Wiener motion’ WM(MF) which yields an
equally spaced sampling as opposed to the samples B1/2(tk,n) provided by (1.22) is
desirable. To this end, note first that the increments of WM(MF) become independent
Gaussians once the path of M(t) is realized. To be more precise, fix n and let

G(k) := B((k + 1)2−n) − B(k2−n) = B1/2(M(k + 1)2−n)) − B1/2(M(k2−n)). (1.23)

For a sample path of G one starts by producing first the random variables M(k2−n).
Once this is done, the G(k) simply are independent zero-mean Gaussian variables with
variance |M(k + 1)2−n)) −M(k2−n)|. This procedure has been used in Figure 3.

Global analysis

For the right hand side (RHS) of the multifractal formalism (1.14), we need only to
know that V is an H-sssi process, meaning that the increment V (t+u)−V (t) is equal
in distribution to uHV (1) (compare (1.1)). Assuming independence between V and M
a simple calculation reads as

IEΩ

2n−1∑
k=0

|V((k + 1)2−n) − V(k2−n)|q

=
2n−1∑
k=0

IEIE
[
|V (M((k + 1)2−n)) − V (M(k2−n))|q

∣∣∣M(k2−n),M((k + 1)2−n)
]

=
2n−1∑
k=0

IE
[|M((k + 1)2−n) −M(k2−n)|qH

]
IE [|V (1)|q] . (1.24)

Here, we dealt with increments |V((k+1)2−n)−V(k2−n)| for the ease of notation. With

little more effort they can be replaced by suprema, i.e., by 2−nh
(n)
k , or even by 2−nw

(n)
k

for certain wavelet coefficients and under appropriate assumptions (see theorem 8.5).

It follows, e.g., for h
(n)
k , that

Warped H-sssi: Th,V(q) =

{
Th,M(qH) if IEΩ

[| sup0≤t≤1 V (t)|q] < ∞
−∞ else.

(1.25)

Simple H-sssi process: When choosing the deterministic warp time M(t) = t we

have TM(q) = q − 1 since S
(n)
M (q) = const2n · 2−nq for all n. Also, V = V . We obtain

TM(qH) = qH − 1 which has to be inserted into (1.25) to obtain

Simple H-sssi: Th,V (q) =

{
qH − 1 if IEΩ

[| sup0≤t≤1 V (t)|q] < ∞
−∞ else.

(1.26)
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Local analysis of warped fBm

Let us now turn to the special case where V is fBm. Then, we use the term FB(MF) to
abbreviate fractional Brownian motion in multifractal time: B(t) = BH(M(t)). First,
to obtain an intuition on what to expect from the spectra of B let us note that the
moments appearing in (1.25) are finite for all q as we will see in lemma 7.4. Applying
the Legendre transform yields easily that

T ∗
B(a) = inf

q
(qa − TB(q)) = inf

q
(qa − TM(qH)) = T ∗

M(a/H), (1.27)

which is valid for all a ∈ IR for which the second equality holds, i.e., for which the
infimum is attained for q values in the range where TB(q) is finite. In particular, for
Brownian motion (fBm with H = 1/2) it holds for all a (compare lemma 7.4).
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FIGURE 3. Left: Simulation of Brownian motion in binomial time (a) Sampling of
Mb((k + 1)2−n) − Mb(k2−n) (k = 0, . . . , 2n − 1), indicating distortion of dyadic
time intervals (b) Mb((k2−n)): the time warp (c) Brownian motion warped with (b):
B(k2−n) = B1/2(Mb(k2−n))

Right: Estimation of dim(E[a]
B ) via τ∗

w,B (d) Empirical correlation of the Haar wavelet coeffi-
cients. (e) Dot-dashed: T ∗

Mb
(from theory), dashed: T ∗

B(a) = T ∗
Mb

(a/H) Solid: the estimator
τ∗
w,B obtained from (c). (Reproduced from [40].)

Second, towards the local analysis we recall the uniform and strict Hölder continuity



1 Introduction and Summary 13

of the paths of fBm. In theorem 7.3 we state a precise result due to Adler [5] which
reads roughly as

sup
|u|≤δ

|B(t + u)−B(t)| = sup
|u|≤δ

|BH(M(t + u))−BH(M(t))| � sup
|u|≤δ

|M(t + u)−M(t)|H .

This is the key to conclude that BH simply squeezes the Hölder regularity exponents
by a factor H. Thus,

hB(t) = H · hM(t), E
[a/H]
M = E

[a]
B ,

and, consequently, analogous to (1.27),

dim(E
[a]
B ) = dim(E

[a/H]
M ).

Figure 3 (d)-(e) displays an estimation of dim(E
[a]
B ) using wavelets which agrees very

closely with the form dim(E
[a/H]
M ) predicted by theory. (For statistics on this estimator

see [40, 41].)
Combining this with corollary 1.1 and (1.27) we may conclude:

Corollary 1.2 (Fractional Brownian Motion in Multifractal Time).
Let BH denote fBm of Hurst parameter H. Let M(t) be of almost surely continuous
paths and independent of BH . Set B(t) = BH(M(t)) and consider a multifractal anal-

ysis using h
(n)
k . Then, the multifractal warp formalism

dim(E
[a]
B ) = fB(a) = τ ∗

B(a) = T ∗
B(a) = T ∗

M(a/H) (1.28)

holds for any path and any a for which dim(E
[a/H]
M ) = T ∗

M(a/H) = T ∗
B(a).

The condition on a ensures that equality holds in the multifractal formalism for M
and that the relevant moments are finite so that (1.27) holds. If satisfied, then the

local, or fine, multifractal structure of B captured in dim(E
[a]
B ) on the left side in (1.28)

can be estimated through grain based, simpler and numerically more robust spectra
on the right side, such as τ ∗

B(a) (compare Figure 3 (e)).
Moreover, the ‘warp formula’ (1.28) is appealing since it allows to separate the LRD

parameter of fBm and the multifractal spectrum of the time change M. Indeed, pro-
vided that M is almost surely increasing one has TM(1) = 0 since S(n)(0) = M(1)
for all n. Thus, TB(1/H) = 0 exposes the value of H. Alternatively, the tangent at T ∗

B
through the origin has slope 1/H. Once H is known T ∗

M follows easily from T ∗
B.

Simple fBm: When choosing the deterministic warp time M(t) = t we have B = BH

and TBH
(q) = qH−1 as in (1.26). In the special case of Brownian motion (H = 1/2) we

may apply (1.28) for all a showing that all h
(n)
k -based spectra consist of the point (H, 1)

only. This makes the mono-fractal character of this process most explicit. In general,
however, artifacts which are due mainly to diverging moments may distort this simple
picture (see Section 7.3).
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LRD and estimation of warped Brownian motion

Let G(k) := B((k+1)2−n)−B(k2−n) be ‘fGn in multifractal time’ (see (1.23) for the case
H = 1/2). Calculating auto-correlations explicitly, lemma 8.8 shows that G is second
order stationary provided M has stationary increments. Assuming IE[M(s)2H ] = const·
sT (2H)+1, the correlation of G is of the form of ordinary fGn, but decaying as rG(k) �
k2HG−2 where

HG =
TM(2H) + 1

2
. (1.29)

Let us discuss some special cases. An obvious choice for a subordinator M is Lévy mo-
tion, an H ′-self-similar, 1/H ′-stable process. It has independent, stationary increments.
Since the relation (1.1) holds with H ′ as the scaling parameter, we have T (q) = qH ′−1
from (1.26). Moreover, M(s)2H is equal in distribution to (sH′M(1))2H and indeed
IE[M(s)2H ] = const · s2HH′

= const · sT (2H)+1. This expression is finite for 2H < 1/H ′.
In summary, HG = HH ′ < 1/2.

For a continuous, increasing warp time M, on the other hand, we have always
TM(0) = −1 and TM(1) = 0. (Lévy motion is discontinuous; it is increasing for H ′ < 1,
in which case T (1) is not defined.) Exploiting the concave shape of TM we find that
H < HG < 1/2 for 0 < H < 1/2, and 1/2 < HG < H for the LRD case 1/2 < H < 1.

Especially in the case of H = 1/2 (‘white noise in multifractal time’) G(k) becomes
uncorrelated (see also (8.20)). Notably, this is a stronger statement than the observation
that the G(k) are independent conditioned on M (compare Section 1.6). As a particular
consequence, wavelet coefficients will decorrelate fast for the compound process G, not
only when conditioning on M (compare Figure 3 (d)). This is favorable for estimation
purposes as it reduces the error variance. Finally, for increasing M we have T (1) = 0
and the requirements for (1.29) reduce to the simple IE[M(s)] = s. Multiplicative
processes with this property (as well as stationary increments) have been introduced
recently [14, 70, 74, 105].

Though seemingly obvious it should be pointed out that the vanishing correlations
of G in the case H = 1/2 should not be taken as an indication of independence. After
all, G becomes Gaussian only when conditioning on knowing M. A strong, higher order
dependence in G is hidden in the dependence of the increments of M which determine
the variance of G(k) as in (1.23). Indeed, Figure 3 (c) shows clear phases of monotony
of B indicating positive dependence in its increments G, despite vanishing correlations.
Mandelbrot calls this the ‘blind spot of spectral analysis’.

Multifractals in multifractal time

Despite of its simplicity the presented scheme for constructing multifractal processes
allows for various play-forms some of which are little explored. First of all, for simulation
purposes one might subject the randomized Weierstrass-Mandelbrot function to time
change rather than fBm itself.

Next, we may choose to replace fBm with a more general self-similar process (7.1)
such as Lévy motion. Difficulties arise here since Lévy motion is itself a multifractal
with varying Hölder regularity and the challenge lies in studying which exponents of
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the ‘multifractal time’ and the motion are most likely to meet. A solution for the
spectrum f(a) is given in corollary 8.13 which actually applies to arbitrary processes Y
with stationary increments (compare theorem 8.15) replacing fBm. In its most compact
form our result reads as:

Corollary 1.3 (Lévy motion in multifractal time). Let LH denote Lévy stable
motion and let M be a binomial cascade (see 5.1) independent of LH and set V(t) =
LH(M(t)). Then, for almost all paths

fV(a) = τ ∗
V(a)

a.s.
= T ∗

V(a) (1.30)

for all α where T ∗
V > 0. The envelope T ∗

V can be computed through the warp formula

TV(q) = TM
(
TLH

(q) + 1
)

. (1.31)

Recall (1.26) for a formula of TLH
, which is generalized in (7.10). As the paper shows

(1.30) and (1.31) hold actually in more generality.
Finally, for Y(t) = Y (M(t)) where Y and M are both almost surely increasing, i.e.,

multifractals in the classical sense, a close connection to the so-called ‘relative multi-
fractal analysis’ [95] can be established using the concept of inverse multifractals [94]:
understanding the multifractal structure of Y is equivalent to knowing the multifractal
spectra of Y with respect to M−1, the inverse function of M. We will show how this
can be resolved in the simple case of binomial cascades.
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