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Summary. We analyze the fractal behavior of the high frequency part of the
Fourier spectrum of fBm using multifractal analysis and show that it is not con-
sistent with what is measured on real traffic traces. We propose two extensions of
fBm which come closer to actual traffic traces multifractal properties.
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1. Introduction

Fractal analysis of computer traffic has received considerable attention since
the seminal work of Leland and al. [11] who provided experimental evidence
that some traces of data traffic exhibit long range dependence (LRD). This
is a typical fractal feature which is not found with the classical Poisson mod-
els. An important issue since then has been to propose “physical” models
that lead to such fractal behavior. A popular model [27] is based on the su-
perposition of simple i.i.d ON/OFF sources which ON and/or OFF periods
follow a heavy tailed law (Pr(X > A) ~ ¢A™%,1 < o < 2). When properly
normalized, the resulting traffic is a fractional Brownian motion (fBm) of
LRD exponent H = (3 — «)/2. Several practical implications of LRD traffic
have consequently been investigated, e.g. the queuing behavior [15] (see also
the two previous papers in this volume). Experimental justifications of the
ON/OFF models have also been searched for, one of them being found in the
heavy tailed laws of computer file sizes in the context of WWW traffic [6].
In [20], we performed an experimental study of traffic traces to describe
fractal features different from LRD and based on Multifractal analysis (MA).
Roughly speaking, MA is concerned with “the other end” of the Fourier
spectrum, i.e. it looks at the high frequency content of the signal instead
of the low frequency one. For some simple fractal models such as fBm, the
Hurst exponent H ruling the LRD and, thus, the low frequencies governs
also the local singular behavior which is related to the high frequencies. For
general processes, however, the local singular behavior depends on time and
is best described by the multifractal spectrum of singularity exponents. At
this point it is worthwhile noting that studies of the distributions of the sizes
of files provide a solid explanation of the LRD behavior of data traffic on
large time scales. They do not account, however, for the short time behavior
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which results from the fragmentation and aggregation in protocol networks
and from waiting queues. In some applications such as traffic control, un-
derstanding the structure of short term variations, and in particular their
maximum amplitude is important. This information is comprised in the mul-
tifractal spectrum. Furthermore, MA may enable to evidence differences be-
tween traffic types (e.g. incoming/outgoing, LAN/WAN, ftp/WWW, etc. . .)
that remain hidden to a second order analysis such as LRD characterization.
Finally, multifractals offer a simple way of building realistic synthetic traces
of traffic. MA may thus help to assess the adequacy of previously proposed
models by looking at properties different from LRD.

It is our aim in this work to check whether the results of the MA of traffic
traces as performed in [20] and [14] is compatible with a modeling based
on fBm, and if not, to propose some simple extensions that allow a better
account of the multifractal properties. In that view, and after some recalls on
MA in Section 2., we compute in Section 3. the multifractal spectrum of {Bm,
both theoretically and estimated numerically on synthetic traces of fBm.

The comparison of this spectrum with the ones obtained on real traflic
traces shows that more refined models are needed. As a first step in this direc-
tion, we study in Section 4. generalizations that involve 1) lumpings of fBm-s
with different exponents, and 2) multifractional Brownian motion (mBm),
which is basically an fBm with continuously varying H [18]. The motivation
for considering such models is to account for a possible non stationarity in
the data while loosely keeping some of the physical explanation provided by
ON/OFF type models. Again, theoretical and numerically estimated spectra
are produced and compared to spectra of traces of real traffic.

2. Multifractal analysis

MA deals with the description of the singularity structure of “signals” (which
can be measures [3, 4, 12, 13, 19], functions [9] or capacities [26]), both
in a local and a global way. The local information is given by the Holder
exponent at each point, while the global information is captured through a
characterization of the geometrical or statistical distribution of the occurring
Hélder exponents, called multifractal spectrum. Such an analysis is useful
when one deals with very irregular signals (such as traffic traces), and when
the singularity structure has practical consequences [24].

There are several ways of measuring the local irregularity, and different
global characterizations may be considered. We briefly recall in this section
some of the most classical approaches.

2.1 Local irregularity

Among several ways of measuring the local irregularity we will mention two.
For simplicity we consider a signal X (¢) defined on [0,1] which is nowhere
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differentiable! and define the analysis with respect to the dyadic intervals:
I"=[k2™™ (k+1)27"[, k=0,...2" —1,neN

Define the coarse Hélder exponents through
1

ok = —Zlog | X((k+1)27") — X(k27™)
n

where all logarithms are taken to the base 2 and where log0 := —o0. For a
fixed ¢ in [0,1] let (k) be such that I,,(¢) := I*» contains t. Then, k,27™ — ¢
as n — 00. The limiting exponent at ¢

a(t) := liminf o=

nw—0oc

is called the local Holder exponent of X at t. We mention in passing that the
exponent considered usually is

&(t) :==liminf a.(t) where @.(t) = log sup |X(s)— X(s')|.
=0 IOgE s,8'€B(t,e)

Since it is better adapted to numerical computations we will consider mainly

o.

Multifractal analysis consists in giving a compact representation of the
local singularity structure of a signal as measured through a(t). In that view,
two approaches arise naturally: either use a geometrical description, or use a
statistical one. The former leads to the Hausdorff spectrum f;, which we will
not address further, while the latter leads to the large deviation spectrum
fq- A third spectrum is also considered at the end of this section, namely
the Legendre spectrum, the interest of which is to provide a simple way to
compute f, or f; when some conditions are met.

2.2 Large deviation spectrum

The large deviation spectrum f, measures, loosely speaking, how “fast” the
probability of observing a coarse Holder exponent different from the expected
value tends to zero as the resolution tends to co. More precisely, f, is related
to the rate function appearing in the large deviation analysis of such quanti-
ties. A heuristic explanation is the following: assume we want to assess how
much the traffic T, may vary in a (small) time interval I* of duration 27",
with respect to n. The strength of the variation is measured by o, defined
as: T, oc [IF oy — gmenIf af =1, the traffic varies smoothly with respect
to the scale of measurement . The smaller o is, the more intense the traffic
is, while values of a* greater than one correspond to sparse traffic.

It is thus of interest to evaluate the distribution of the a¥’s when & is
picked randomly from 0,...,2"~! and n is large. This will allow to charac-
terize the traffic in terms of:

! This way we will not have to deal with polynomial trends.



188 Lévy Véhel and Riedi

— the highest degree of burstiness (resp. sparseness) occurring in the signal,
— the probability of hitting a given burstiness when measuring the traffic in
a “small” time interval picked randomly.

In this view, we set:

log N§
fy(a) = lim lim supw, (2.1)
: n

e—=0 nooo

where
Ny (o) = #{al /|y — o] <&}

The large deviation spectrum f, describes the distribution of the local
singularities, since the number of dyadic intervals of size 27" with coarse
Holder exponent ~ « varies roughly as 2™/s(®) for large n. Equivalently:

Pn,(aqlz ~ Oé) X 2_71’(1_f9(a))

where the probability is related to a random choice of k uniformly in
{0,...,2™ — 1}, i.e. P, is the uniform distribution on the set of all dyadic
intervals I* of size 27™.

2.3 Legendre spectrum

It is natural to interpret the spectrum f, as a rate function in a large deviation
principle (LDP). The general theory on large deviations provides conditions
under which such rate functions may be calculated as the Legendre transform
of a limiting moment generating function. As we are about to show this proce-
dure provides a much more robust estimation of f, than a direct computation
via (2.1), provided that the data satisfy the necessary conditions.

From a multifractal point of view it is most convenient to define for ¢ € R:

2" -1

Sul@) = 3 X((k+1)2") — X(k2 )8 (22)

k=0

with the convention 07 := 0 for all ¢ € R. Next, define the ‘structure function’

log Sy,
7(q) = lim inf 08 2n\d) (2)

n— 00 —Nn

and the so-called Legendre spectrum of X

fila) = () := inf (ag — 7(q)).
q€R
Returning to the large deviation principle, let us follow [19] and define
the sequence of random variables Z, := logY,;¥ where k is distributed with
P,, as before. Consider the corresponding moment generating functions
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cn(q) = —% log IE,, [exp(qZ,)] = —% log (2""‘Sn(q))-

A version of the Géirtner-Ellis theorem on LDP [7] allows then to conclude
that if lim ¢, (¢) exists (in which case it equals 1+ 7(g)), and is differentiable,
then ¢* = f, — 1. In other words, the so-called weak multifractal formalism:

fila) = fy(e)

holds then. This case is favorable since 7(g), being computed by averaging
and involving a single limit, is easier to estimate than f, which requires the
evaluation of local quantities and of a double limit.

In general, however, these functions may differ, and one has:

Lemma 2.1 ([19, 21]). f; is the concave hull of f,, i.e. T(q) = f{(q) and
fila) = f;"(a). Consequently, 7(q) is concave and fy(a) < fi(a). Further-

more,
fola®) = gat —1(q) (¢>0) (2.3)
fole™) = ga” —7(q) (@<0)

where o = 7'(q+) and o~ = 7'(q—) denole the one-sided derivalives of

7(q). Finally, due to the special form of P, f, cannot assume negative, finite
values. Consequently, 7(q) is finite either in all of R or exactly in g > 0.

This shows that f, contains in general more information than f;.

3. Multifractal Analysis of fBm

Let X (t) be an fBm of exponent H. As is well known [23] X (¢) is a zero mean
Gaussian process with stationary increments and is statistically self-similar
in the sense of finite-dimensional distributions. It follows that X(0) = 0 a.s.,
and that

4 d

Vi =X((k+1)27") - X(k27™)

) X(27™) = N(0,27 ) (3.1)
where £ means equality in distribution and where N (m, o) stands for the
normal distribution with mean m and variance o.

The LRD property of fBm manifests itself in the asymptotic behavior of
the Fourier spectrum S(A) ~ |A|' "2 as the frequency A tends to zero. The
high frequency content of X is also ruled by H: one can in particular show
that with probability one &(¢) = H for all ¢ [2]. {Bm displays, thus, a very
peculiar fractal behavior, where the same parameter H allows to describe
both parts of the Fourier spectrum.

We continue this section by computing the large deviation and the Leg-
endre spectrum of fBm, elaborating especially on the complications induced
by the randomness. Indeed, measured along paths, f, and f; are random
functions and hard to compute. As a first step towards this goal, we take
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expectations before going to the limits (Subsection 3.1). The spectra F, and
F; obtained in this way are deterministic and represent the rate functions
of a LDP in a higher probability space. Using estimates between f; and F;
we are then able to treat the pathwise spectra in Subsection 3.2. It will not
surprise that all spectra are essentially determined by H.

3.1 Deterministic spectra

For the calculation of the multifractal spectra one would like to exploit this
self-similarity in distribution. Therefore, we take expectation in (2.2) and set

27 —1
Sn(q) i=EuSulgw) =By Y V|9 = 2", |V}, (3.2)
k=0
where we used the stationarity of increments. Letting
._ lig — g 2 [T e
o =BV =B X)) = —= [ e oy,

which is finite exactly for ¢ > —1, we find E, |V, |9 = 27" ¢,. Thus, one
finds the scaling law

T(q) := lim

n—0oC —n

log Su(q) [ —o0 for g < —1
| gH -1 forgq> —1,

which is — up to the constant 1 — the structure function of an LDP on the
sequence of probability spaces (2 x {1,...,2"}, P, x P,). Note in particu-
lar the built-in averaging on the dyadic intervals through S,,. The Legendre
transform of T is

Fi(a) = inf(ga — T(q)) = inf (qa —T(q)) =

—00 fora< H
g>-1

1+ H—-«a fora>H.

We will address Fj as the ‘deterministic Legendre spectrum’. To define the
corresponding ‘deterministic spectrum of large deviations’ set

7 (a) == P, x PyJa* € (a —¢,a+¢))

and define lownt
og i (o
Fy(a) =1+ lim lim sup gﬁin()
e—0 npooc n
Note, first of all, that F, may assume non-trivial negative values, whence the
last conclusion of Lemma 2.1 is not valid. The other claims, though, continue
to hold for this more general ‘random procedure’ of choosing a*’s.
We argue that F,(a) should be a good estimator of f;(c,w), the usual
spectrum measured along paths. Indeed, equality holds a.s. at least for H =

1/2 (Lemma 3.2). In general, the increments of fBm with constant lag form
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a stationary process which is ergodic under time-shift [8]. This implies that
N:(a) divided by the total number 2" of dyadic intervals considered should
be well approximated by =% («). Also,

2" —1
1
B, [Ni(@)/2") = 5B D Yamcaroar) = mi(a),
k=0

which closes the circle started with (3.2). For a computation of Fy, note that

onH+1 277" 72
[ — -
7y (@) exp ( 2_2nH+1) dx.

N V2T Jo—(ote)n

A crude estimate of the monotonous integrand gives [25]

F

g

(3.3)

(@) = —00 fora< H
TV 1+ H -« fora> H.

Note that F; assumes negative values, which is not possible for f,. Con-
sequently, F,, may be expected to be a good estimator of f, only where it
is positive. Negative F,(a) values correspond to probabilities of observing a
coarse Holder exponent a which decay faster than the number of ‘samples’ a*
considered. Oversampling the process, i.e. analyzing several independent real-
izations will, thus, result in larger observed o . In fact, in exp(—nIn(2)F,(a))
independent traces one has a fair chance to see at least one increment |Y}"|
with coarse Holder exponent a.
Let us note that
F=F,

which is a weak form of the so-called multifractal formalism.

3.2 Path-wise spectra of fBm

Let us return now to the spectra calculated along a path of fBm. Though
2nel=nG - is in general not equally distributed to

1 2™ -1
L3 e (3.4)
k=0

it is at least equal in expectation. As we will show now in a general argument
the study of S leads to the right normalization term. For any ¢ with finite
T(q) and € > 0

[Elim sup 2"(T(‘1)_6)Sn(q, w)<E Z QI'L(T(q)_E)Sn(qy w)

n—oo

neN

b
s g A8
neN
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by definition of T'. Here b is a suitable constant depending on ¢ and ¢ only.
This allows to conclude that almost surely limsup,,_, . 2"(T(@=9)8, (¢,w) <
oo. Whence, 7(q) > T(q) — &, which is trivial if T(g) = —oco. Tt is clear that
this estimate holds with probability one for all e = 1/m (m € N) and some
countable, dense set of g values with T(g) < oo simultaneously. Using that
7(q) is always continuous on open sets due to Lemma 2.1 we find the following
result valid for any process:

Lemma 3.1. With probability one
T(gq,w) > T(q) for all ¢ with T(q) < 0.

As an immediate consequence we obtain with Lemma 2.1 that with proba-
bility one
fyw) < il w) < B (3.5)

As a matter of fact, we have equality at least for H = 1/2, the ordinary
Brownian motion due to

Lemma 3.2 ([25]). For any process with independent and stationary incre-
ments and any «

Jo(,w) = Fy(a) a.s.

Due to the linearity of T the bound provided by lemma 3.1 is all we need.
Indeed, for each n, S, (0,w) counts the number of non-vanishing increments
which is 2" almost surely. Thus, 7(0) = —1 a.s. and since 7(g) must be
concave the obtained bound is necessarily sharp.

In conclusion, with probability one:

T(qw)=¢qH -1 for g > —1, (3.6)
and
= fila,w) = —o0 fora< H
fy(oz,w) :fl(a,w) =1 forao = H
< fila,w) <1+ H-—a fora>H.

Finally, the implicit restrictions on 7(g) imply bounds for ¢ < —1: with
probability one

gH +q9<7(q,w) <¢gH -1 for ¢ < —1. (3.7)

The upper bound follows from concavity combined with (3.6), while the lower
bound reflects the fact that fi(a,w) is either positive or —oo (Lemma 2.1).
This together with fj{a,w) <1+ H — « implies that the slopes of T have to
be smaller than 1 + H.

Let us end the section with a remark on the scaling behavior for g < —1.
Following the intuitive approximation (3.4) one may argue with Aaronson [10,
p 15] that there is no power v which makes 2™7S,, converge a.s. to a positive,
finite number, due to the infinite expectation of |Y7'|?. For H = 1/2 we have
independence which allows to apply the theory of infinitely divisible laws.
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With |Y;!|? lying in the domain of attraction of an a-stable law with a = —1/q
this suggests that a renormalization of the type 29H+9 8 (g w)— A, might
provide convergence in distribution to a stable law. In this result, we recognize
the limiting value Hq + ¢ for 7(gq). However, the weak sense of ‘convergence
in distribution’ and the divergence of A,, ~ 2n(eH+¢—(a+1)/9) hing to a poor
scaling behavior for ¢ < —1. Indeed, in Subsection 3.3 we provide numerical
evidence for unreliable estimates starting at ¢ &~ —1/2 which corresponds to
infinite variance of |Y7![4.

3.3 Experimental results

We show in this section estimated large deviation and Legendre spectra com-
puted on synthetic fBm traces. The traces consist of 2'* points and were
generated using the Choleski decomposition method with H = 0.2,0.6,0.8.
The estimation procedures for both f, and f; are the ones described in [20].
We first compare log-log plots of the partition sum S,(g) for an fBm and a
real traffic trace on Fig. 3.1. To illustrate more clearly whether the assump-
tion of linearity of these log-log plots holds, Fig. 3.2 displays their increments
log S,,(q)—log S, +1(q). If constant over a considerable range of n they provide
a reliable estimate of 7(g).

From these figures it becomes apparent that fBm displays a good scaling
behavior for g larger ~ —1/2 while 7(q) does not seem to converge for lower
values of g, a result which is consistent with (3.7). In contrast, the computa-
tion on real traces reveals a good scaling even for ¢ = —2 and sufficient level
of aggregation. This is a first point where the fBm model departs significantly
from the data.?

Finally, Fig. 3.3 shows the estimated spectra. Both f, and f; almost per-
fectly match the theoretical expressions obtained in the previous sections,
supporting in particular the fact that the positive part of Fj is indeed a good
approximation of f,. Again, the shapes differ clearly from the typical ones
obtained on real traces [20].

3.4 Discussion

The preceding results show that neither spectrum of fBm, f; nor f;, displays
the shape estimated on real traffic traces as presented in [20] and [14]. This
calls for fractal traffic models which are more refined than fBm. The fact that
an estimation of H alone is not sensitive to certain features observed with a
multifractal analysis [20] further supports this point of view.

2 One may argue that the bad scaling for negative ¢ comes from the fact that
fBm is a centered process. But adding a constant to fBm in order to obtain
a positive trace worsens the situation by resulting in the trivial multifractal
behavior 7(q) = g — 1. Furthermore, the cut-off value for the divergence of 7,
is not 0 but lies between —1/2 and —1.
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Fig. 3.1. Log-log plots of the partition sum S,(g) for fractional Brownian motion
with H = 0.8 (left) and for the interarrival times of packets as observed at the
gateway of Berkeley [20] (right).
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Fig. 3.2. Increments of the log-log plots of the partition sum S,(g) for fractional
Brownian motion with H = 0.8 (left) and for the interarrival times of packets as
observed at the gateway of Berkeley [20] (right).
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The most simple multifractal processes bearing some analogies with real
traffic traces are random multiplicative cascades. For a detailed introduction
see [20]. The striking resemblance of such cascades with actual traces of real
data traffic makes them a natural candidate for data traffic modeling.

If random cascades are to be invoked for justifying the multifractal be-
havior of real traffic, it is important to find “physical” reasons why such a
multiplicative structure should occur. Loose equivalents of the multiplicative
structure can be found in the fact that Telecommunication protocols are or-
ganized in a hierarchy and that these protocols work by splitting wholes into
pieces. For instance, in the case of file transfer, we find at the highest level
the decision to send a file. At the next level, the TCP control comes into play,
and time sharing with other processes results in a random variability. The
maximal window size and the speed regulation (e.g. slow start) still empha-
sizes this effect. Further levels are the maximal IP packet size, and finally,
if the network is an ATM one, the breaking of IP packets into cells, which
depends on the rate of the ATM virtual connection ([16]).

However, such explanations remain somewhat vague and much work is
needed before one can come up with a physical model for multiplicative cas-
cades as neat as the ON/OFF source model for fBm. Here, we propose a
different approach which exhibits multifractal properties similar to real traf-
fic traces, while retaining some of the physical explanation of the ON/OFF
model.

The basic idea is simply to relax the hypothesis of stationarity. Although
some experimental studies [1] conclude that the LRD parameter seems to
remain constant over large time intervals, we argue that the exponent ruling
the heavy tail of each individual ON/OFF source may undergo some changes
in time, due to important intra-day variations (lunch time, busy hours, night-
time). In addition, while H, as a parameter of LRD, should not depend much
on the protocol used, it is conceivable that it varies with the content of the
communication. Finally, it is likely that even minor intra-day variations can
cause modifications in the local singular behavior, leading to a Holder expo-
nent that would depend on time.

4. Extensions of fBm
4.1 Lumpings

The most simple way of obtaining a non stationary process is to assume that,
depending on the time of the day, we are observing different fBm processes
with various exponents H. Formally, if X g (t) denotes an {Bm with exponent
H, the traffic model X is given by:

X(t) = XHJC (t) for ¢t € [tkfl,tk[
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fBm Legendre spectra of traffic at Berkeley

Bytes per_packets
100 . Tierartival_fires
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Fig. 3.3. Estimated large deviation spectrum and Legendre spectrum for fractional
Brownian motion with H = 0.2, 0.6 and 0.8 (left) and for the interarrival times of
packets as observed at the gateway of Berkeley [20] (right).

for k = 1,...,m, where m is a fixed number and #; =0 < t; < t5... <
tm-1 < tn := 1. For simplicity let us assume that ;2" is integer for all k
from some large n on. Since m is fixed and finite, and due to the built-in
averaging over dyadic intervals in their definitions, S,,(¢) and 7¢(a) will be
composed of m terms corresponding to the various Xy, (t); e.g.

T

. g —th-1 .
7Tn(06) = Z Tﬂ-n[XHk}(a)
k=1

where we used stationarity in the intervals [t;_1,%x[. It is clear that largest
scaling exponent will govern the asymptotic behavior of the overall sum. In
short, T'(g) will be the minimum of the corresponding rate functions of the
X, (t), while F, will be the corresponding maximum.

Thus, F, assumes a zig-zag shape, consisting of m lines of slope —1 which
start in (Hy, 1) and continue to (Hyy1,1+ Hy, — Hyyq) (with the convention
Hpi1 = 00). Letting H = miny<;<m H;, H = max)<i<m, H;, we have

—00 fora< H
Fla)=1¢ 1 for H<a<H
1+H—qa fora>H.

In Section 3. we argued that the spectra numerically measured on a path
of an fBm with Hurst parameter Hj should be well approximated by (3.3).
In any case, (3.5) provides an upper bound. This is indeed confirmed by our
experiments (see Fig. 4.2). In particular, f, is not concave and differs from
fi, comprising more information than the latter.
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4.2 Cantor superpositions of fBm-s

With a whole range of observable Holder exponents the previous simple model
shows indeed a non trivial multifractal behavior, although different from the
one observed on real traffic. Its peculiar shape stems from the fact that the
different values of the self-similarity parameter H occur in entire intervals
(which are of dimension 1). In order to obtain the approximate N shape
corresponding to actual traces, one needs to build a superposition of two
fBm processes with exponents H; < Hs such that the ‘size’ of the support of
X, is ‘essentially smaller’ than the one of Xg,.
A somewhat artificial way to achieve this is to set:

X(t) = Zu, (1) + X, (1)

where Xp,(t) is an fBm of exponent Hy and Zpg, (¢) is a ‘Cantor Brownian
motion’ obtained as follows: let X g, (¢) be an fBm of exponent H; < Hy
and independent of Xg,(t). Let C be a Cantor-like set of dimension Dy <
1 constructed with dyadic intervals. Set Zg, (t) = Xg, (t) for t € C and
interpolate Zy, linearly elsewhere. Since C is a closed set without isolated
points, Zg, is well defined and continuous.

The computation of the deterministic Legendre spectrum follows the lines
of Subsections 3.1 and 4.1, observing that S,, can again be split into two parts,
one coming from dyadic intervals used in the construction of C' and one from
the remaining intervals, i.e. those contained in a gap (the components of
the closure of the complement of C'). Bearing this in mind, a lengthy but
straightforward calculation gives [25]

—00 for a < Hy
Fl(Oé): (1—D1)/(H2—H1)(Q—H1)+D1 for H1 SOZSHQ (41)
1+ Hy—« for a > Hs.

Adding more than two fBm with well chosen pairs (H;, D;) would allow
to design spectra that would more or less look like the ones obtained on real
traflic. A loose “physical” interpretation of this model could be that different
processes corresponding to various kinds of applications and/or traffic types
and/or users (machines) coexist on the network. Some, more regular ones,
being active most of the time (the ones with the largest values of H and D),
and the others appearing intermittently and dominating the traffic during
these periods (low values of H and D). Such an interpretation is also sup-
ported by other types of analysis [5]. Of course, this model is very unstable
because any shift in the origin of the analysis would affect the obtained spec-
trum. Although it would be possible to refine the construction, we prefer to
turn to another generalization which possesses nicer analytical properties.
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4.3 Multifractional Brownian motion

While the above extensions remain quite simple, they are not fully satisfac-
tory from a theoretical point of view. A step towards a better model is mul-
tifractional Brownian motion (mBm), a process introduced in [18]. Roughly,
mBm is an {Bm where the parameter H is a function of time. The precise
definition is as follows:

Let H : (0,00) — (0,1) be a Holder function with exponent 8 > 0. We will
write H; instead of H(¢) for the ease of notation. Multifractional Brownian
motion (mBm) is the Gaussian process Y; = Xpg, (t) defined on (0, o) by:

1

— ! _ 2 Hem1)2 s
Vs g | T o ),

where (z)4 equals z if positive and 0 otherwise.
The main properties of mBm are the following:

1. (Y})i>0 is an a. s. continuous process.
2. Under the technical assumption H; < § for all £, the graph of mBm has
the ‘intuitively correct dimension’, i.e. with probability one,

dimg{(t,Y:) : ¢t € [a,b]} = 2 — min{H,,t € [a,b]}.

3. With probability one, the pointwise Holder exponent of Y, at ¢ is H, for
all ¢ provided H; < @ for all ¢.

5000 6000 7000 8000 9000 10000 11000 5000 6000 7000 8000 9000 10000 11000

Fig. 4.1. Normalized mBm with H(t) = ¢ for ¢t € [0.4,0.8] (left) and fractional
Brownian motion with H = 0.6 (right).

Multifractional Brownian motion allows, thus, to take into account a possible
non stationarity of the exponent H as long as its evolution is smooth (H(t) is
a Holder function). Let us now move to the computation of the deterministic
Legendre spectrum of mBm. We present a heuristic computation to make the
basic idea clear. A rigorous argument is contained in [25].
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Recall the definition (3.2) of S, in the random case. For n large, using
property 3 above, we see that V¥ = X ((k+1)27")—X (k27™) is approximately
equal to an N(0,27"#(*2°")) random variable. As earlier

00 forg < —1
E(Y,F)! ~ n -
( 'n,) { cq2—an(k2 ) for —1 < q.
In the special case H(t) =t for t € (0,1) we obtain

1—-—2"m4 1—92-n4

9 = T = e

|

(g #0),

where &, € [1/2,2] for large n. With S,,(0) = ¢,2" this leads to

—o0 forg< -1
T(g)=< g—1 for -1 <¢g<0
-1 for 0 < g.

In general, for any non constant C' function H: R™* — [a,b] C]0, 1] one

fbm0208 mbm
f(apha) f(alpha)
Cegendre_spec Tegendre e
100 Terge dei ec 100 ———— Tiige ey spec
095 095 = - <
000 [ 0s0
| i [
085 08s L
i - :
o ” 1N
om / om ,
065 b 065
060 060
055 055
050 050 e
045 045
040 it 040
035 e 035
030 i 030
025 025
020 020
015 015
010 : 010
005 : 005
000 L 000
dpha 005 dpha
000 050 100 000 050 100 150

Fig. 4.2. Estimated large deviation spectrum and Legendre spectrum for the lump-
ing of fBm H = 0.2 and H = 0.8 (left) as well as for the same mBm as before (right).

gets:
—00 fora<a
Fla)=¢ 1 fora <a<b
1+b—a ford<a.

One finds, thus, the same spectrum F; as the one of the lumping of two
fBm with exponents corresponding to the minimum and maximum of the
function H(1).

Instead of H(t) = ¢, let us now consider a Hélder continuous function
H which assumes the value H; on a Cantor set C' as before and the value
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H, > H; in points of distance larger than 2=¥ from C. Any numerical
computation of the spectra restricted to resolutions coarser than 27 would
yield the same spectrum as in (4.1).

4.4 Experimental results

Fig. 4.1 displays a sample path of a normalized mBm (for all ¢, X (¢) is divided
by the instantaneous variance) for which H(t) =t for ¢ € [0.4,0.8], and, for
comparison, a trace of an fBm with H = 0.6. Fig. 4.2 displays the estimated
spectra on a lumping of fBm-s and on an mBm. As in Subsection 3.3, a good
match with the theoretical expression for F; is found. As for f,, the estimated
result support the heuristic argument presented in Subsection 4.1. Comparing
with Fig. 3.3, one sees that these spectra indeed bear some analogies with the
ones obtained on real traces (approximate N shape, asymmetry), and could
explain the findings reported in [20] and [14].

Finally, Fig. 4.3 displays estimates of the parameter H, based on the
simple relation: H = 1 4+ 7(1,w) a.s. (3.6). For ‘pure’ {Bm-s, the obtained
value is quite good. For a lumping, the lowest H is estimated as predicted by
theory. Lastly, no meaningful value is obtained in the case of mBm, which is
again consistent with the non stationarity of H in this situation.

Hurst
1+tau(n,1)
S B e NN I OO O Fig. 4.3. Estimation of the Hurst pa-
o rameter H through 1+ 7(1) for fractional
e Brownian motion with # = 0.2, 0.6 and
o T R 0.8 as well as for mBm and a lumping of
o fBm-s. Displayed is an estimation of 7(1)
et : by (1, 1) = log(Sa(1) — log(Sut1(1)),
o D PARN i.e. as the local slope of the log-log plot
o NS P of §,(1), where n is as in (2.2). The scal-
o 7 ing was excellent at high resolutions, i.e.
D A A T n=14,...,7.
Conclusion

LRD analysis and associated fBm models allow to describe “robust” features
of the traffic, i.e. features that are not sensitive to local variations in time or
space. Multifractal analysis, on the other hand, is well fitted to the investiga-
tion of the fine structure of the traflic, that reflects some particular aspects
of the network at a given location and hour of the day. Such a description
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is important because it allows to obtain more precise models and to charac-
terize different types of traffic. A fine scale analysis is generally difficult for
various reasons, and it seems that multifractal analysis may be a good tool
for this task.

In as much as one is interested in the high frequency content of the data,
we have shown that fBm is not a good model for computer traffic: The mul-
tifractal spectra of fBm, which we computed theoretically and estimated on
synthetic traces, do not coincide with the ones of real traffic data. We have
proposed to refine this model by taking into account a possible non station-
arity in the singularity exponent.

Two situations have been studied. In the first one, several consecutive
regimes are considered by lumping together plain fBm processes. The second
model allows for a continuous variation of H. An adapted choice of the various
parameters associated to these models allows to obtain spectra that look like
real ones, at least when estimated on a finite number of resolutions. This
result along with the fact that some ‘physical’ mechanism can be invoked
which lead to such processes makes them possible candidates for modeling.
A further argument is that a non stationary model is probably better suited
to the high intra-day variability of the data.

One important discrepancy with real traces remains, namely that a non
multifractal behavior is predicted for ¢ < —1 in both models, the lumping of
fBm-s and the mBm, while traces of real data traffic exhibit good scaling even
for ¢ lower than -4 [20]. In this respect, a radically different modeling based on
multinomial cascades, which still lacks precise physical interpretation, would
be more adapted. We should add, however, that such multinomial processes
exhibit an everywhere discontinuous H function.

Despite of its drawbacks, it would be worthwhile to pursue the mBm type
modeling and to study, for instance, the associated queueing behavior.
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