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�� Introduction

Fractal analysis of computer tra�c has received considerable attention since
the seminal work of Leland and al� ���	 who provided experimental evidence
that some traces of data tra�c exhibit long range dependence 
LRD�� This
is a typical fractal feature which is not found with the classical Poisson mod�
els� An important issue since then has been to propose 
physical� models
that lead to such fractal behavior� A popular model ���	 is based on the su�
perposition of simple i�i�d ON�OFF sources which ON and�or OFF periods
follow a heavy tailed law 
Pr
X � �� � c���� � � � � ��� When properly
normalized� the resulting tra�c is a fractional Brownian motion 
fBm� of
LRD exponent H � 
�� ����� Several practical implications of LRD tra�c
have consequently been investigated� e�g� the queuing behavior ���	 
see also
the two previous papers in this volume�� Experimental justi�cations of the
ON�OFF models have also been searched for� one of them being found in the
heavy tailed laws of computer �le sizes in the context of WWW tra�c ��	�

In ���	� we performed an experimental study of tra�c traces to describe
fractal features di�erent from LRD and based on Multifractal analysis 
MA��
Roughly speaking� MA is concerned with 
the other end� of the Fourier
spectrum� i�e� it looks at the high frequency content of the signal instead
of the low frequency one� For some simple fractal models such as fBm� the
Hurst exponent H ruling the LRD and� thus� the low frequencies governs
also the local singular behavior which is related to the high frequencies� For
general processes� however� the local singular behavior depends on time and
is best described by the multifractal spectrum of singularity exponents� At
this point it is worthwhile noting that studies of the distributions of the sizes
of �les provide a solid explanation of the LRD behavior of data tra�c on
large time scales� They do not account� however� for the short time behavior
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which results from the fragmentation and aggregation in protocol networks
and from waiting queues� In some applications such as tra�c control� un�
derstanding the structure of short term variations� and in particular their
maximum amplitude is important� This information is comprised in the mul�
tifractal spectrum� Furthermore� MA may enable to evidence di�erences be�
tween tra�c types 
e�g� incoming�outgoing� LAN�WAN� ftp�WWW� etc� � � �
that remain hidden to a second order analysis such as LRD characterization�
Finally� multifractals o�er a simple way of building realistic synthetic traces
of tra�c� MA may thus help to assess the adequacy of previously proposed
models by looking at properties di�erent from LRD�

It is our aim in this work to check whether the results of the MA of tra�c
traces as performed in ���	 and ���	 is compatible with a modeling based
on fBm� and if not� to propose some simple extensions that allow a better
account of the multifractal properties� In that view� and after some recalls on
MA in Section ��� we compute in Section �� the multifractal spectrum of fBm�
both theoretically and estimated numerically on synthetic traces of fBm�

The comparison of this spectrum with the ones obtained on real tra�c
traces shows that more re�ned models are needed� As a �rst step in this direc�
tion� we study in Section �� generalizations that involve �� lumpings of fBm�s
with di�erent exponents� and �� multifractional Brownian motion 
mBm��
which is basically an fBm with continuously varying H ���	� The motivation
for considering such models is to account for a possible non stationarity in
the data while loosely keeping some of the physical explanation provided by
ON�OFF type models� Again� theoretical and numerically estimated spectra
are produced and compared to spectra of traces of real tra�c�

�� Multifractal analysis

MA deals with the description of the singularity structure of 
signals� 
which
can be measures ��� �� ��� ��� ��	� functions ��	 or capacities ���	�� both
in a local and a global way� The local information is given by the H�older

exponent at each point� while the global information is captured through a
characterization of the geometrical or statistical distribution of the occurring
H�older exponents� called multifractal spectrum� Such an analysis is useful
when one deals with very irregular signals 
such as tra�c traces�� and when
the singularity structure has practical consequences ���	�

There are several ways of measuring the local irregularity� and di�erent
global characterizations may be considered� We brie�y recall in this section
some of the most classical approaches�

��� Local irregularity

Among several ways of measuring the local irregularity we will mention two�
For simplicity we consider a signal X
t� de�ned on ����	 which is nowhere
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di�erentiable� and de�ne the analysis with respect to the dyadic intervals�

Ikn � �k��n� 
k � ����n�� k � �� � � ��n � �� n � N

De�ne the coarse H�older exponents through

�kn � � �

n
log
���X

k � ����n��X
k��n�

���
where all logarithms are taken to the base � and where log � �� ��� For a
�xed t in ����	 let 
kn� be such that In
t� �� Iknn contains t� Then� kn��n � t
as n��� The limiting exponent at t

�
t� �� lim inf
n��

�knn

is called the local H�older exponent of X at t� We mention in passing that the
exponent considered usually is

��
t� �� lim inf
���

���
t� where ���
t� �
�

log 	
log sup

s�s��B�t���

jX
s��X
s��j�

Since it is better adapted to numerical computations we will consider mainly
��

Multifractal analysis consists in giving a compact representation of the
local singularity structure of a signal as measured through �
t�� In that view�
two approaches arise naturally� either use a geometrical description� or use a
statistical one� The former leads to the Hausdor� spectrum fh which we will
not address further� while the latter leads to the large deviation spectrum
fg � A third spectrum is also considered at the end of this section� namely
the Legendre spectrum� the interest of which is to provide a simple way to
compute fg or fh when some conditions are met�

��� Large deviation spectrum

The large deviation spectrum fg measures� loosely speaking� how 
fast� the
probability of observing a coarse H�older exponent di�erent from the expected
value tends to zero as the resolution tends to �� More precisely� fg is related
to the rate function appearing in the large deviation analysis of such quanti�
ties� A heuristic explanation is the following� assume we want to assess how
much the tra�c Tn may vary in a 
small� time interval Ikn of duration ��n�
with respect to n� The strength of the variation is measured by �kn� de�ned

as� Tn � jIknj�
k
n � ��n�

k
n� If �kn � �� the tra�c varies smoothly with respect

to the scale of measurement 	� The smaller �kn is� the more intense the tra�c
is� while values of �kn greater than one correspond to sparse tra�c�

It is thus of interest to evaluate the distribution of the �kn s when k is
picked randomly from �� � � � � �n�� and n is large� This will allow to charac�
terize the tra�c in terms of�
� This way we will not have to deal with polynomial trends�
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� the highest degree of burstiness 
resp� sparseness� occurring in the signal�
� the probability of hitting a given burstiness when measuring the tra�c in

a 
small� time interval picked randomly�

In this view� we set�

fg
�� � lim
���

lim sup
n��

logN�
n
��

n
� 
����

where
N�
n
�� � !f�kn�j�kn � �j � 	g�

The large deviation spectrum fg describes the distribution of the local
singularities� since the number of dyadic intervals of size ��n with coarse
H�older exponent � � varies roughly as �nfg��� for large n� Equivalently�

Pn
�kn � �� � ��n���fg����

where the probability is related to a random choice of k uniformly in
f�� � � � � �n � �g� i�e� Pn is the uniform distribution on the set of all dyadic
intervals Ikn of size ��n�

��� Legendre spectrum

It is natural to interpret the spectrum fg as a rate function in a large deviation

principle 
LDP�� The general theory on large deviations provides conditions
under which such rate functions may be calculated as the Legendre transform
of a limiting moment generating function� As we are about to show this proce�
dure provides a much more robust estimation of fg than a direct computation
via 
����� provided that the data satisfy the necessary conditions�

From a multifractal point of view it is most convenient to de�ne for q � R�

Sn
q� �
�n��X
k��

jX

k � ����n��X
k��n�jq 
����

with the convention �q �� � for all q � R� Next� de�ne the "structure function 



q� � lim inf
n��

logSn
q�

�n
and the so�called Legendre spectrum of X

fl
�� � 
�
�� �� inf
q�R


�q � 

q���

Returning to the large deviation principle� let us follow ���	 and de�ne
the sequence of random variables Zn �� logY k

n where k is distributed with
Pn as before� Consider the corresponding moment generating functions
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cn
q� �� � �

n
log En �exp
qZn�	 � � �

n
log
�

��nSn
q�
�
�

A version of the G�artner�Ellis theorem on LDP ��	 allows then to conclude
that if lim cn
q� exists 
in which case it equals �� 

q��� and is di�erentiable�
then c� � fg � �� In other words� the so�called weak multifractal formalism�

fl
�� � fg
��

holds then� This case is favorable since 

q�� being computed by averaging
and involving a single limit� is easier to estimate than fg which requires the
evaluation of local quantities and of a double limit�

In general� however� these functions may di�er� and one has�

Lemma ��� ���	
 ����� fl is the concave hull of fg� i�e� 

q� � f�l 
q� and

fl
�� � f��g 
��� Consequently� 

q� is concave and fg
�� 	 fl
��� Further�
more�

fg
��� � q�� � 

q� 
q � ��
fg
��� � q�� � 

q� 
q � ��


����

where �� �� 
 �
q�� and �� �� 
 �
q�� denote the one�sided derivatives of



q�� Finally� due to the special form of Pn fg cannot assume negative� �nite

values� Consequently� 

q� is �nite either in all of R or exactly in q 
 ��

This shows that fg contains in general more information than fl�

�� Multifractal Analysis of fBm

Let X
t� be an fBm of exponent H� As is well known ���	 X
t� is a zero mean
Gaussian process with stationary increments and is statistically self�similar
in the sense of �nite�dimensional distributions� It follows that X
�� � � a�s��
and that

Y k
n �� X

k � ����n��X
k��n�

d
� X
��n�

d
� N
�� ��nH� 
����

where
d
� means equality in distribution and where N
m��� stands for the

normal distribution with mean m and variance ��
The LRD property of fBm manifests itself in the asymptotic behavior of

the Fourier spectrum S
�� � j�j���H as the frequency � tends to zero� The
high frequency content of X is also ruled by H� one can in particular show
that with probability one ��
t� � H for all t ��	� fBm displays� thus� a very
peculiar fractal behavior� where the same parameter H allows to describe
both parts of the Fourier spectrum�

We continue this section by computing the large deviation and the Leg�
endre spectrum of fBm� elaborating especially on the complications induced
by the randomness� Indeed� measured along paths� fg and fl are random
functions and hard to compute� As a �rst step towards this goal� we take
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expectations before going to the limits 
Subsection ����� The spectra Fg and
Fl obtained in this way are deterministic and represent the rate functions
of a LDP in a higher probability space� Using estimates between fl and Fl
we are then able to treat the pathwise spectra in Subsection ���� It will not
surprise that all spectra are essentially determined by H�

��� Deterministic spectra

For the calculation of the multifractal spectra one would like to exploit this
self�similarity in distribution� Therefore� we take expectation in 
���� and set

Sn
q� �� E�Sn
q� �� � E�

�n��X
k��

jY k
n jq � �nE� jY �

n jq� 
����

where we used the stationarity of increments� Letting

cq �� E� jY �
� jq � E� jX
��jq �

�p
�


Z �

�

yqe�y
���dy�

which is �nite exactly for q � ��� we �nd E� jY �
n jq � ��nqHcq� Thus� one

�nds the scaling law

T 
q� �� lim
n��

logSn
q�

�n �

� �� for q 	 ��
qH � � for q � ���

which is # up to the constant � # the structure function of an LDP on the
sequence of probability spaces 
� � f�� � � � � �ng� P� � Pn�� Note in particu�
lar the built�in averaging on the dyadic intervals through Sn� The Legendre
transform of T is

Fl
�� � inf
q


q�� T 
q�� � inf
q���


q�� T 
q�� �

� �� for � � H
� �H � � for � 
 H�

We will address Fl as the "deterministic Legendre spectrum � To de�ne the
corresponding "deterministic spectrum of large deviations set


�n
�� �� P� � Pn��kn � 
�� 	� �� 	�	

and de�ne

Fg
�� � � � lim
���

lim sup
n��

log
�n
��

n
�

Note� �rst of all� that Fg may assume non�trivial negative values� whence the
last conclusion of Lemma ��� is not valid� The other claims� though� continue
to hold for this more general "random procedure of choosing �kn s�

We argue that Fg
�� should be a good estimator of fg
�� ��� the usual
spectrum measured along paths� Indeed� equality holds a�s� at least for H �
��� 
Lemma ����� In general� the increments of fBm with constant lag form
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a stationary process which is ergodic under time�shift ��	� This implies that
N�
n
�� divided by the total number �n of dyadic intervals considered should

be well approximated by 
�n
��� Also�

E� �N�
n
����n	 �

�

�n
E�

�n��X
k��

����������
�
k
n� � 
�n
���

which closes the circle started with 
����� For a computation of Fg note that


�n
�� �
�nH��

p
�


Z �������n

�������n

exp

�
� x�

���nH��

�
dx�

A crude estimate of the monotonous integrand gives ���	

Fg
�� �

� �� for � � H
� � H � � for � 
 H�


����

Note that Fg assumes negative values� which is not possible for fg � Con�
sequently� Fg may be expected to be a good estimator of fg only where it
is positive� Negative Fg
�� values correspond to probabilities of observing a
coarse H�older exponent � which decay faster than the number of "samples �kn
considered� Oversampling the process� i�e� analyzing several independent real�
izations will� thus� result in larger observed �kn� In fact� in exp
�n ln
��Fg
���
independent traces one has a fair chance to see at least one increment jY n

k j
with coarse H�older exponent ��

Let us note that
Fl � Fg

which is a weak form of the so�called multifractal formalism�

��� Path
wise spectra of fBm

Let us return now to the spectra calculated along a path of fBm� Though
�nqH�nSn is in general not equally distributed to

�

�n

�n��X
k��

jY k
� jq� 
����

it is at least equal in expectation� As we will show now in a general argument
the study of S leads to the right normalization term� For any q with �nite
T 
q� and 	 � �

E lim sup
n��

�n�T �q����Sn
q� �� 	 E

X
n�N

�n�T �q����Sn
q� ��

	
X
n�N

�n�T �q����ESn 
q� �� 	 b
q� 	�

�� �����
���
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by de�nition of T � Here b is a suitable constant depending on q and 	 only�
This allows to conclude that almost surely lim supn�� �n�T �q����Sn
q� �� �
�� Whence� 

q� 
 T 
q� � 	� which is trivial if T 
q� � ��� It is clear that
this estimate holds with probability one for all 	 � ��m 
m � N� and some
countable� dense set of q values with T 
q� � � simultaneously� Using that


q� is always continuous on open sets due to Lemma ��� we �nd the following
result valid for any process�

Lemma ���� With probability one


 
q� �� 
 T 
q� for all q with T 
q� ���

As an immediate consequence we obtain with Lemma ��� that with proba�
bility one

fg
�� �� 	 fl
�� �� 	 Fl 
����

As a matter of fact� we have equality at least for H � ���� the ordinary
Brownian motion due to

Lemma ��� ������� For any process with independent and stationary incre�

ments and any �
fg
�� �� � Fg
�� a�s�

Due to the linearity of T the bound provided by lemma ��� is all we need�
Indeed� for each n� Sn
�� �� counts the number of non�vanishing increments
which is �n almost surely� Thus� 

�� � �� a�s� and since 

q� must be
concave the obtained bound is necessarily sharp�

In conclusion� with probability one�



q� �� � qH � � for q � ��� 
����

and

fg
�� ��

��
	

� fl
�� �� � �� for � � H
� fl
�� �� � � for � � H
	 fl
�� �� 	 � �H � � for � 
 H�

Finally� the implicit restrictions on 

q� imply bounds for q 	 ��� with
probability one

qH � q 	 

q� �� 	 qH � � for q 	 ��� 
����

The upper bound follows from concavity combined with 
����� while the lower
bound re�ects the fact that fl
�� �� is either positive or �� 
Lemma �����
This together with fl
�� �� 	 � �H � � implies that the slopes of 
 have to
be smaller than � �H�

Let us end the section with a remark on the scaling behavior for q 	 ���
Following the intuitive approximation 
���� one may argue with Aaronson ����
p ��	 that there is no power � which makes �n�Sn converge a�s� to a positive�
�nite number� due to the in�nite expectation of jY �

� jq� For H � ��� we have
independence which allows to apply the theory of in�nitely divisible laws�
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With jY �
� jq lying in the domain of attraction of an ��stable law with � � ���q

this suggests that a renormalization of the type �n�qH�q�Sn
q� ���An might
provide convergence in distribution to a stable law� In this result� we recognize
the limiting value Hq � q for 

q�� However� the weak sense of "convergence
in distribution and the divergence of An � �n�qH�q��q����q� hint to a poor
scaling behavior for q 	 ��� Indeed� in Subsection ��� we provide numerical
evidence for unreliable estimates starting at q � ���� which corresponds to
in�nite variance of jY �

� jq�

��� Experimental results

We show in this section estimated large deviation and Legendre spectra com�
puted on synthetic fBm traces� The traces consist of ��� points and were
generated using the Choleski decomposition method with H � ���� ���� ����
The estimation procedures for both fg and fl are the ones described in ���	�
We �rst compare log�log plots of the partition sum Sn
q� for an fBm and a
real tra�c trace on Fig� ���� To illustrate more clearly whether the assump�
tion of linearity of these log�log plots holds� Fig� ��� displays their increments
log Sn
q��logSn��
q�� If constant over a considerable range of n they provide
a reliable estimate of 

q��

From these �gures it becomes apparent that fBm displays a good scaling
behavior for q larger � ���� while 

q� does not seem to converge for lower
values of q� a result which is consistent with 
����� In contrast� the computa�
tion on real traces reveals a good scaling even for q � �� and su�cient level
of aggregation� This is a �rst point where the fBm model departs signi�cantly
from the data��

Finally� Fig� ��� shows the estimated spectra� Both fg and fl almost per�
fectly match the theoretical expressions obtained in the previous sections�
supporting in particular the fact that the positive part of Fl is indeed a good
approximation of fg � Again� the shapes di�er clearly from the typical ones
obtained on real traces ���	�

��� Discussion

The preceding results show that neither spectrum of fBm� fg nor fl� displays
the shape estimated on real tra�c traces as presented in ���	 and ���	� This
calls for fractal tra�c models which are more re�ned than fBm� The fact that
an estimation of H alone is not sensitive to certain features observed with a
multifractal analysis ���	 further supports this point of view�

� One may argue that the bad scaling for negative q comes from the fact that
fBm is a centered process� But adding a constant to fBm in order to obtain
a positive trace worsens the situation by resulting in the trivial multifractal
behavior ��q� � q � �� Furthermore� the cut�o� value for the divergence of �n
is not � but lies between ���� and ���
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The most simple multifractal processes bearing some analogies with real
tra�c traces are random multiplicative cascades� For a detailed introduction
see ���	� The striking resemblance of such cascades with actual traces of real
data tra�c makes them a natural candidate for data tra�c modeling�

If random cascades are to be invoked for justifying the multifractal be�
havior of real tra�c� it is important to �nd 
physical� reasons why such a
multiplicative structure should occur� Loose equivalents of the multiplicative
structure can be found in the fact that Telecommunication protocols are or�
ganized in a hierarchy and that these protocols work by splitting wholes into
pieces� For instance� in the case of �le transfer� we �nd at the highest level
the decision to send a �le� At the next level� the TCP control comes into play�
and time sharing with other processes results in a random variability� The
maximal window size and the speed regulation 
e�g� slow start� still empha�
sizes this e�ect� Further levels are the maximal IP packet size� and �nally�
if the network is an ATM one� the breaking of IP packets into cells� which
depends on the rate of the ATM virtual connection 
���	��

However� such explanations remain somewhat vague and much work is
needed before one can come up with a physical model for multiplicative cas�
cades as neat as the ON�OFF source model for fBm� Here� we propose a
di�erent approach which exhibits multifractal properties similar to real traf�
�c traces� while retaining some of the physical explanation of the ON�OFF
model�

The basic idea is simply to relax the hypothesis of stationarity� Although
some experimental studies ��	 conclude that the LRD parameter seems to
remain constant over large time intervals� we argue that the exponent ruling
the heavy tail of each individual ON�OFF source may undergo some changes
in time� due to important intra�day variations 
lunch time� busy hours� night�
time�� In addition� while H � as a parameter of LRD� should not depend much
on the protocol used� it is conceivable that it varies with the content of the
communication� Finally� it is likely that even minor intra�day variations can
cause modi�cations in the local singular behavior� leading to a H�older expo�
nent that would depend on time�

�� Extensions of fBm

��� Lumpings

The most simple way of obtaining a non stationary process is to assume that�
depending on the time of the day� we are observing di�erent fBm processes
with various exponents H� Formally� if XH
t� denotes an fBm with exponent
H � the tra�c model X is given by�

X
t� � XHk

t� for t � �tk��� tk�
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Fig� ���� Estimated large deviation spectrum and Legendre spectrum for fractional
Brownian motion with H � ���� ��� and ��	 �left� and for the interarrival times of
packets as observed at the gateway of Berkeley ���� �right��

for k � �� � � � �m� where m is a �xed number and t� �� � � t� � t� � � � �
tm�� � tm �� �� For simplicity let us assume that tk�n is integer for all k
from some large n on� Since m is �xed and �nite� and due to the built�in
averaging over dyadic intervals in their de�nitions� Sn
q� and 
�n
�� will be
composed of m terms corresponding to the various XHk


t�$ e�g�


�n
�� �
mX
k��

tk � tk��
�n


�n�XHk
	
��

where we used stationarity in the intervals �tk��� tk�� It is clear that largest
scaling exponent will govern the asymptotic behavior of the overall sum� In
short� T 
q� will be the minimum of the corresponding rate functions of the
XHk


t�� while Fg will be the corresponding maximum�
Thus� Fg assumes a zig�zag shape� consisting of m lines of slope �� which

start in 
Hk� �� and continue to 
Hk��� � �Hk �Hk��� 
with the convention
Hm�� � ��� Letting H � min��i�mHi� H � max��i�mHi� we have

Fl
�� �

��
	
�� for � � H
� for H 	 � 	 H
� � H � � for � � H�

In Section �� we argued that the spectra numerically measured on a path
of an fBm with Hurst parameter Hk should be well approximated by 
�����
In any case� 
���� provides an upper bound� This is indeed con�rmed by our
experiments 
see Fig� ����� In particular� fg is not concave and di�ers from
fl� comprising more information than the latter�
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��� Cantor superpositions of fBm
s

With a whole range of observable H�older exponents the previous simple model
shows indeed a non trivial multifractal behavior� although di�erent from the
one observed on real tra�c� Its peculiar shape stems from the fact that the
di�erent values of the self�similarity parameter H occur in entire intervals

which are of dimension ��� In order to obtain the approximate 
 shape
corresponding to actual traces� one needs to build a superposition of two
fBm processes with exponents H� � H� such that the "size of the support of
XH�

is "essentially smaller than the one of XH�
�

A somewhat arti�cial way to achieve this is to set�

X
t� � ZH�

t� � XH�


t�

where XH�

t� is an fBm of exponent H� and ZH�


t� is a "Cantor Brownian
motion obtained as follows� let XH�


t� be an fBm of exponent H� � H�

and independent of XH�

t�� Let C be a Cantor�like set of dimension D� �

� constructed with dyadic intervals� Set ZH�

t� � XH�


t� for t � C and
interpolate ZH�

linearly elsewhere� Since C is a closed set without isolated
points� ZH�

is well de�ned and continuous�
The computation of the deterministic Legendre spectrum follows the lines

of Subsections ��� and ���� observing that Sn can again be split into two parts�
one coming from dyadic intervals used in the construction of C and one from
the remaining intervals� i�e� those contained in a gap 
the components of
the closure of the complement of C�� Bearing this in mind� a lengthy but
straightforward calculation gives ���	

Fl
�� �

��
	
�� for � � H�


� �D���
H� �H��
� �H�� �D� for H� 	 � 	 H�

� � H� � � for � � H��

����

Adding more than two fBm with well chosen pairs 
Hi� Di� would allow
to design spectra that would more or less look like the ones obtained on real
tra�c� A loose 
physical� interpretation of this model could be that di�erent
processes corresponding to various kinds of applications and�or tra�c types
and�or users 
machines� coexist on the network� Some� more regular ones�
being active most of the time 
the ones with the largest values of H and D��
and the others appearing intermittently and dominating the tra�c during
these periods 
low values of H and D�� Such an interpretation is also sup�
ported by other types of analysis ��	� Of course� this model is very unstable
because any shift in the origin of the analysis would a�ect the obtained spec�
trum� Although it would be possible to re�ne the construction� we prefer to
turn to another generalization which possesses nicer analytical properties�
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��� Multifractional Brownian motion

While the above extensions remain quite simple� they are not fully satisfac�
tory from a theoretical point of view� A step towards a better model is mul�

tifractional Brownian motion 
mBm�� a process introduced in ���	� Roughly�
mBm is an fBm where the parameter H is a function of time� The precise
de�nition is as follows�

Let H � 
���� � 
�� �� be a H�older function with exponent � � �� We will
write Ht instead of H
t� for the ease of notation� Multifractional Brownian
motion 
mBm� is the Gaussian process Yt � XHt


t� de�ned on 
���� by�

Yt �
�

� 
Ht � �
��

Z t

��

�
t� s�
Ht����
� � 
�s�Ht����

� 	dW 
s��

where 
x�� equals x if positive and � otherwise�
The main properties of mBm are the following�

�� 
Yt�t�� is an a� s� continuous process�
�� Under the technical assumption Ht � � for all t� the graph of mBm has

the "intuitively correct dimension � i�e� with probability one�

dimHf
t� Yt� � t � �a� b	g � ��minfHt� t � �a� b	g�
�� With probability one� the pointwise H�older exponent of Yt at t is Ht for

all t provided Ht � � for all t�
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Fig� ���� Normalized mBm with H�t� � t for t � ����� ��	� �left� and fractional
Brownian motion with H � ��� �right��

Multifractional Brownian motion allows� thus� to take into account a possible
non stationarity of the exponent H as long as its evolution is smooth 
H
t� is
a H�older function�� Let us now move to the computation of the deterministic
Legendre spectrum of mBm� We present a heuristic computation to make the
basic idea clear� A rigorous argument is contained in ���	�



Fractional Brownian motion���� ���

Recall the de�nition 
���� of Sn in the random case� For n large� using
property � above� we see that Y k

n � X

k�����n��X
k��n� is approximately

equal to an N
�� ��nH�k��n�� random variable� As earlier

E
Y k
n �q �

� � for q 	 ��

cq�
�nqH�k��n� for �� � q�

In the special case H
t� � t for t � 
�� �� we obtain

Sn
q� � cq
�� ��nq

�� ��nq��n
� cq

�� ��nq

nq��n�n

q �� ���

where �n � ����� �	 for large n� With Sn
�� � cq�
n this leads to

T 
q� �

��
	
�� for q 	 ��
q � � for �� � q � �
�� for � 	 q�

In general� for any non constant C� function H� R�� � �a� b	 �	�� �� one
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Fig� ���� Estimated large deviation spectrum and Legendre spectrum for the lump�
ing of fBmH � ��� andH � ��	 �left� as well as for the same mBm as before �right��

gets�

Fl
�� �

��
	
�� for � � a
� for a 	 � 	 b
� � b� � for b � ��

One �nds� thus� the same spectrum Fl as the one of the lumping of two
fBm with exponents corresponding to the minimum and maximum of the
function H
t��

Instead of H
t� � t� let us now consider a H�older continuous function
H which assumes the value H� on a Cantor set C as before and the value
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H� � H� in points of distance larger than ��N from C� Any numerical
computation of the spectra restricted to resolutions coarser than ��N would
yield the same spectrum as in 
�����

��� Experimental results

Fig� ��� displays a sample path of a normalized mBm 
for all t� X
t� is divided
by the instantaneous variance� for which H
t� � t for t � ����� ���	� and� for
comparison� a trace of an fBm with H � ���� Fig� ��� displays the estimated
spectra on a lumping of fBm�s and on an mBm� As in Subsection ���� a good
match with the theoretical expression for Fl is found� As for fg� the estimated
result support the heuristic argument presented in Subsection ���� Comparing
with Fig� ���� one sees that these spectra indeed bear some analogies with the
ones obtained on real traces 
approximate 
 shape� asymmetry�� and could
explain the �ndings reported in ���	 and ���	�

Finally� Fig� ��� displays estimates of the parameter H� based on the
simple relation � H � � � 

�� �� a�s� 
����� For "pure fBm�s� the obtained
value is quite good� For a lumping� the lowest H is estimated as predicted by
theory� Lastly� no meaningful value is obtained in the case of mBm� which is
again consistent with the non stationarity of H in this situation�
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Fig� ���� Estimation of the Hurst pa�
rameter H through ������ for fractional
Brownian motion with H � ���� ��� and
��	 as well as for mBm and a lumping of
fBm�s� Displayed is an estimation of ����
by ��n� �� �� log�Sn��� � log�Sn�������
i�e� as the local slope of the log�log plot
of Sn���� where n is as in ������ The scal�
ing was excellent at high resolutions� i�e�
n � ��� � � � � ��

Conclusion

LRD analysis and associated fBm models allow to describe 
robust� features
of the tra�c� i�e� features that are not sensitive to local variations in time or
space� Multifractal analysis� on the other hand� is well �tted to the investiga�
tion of the �ne structure of the tra�c� that re�ects some particular aspects
of the network at a given location and hour of the day� Such a description
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is important because it allows to obtain more precise models and to charac�
terize di�erent types of tra�c� A �ne scale analysis is generally di�cult for
various reasons� and it seems that multifractal analysis may be a good tool
for this task�

In as much as one is interested in the high frequency content of the data�
we have shown that fBm is not a good model for computer tra�c� The mul�
tifractal spectra of fBm� which we computed theoretically and estimated on
synthetic traces� do not coincide with the ones of real tra�c data� We have
proposed to re�ne this model by taking into account a possible non station�
arity in the singularity exponent�

Two situations have been studied� In the �rst one� several consecutive
regimes are considered by lumping together plain fBm processes� The second
model allows for a continuous variation of H� An adapted choice of the various
parameters associated to these models allows to obtain spectra that look like
real ones� at least when estimated on a �nite number of resolutions� This
result along with the fact that some "physical mechanism can be invoked
which lead to such processes makes them possible candidates for modeling�
A further argument is that a non stationary model is probably better suited
to the high intra�day variability of the data�

One important discrepancy with real traces remains� namely that a non
multifractal behavior is predicted for q 	 �� in both models� the lumping of
fBm�s and the mBm� while traces of real data tra�c exhibit good scaling even
for q lower than �� ���	� In this respect� a radically di�erent modeling based on
multinomial cascades� which still lacks precise physical interpretation� would
be more adapted� We should add� however� that such multinomial processes
exhibit an everywhere discontinuous H function�

Despite of its drawbacks� it would be worthwhile to pursue the mBm type
modeling and to study� for instance� the associated queueing behavior�
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