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Abstract

The apparent �fractal� properties of TCP data tra�c have recently attracted con�

siderable interest� Most prominently� fractional Brownian motion �FBM	 has been

used to model the long range dependence of tra�c traces through self�similarity�

Tra�c being by nature a process of positive increments� though� a multifractal ap�

proach appears more natural� In this study� various traces of TCP tra�c have been

analyzed from both points of view� Though evidence for statistical self�similarity is

present in certain �aspects� of the tra�c� the multifractal scaling behavior is much

more convincing� Furthermore� crucial LAN speci
c characteristics of data tra�c

are revealed by the multifractal analysis �MA	 only� TCP tra�c at Berkeley and at

CNET� e�g�� looks entirely di�erent from a multifractal point of view while showing
about the same self�similarity parameter H� As a further example� MA suggests

that L�evy stable motion is in certain situations a more accurate model than FBM�

In conclusion� to consider tra�c traces as multifractal random measures rather than

as �monofractal	 self�similar processes is not only more natural but has also various

numerical advantages� A novel approach to queueing supports this conclusion�
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� Introduction

�Fractal� analysis of computer network tra�c has recently been the subject of various
studies �LTWW� N�� N
� TTW�� TTW
�� Most of the e�ort has been focused on mea

suring and modeling a possible long range dependence in the data� This was motivated
by a thorough experimental study �LTWW� providing strong evidence for the presence
of long range dependence in real data tra�c� Such a property would have important
consequences in many area such as queueing theory �N�� N
� or network design�

However� long range dependence is only one feature of a �fractal� behavior� In this work�
rather di�erent properties are under study which are conveniently described using multi�
fractal analysis �MA�� Very roughly speaking� while previous studies tried to investigate
the low frequency content of the signal� the high frequencies are the part of interest here�
The motivation for studying these high frequencies is twofold � �rst� in applications such
as tra�c control� attempting to understanding large rapid variations may prove more cru

cial than looking for long term correlations� Second� to �nd or disprove a relation between
the local behavior of the signal �revealed by a multifractal analysis� and the apparent long
range dependence �revealed by former studies� is of essential interest� Indeed� for some
simple fractal models such as fractional Brownian motion �proposed by several authors for
tra�c modeling �LTWW� N�� N
��� the exponent governing the local singular behavior is
identically equal to the Hurst exponent H ruling the long range dependence� For general
processes� such as stable L�evy motion� the local singular behavior depends on time and
is best described by the multifractal spectrum of singularity exponents�

Multifractal analysis goes one step further when suggesting that tra�c traces should
not be considered as self
similar processes but rather as random multiplicative measures�
As will be explained� an essential issue is whether or not the increment process should
be centered for numerical analysis� MA may� thus� shed new light on the adequacy of
previously proposed models by looking at very di�erent properties of them� and help to
clarify this rapidly evolving topic�

Section 
 features an introduction to multifractal measures� a motivation for their use in
tra�c modeling� and a comparison of the multifractal and statistical methods of scaling�
In Section � the numerical analysis of several real tra�c traces is presented� addressing in
particular quality and signi�cance of the results in a comparison of the multifractal and
the statistical approach� The multifractal spectra obtained allow to draw conclusions of
a general kind�

� Multifractal Analysis

It is well known that the geometrical complexity of a �fractal� set may be described� at
least in a global way� by giving its dimension �F�� In order to provide more detailed
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information� multifractal analysis is concerned with describing the local singular behavior
of measures� distributions� and functions �M�� AP� GP� HJKPS��

This may be done in geometrical terms using the notion of fractal dimensions �AP� F�� an
approach which will not further be mentioned here� Alternatively� and more interesting
from point of view of applications� one may follow the method of coarse graining and aim
for a statistical description which is intimately related to large deviation principles �LDP�
as is explained below �EM� R� LV��

��� Multifractal measures

Assume that a measure � supported on the unit interval ��� �� is given and consider the

random variables Yn � log��I
�n�
K � where I

�n�
k �� �k
�n� �k � ��
�n� and K is a random

number from f�� � � � � 
n��g with uniform distribution Pn� If the rate function �elsewhere
also called �partition function� or �free energy� �GP� HJKPS� R� M���

��q� �� �� � lim
n��

��

n
log� IEn�exp�qYn�� � limn��

��

n
log�

�nX
k��

��I
�n�
k �

q
���

exists and is di�erentiable on IR� then a simple application of the G�artner
Ellis theorem
on Large Deviations �Ell� R� shows that the double limit

fG��� �� lim
���
lim
n��

�

n
log� 


nPn
h
��I

�n�
K � � ��� �� �� ��

i
�
�

with

��I
�n�
K � ��

��

n log 

Yn �

log��I
�n�
K �

log jI
�n�
K j

�

exists� and� moreover

fG��� � fL��� �� � ���� �� inf
q�IR

�
q�� ��q�

�
� ���

The function fG captures quantitatively the deviation of the so
called coarse H�older ex�
ponent ��I

�n�
K � from its expected value� It has been termed coarse grain �multifractal�

spectrum� Due to its importance the Legendre transform of ��q�� here denoted by fL� is
often referred to as Legendre �multifractal� spectrum�

The equation ��� is usually referred to as the multifractal formalism� Considerable work
has been dedicated to the task of establishing it under as weak assumptions as possible�
If it holds� the somewhat involved but rich fG may be estimated through the more robust
and simpler fL�
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There are convincing examples where fG is not concave� hence di�erent from fL� but in
all generality a weak form of ��� is true �R��

��q� � inf
�
�q�� fG����� ���

In other words� fL is always the concave hull of fG� Consequently�

fL��� � fG���� �	�

By the way� note that fG��� and fL��� are always positive in the setting of �
� since

nPn�A� is simply the number of integers in A� The typical shape of fL is a ��

A class of measures which satisfy the LDP �
� are the Binomial distributions which are
generate by a Bernoulli trial� Fix two positive numbers m�� m� with m� � m� � �
and represent points x � ��� �� by their dyadic expansion x � ������� � � ���� The Bi

nomial distributions is then de�ned by picking x randomly such that P ��k � i� � mi

�i � �� �� independently of k� In this simple case� ��I
�n�
K � � m�� � � � � � m�n � whence

��I
�n�
K � � � �

n

Pn
l�� log�m�l � where the sequence �l is uniquely determined by K via the

condition ������ � � � �n � I
�n�
K � The LLN implies that ��I

�n�
K � � �� �� IE��� log�m�� � �

��
�
log�m�m� �n��� almost surely� Besides ��� other coarse H�older exponents ��I

�n�
k �

will be observed such as �min � logm�	 log��	
� and �max � logm�	 log��	
�
�� though

more and more rarely as n��� More precisely� one �nds

��q� � � log�
�
mq

� �mq
�

�
� ���

which yields a �
shaped spectrum fL with maximum fL���� � �� and which is positive in
��min� �max�� vanishes in �min and �max and is trivial� i�e� �� outside this interval�

The parameter � quanti�es the degree of regularity in a point x� loosely speaking� the
measure of an interval �x� x��x�  in applications usually the number of events occurring
in this interval  behaves as ��x��� Consequently� � 
 � indicates a burst of events
around x �on all levels� �bursts of bursts�� while � � � is found in regions where events
occur sparsely� All this information is captured in fG� and� provided it exists and is
di�erentiable� also in the rate function ��q��

As an important generalization let us introduce the random binomial measures� Fix the
distributions of 
 random variablesM� andM� such that IE��M��M�� � �� Then� de�ne a
random distribution � by picking x � ����� � � � � ��� �� in a �doubly random way�� i�e� such
that for a given realization ���� the ��
�probability for �k � i equals M������k��i� and such
that M������k��� are i�i�d� ��
�random variables with law M�� and similar for M������k����

In other words� the �
measure of a �xed interval I
�n�
k is a �
random variable and equals

��I
�n�
k � � M�� �M���� � � � � �M������n where ��� � � � �n is the dyadic representation of k


�n�
This way of redistributing mass by iterative bisection independently and identically in
each step of the construction could fairly be called multifractal stationarity� As a sum of

�Without loss of generality m� � m� was assumed�
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i�i�d� random variables� log��I
�n�
k � is approximately Gaussian� if properly normalized and

provided that the logMi have �nite second moments� A �multifractal process� has� thus�
approximately log
normal marginals�

For these random multifractals� the LDP holds with probability space f�� � � � � 
n��g 	 !
and

��q� � � log� IE��M
q
� �M q

� ��

While fL��� is always positive in the deterministic case due to �	�� negative values may
occur with random measures� If so� the probability of observing � decreases too fast and
the factor 
n " used in �
� in order to account for the number of intervals available at
resolution n " is not increasing su�ciently fast� The corresponding H�older exponents
are� thus� only observed when oversampling the process at least 
�nfL��� times �M
� LR��
Then� at least in the average� one of the 
n���fL���� intervals of size 
�n now available
should show the H�older exponent ��

��� Motivation

Before going further into the details of the analysis performed we would like to motivate
the multifractal approach in the study of data tra�c�

The �rst argument is a visual one� In Fig� � a self�similar random measure as above is
compared with a trace of real data tra�c� The striking resemblance makes multifractals
a natural candidate for data tra�c modeling�

Second� the increments of self
similar processes �used so far as fractal models of data traf

�c� are necessarily of zero mean while multifractals� being measures� possess only positive
increments� In addition� the increments of multiplicative measures are approximately log

normal  and not Gaussian as the increments of FBM  in agreement with observations
on real data traces �P��

Third� it is natural to consider invariant random distributions� such as self
similar random
multifractals� as models of traces of data tra�c as the following novel approach to queueing
suggests� To start� consider the more general random multiplicative measures � de�ned
by

��E� �� lim
n��

Z

E

Q��t� � � � � �Qn�t�dt� ���

where the Qn are positive random functions with IEQn�t� � � for all t� �For the random

binomial measure above� the Qn are piecewise constant� Qn�t� � 

nM������k in I

�n�
k ��

Intuitively� one thinks of the limiting product of the Qn as the rate of oncoming tra�c
at a gateway and of ��E� as the total tra�c load arrived in time interval E� Thereby� it
is essential to note that the limit of the Qn is not a function� but a distribution� Thus�
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Figure �� Tra�c observed at the gateway of Berkeley and the measure obtained by a
randomized version of the Binomial measure�

the intuition is rigorously correct only in terms of average arrival rates in �short time
intervals�� ��I

�n�
k �	jI

�n�
k j�

With this idea in mind of modeling tra�c in a multiplicative rather than an additive way�
the passing of a trace through a server queue is modeled simply as a change of this rate�

Q�t� 
 lim
I
�n�
k
�t

���I
�n�
k �	��I

�n�
k ��

Stability requires that IEQ�t� � �� In more precise terms� let us model the passing of a
tra�c stream through a server queue by a random multiplier function Q� i�e� Q�t� � �
and IEQ�t� � �� in the following way�

��E� ��
Z

E

Q��t� � � � � �Qn�t�dt �� ���E� ��
Z

E

Q�t� �Q��t� � � � � �Qn�t�dt� ���

In other words� Q�t� models the bit
rate of a tra�c stream with constant rate after it has
passed through the server queue� In the typical case where Q will be a piecewise constant
function it is possible to write again more explicitly

���E� �
MX
i��

Qi
Z Ti��

Ti
d�

where the Qi are the random values which Q takes on the random subintervals �Ti� Ti���
of E�
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The last ingredient to this approach is the assumption that a WAN consists of an in�nity
of server queues that can be modeled by random multipliers as in ���� What remains
is a simple �x
point argument� A data stream may ideally be considered as a uniformly
distributed sequence of bytes at the moment when it starts being transfered �thus modeled
by the measure dt�� Passing through an �in�nite� number of server queues it will eventually
become statistically invariant under the operation � �� �� ���� Hence� it makes sense to
model tra�c traces by the �x
point ����

In conclusion� multiplicative random measures� should be considered as valuable models
of TCP tra�c�

To end� let us recall that computing multifractal spectra will prove useful in the following
sense� provided that the scaling is good over many orders of magnitude �which is indeed
the case� estimating spectra on coarse resolution will allow to conclude on the statistical
behavior on high resolution� i�e� in short time intervals�

��� Multifractal scaling

Based on the general remarks in Subsection 
�� the notions of multifractal and statistical
scaling of moments are now made precise� It will be argued that the multifractal method
is more natural when positive data such as tra�c data is to be investigated since there is
no need to center the data before analyzing� A further comparison of the two approaches
is postponed to Subsection ��� where the necessary data analysis is available�

Let us consider a sequence of positive numbers �Zi�
N
i�� which may represent any interesting

information on the tra�c load passing through a gateway� �In Section � this letter will be
reserved for one particular data�� Among many other ways of analyzing one may interpret
the data as a� a sampling of a random measure where Zi	

P
i Zi is the probability for a

byte to arrive at time ti� or b� as a path of a stochastic process�

In the former case� a multifractal analysis is in order� In the latter case� it has been
widely agreed �LTWW� N�� N
� that the most important fractal statistical parameter to
be estimated is the degree of long range dependence �LRD�� usually measured through
the Hurst exponent H� Among the various methods of estimating H �TTW�� TTW
� the
method of moments comes closest to the multifractal approach�

First� let us consider the data �Zi�
N
i�� as a sampling of a measure � on ��� �� at scale


 � �	N and de�ne the partition sum through

SZm�q� ��
N�mX
k��

�Z
�m�
k �

q�
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where

Z
�m�
k ��

mX
l��

Z�k���m�l

provides a sampling of � at scale 
m � m	N � If logSZm�q� is in good approximation
linearly depending on logm� we say that the data exhibits multifractal scaling� in short�
Zi is a multifractal� Referring to ��� the slope of the linear law� usually obtained by least
square �tting� is denoted by �Z�q�� or shortly ��q��

logSZm�q� 
 �Z�q� � logm� const� ���

In order to visualize the quality of a linear approximation of the graph of log� S
Z
m�q� versus

log�m it is useful to look at the piecewise increments of log� S
Z
m�q�� i�e�

�Zm�q� �� ��Z�m� q� �� log� S
Z
�m�q�� log� S

Z
m�q� ����

as a function of log�m� If �m�q� 
 ��q� independently of m then ��� holds in good
approximation� In praxis� however� one computes ��q� through a least square �tting
rather than through averaging �m�q�� The behavior of the latter� though� can be used to
determine the scaling region� i�e� the range of m in which the �tting is performed�

As ��q� has a slope which varies often only little� typically in the range ��	
� 
�� its plot
may appear to be almost linear to the naked eye� Therefore� displaying its Legendre
transform fL is more informative� Moreover� the interpretation in terms of burstiness and
regularity comes more natural with fL �compare �
��� Recall� that fL may show negative
values due to under
sampling� In other words� fL��� 
 � corresponds to very rare H�older
exponents as explained in Subsection 
���

��� Statistical scaling

The statistical approach of interest here relies on the notion of self�similar processes�
Consider a process Yi with stationary increments Xi � Yi � Yi��� Assume that Yi is
H
self
similar� i�e�

Ymi
d
� mHYi�

Let

X
�m�
k � �	m

mX
l��

X�k���m�l � �	mX
�m�
k �

Then�

Xk
d
� m��HX

�m�
k � ����

As was proposed by Taqqu� Teverovsky # Willinger recently �TTW
�� a test of self

similarity could be performed through the behavior of the absolute moments� An estima
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tor of IEjX�m�jq would be

$IEjX�m�jq ��
�

N	m

N�mX
k��

jX
�m�
k jq�

In analogy to multifractal analysis let us consider rather

SXm�q� ��
N�mX
k��

jX
�m�
k jq � mq��N � $IEjX�m�jq�

If Xi is self
similar in the sense of ���� one �nds

logSXm�q� 
 ��q� � logm � const� ��
�

Moreover� ��q� is then linear in q�

��q� � qH � ��

Thus� Taqqu et al� �TTW
� propose a test of self
similarity which translates into the
present setting as� Determine whether there is � such that ��
� holds approximately� If
� depends linearly in q then the data may be called self
similar in the sense of �����

It is worth noting� �rst of all� that ���� implies together with stationarity that

either IEX � �� or IEX � ��� or H � ��

But H � � implies that Yt � t �Y� almost surely� In other words� the concept of statistical
self
similarity ��
� makes sense only after centering the data� i�e� in this context when
setting

Xi �� Zi � $IEZ � Zi � �	N
NX
i��

Zi�

In Section � the corresponding scaling exponent ��
� will be denoted by �Z in order to
refer to the original non
centered data�

Multifractal analysis as presented here� on the other hand� is perfectly �tted to positive
data such as data tra�c measurements� Further comparison of the multifractal and
the statistical approach is postponed to Subsection ���� Here� it should be added that
a multifractal analysis of processes with arbitrary increments is being developed using
wavelets�

� Numerical analysis of the TCP tra�c

Most of the numerical results presented here concern fL since it would be beyond the scope
of this paper to indulge in the rather involved estimation techniques of fG� Nevertheless�
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it is notable that rule �fL is the concave hull of fG� has always been found to be met to a
satisfactory degree� which speaks for the accuracy of the estimation�

The traces analyzed in this study are records of TCP"data tra�c collected at the gateway
of a LAN� The �rst trace which will be reported on extensively corresponds to two hours
at Berkeley� Further traces are records of eight hours at CNET labs on di�erent days�
They have been used for comparison and for studies of stationarity� All traces contain
about 
�� observations� consisting of the arrival time Ti of the packet number i� the size
Zi of the packet in number of bytes� as well as information regarding sender and recipient�

This information allowed to distinguish between the tra�c entering the LAN� called in�
coming� and the tra�c leaving the LAN� called outgoing� It should be stressed here that
the incoming tra�c is� therefore� generated by a WAN tra�c� thus �WAN
LAN�� while
the outgoing one is produced by a LAN tra�c� thus �LAN
WAN�� Both tra�c streams�
however� have to pass through the same gateway� producing the measured tra�c load
Zi� This is what will be addressed with the term �tra�c�� resp� with combined tra�c if
confusion is possible� As a general remark the readers attention is drawn to a technical
report �RL��� available on the WWW� which contains further details on this study�

��� Trace recorded at Berkeley

Notation� From the data contained in the traces one can extract the following measures
of the tra�c %ow� the �number of bytes of packet� Zi� the �inter
arrival time between
packets� Ti� the �number of bytes arriving per time�Bk� and �number of packets arriving per
time� Pk� These will be addressed as aspects of the tra�c� The corresponding multifractal
���� resp� statistical ��
� scaling exponents will be denoted by �Z � �Z � � � � � �P and �P �
respectively�

����� Bytes per packet

The �rst aspect investigated was Zi� i�e� the �bytes per packet�� Not only is this aspect the
most easily accessible� it poses also no problems when separating incoming and outgoing
tra�c�

At �rst sight� one would not expect an interesting behavior� since TCP packets are mostly
either very small �ACK� NACK� or very large� This reasoning� however� considers only
the histogram at the �nest time scale� Apparently� the aspect Zi reveals essential charac

teristics of the tra�c� In particular� there is excellent multifractal scaling though there is
only little variability in the data Zi� meaning that there are clusters of very large �small�
packets� clusters of clusters� and so on� In other words� no �averaging� takes place� To the
contrary� the multifractal properties of Zi allow to clearly distinguish between outgoing
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and incoming tra�c and demonstrate the striking di�erence between tra�c generated at
the University of Berkeley versus the one produces at the research laboratories of CNET�

Let us report on the multifractal scaling �rst� Excellent multifractal scaling of SZm�q� was
found for all q when choosing m � 
	� 	�� ���� � � � � ���� �not displayed� as well as when
taking m � �� 
� �� � � � � 
�� �see Fig� 
�� The linear behavior is of exceptional quality� The
�Z�q� obtained from a least square �tting of logSZm�q� against logm looks almost linear
to the naked eye why it is preferable to display the Legendre spectrum fL � � ��
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Figure 
� The scaling behavior of Zi �bytes per packet� for the �combined� tra�c observed
at Berkeley demonstrated in log
log plots of SZm�q� against m� where from top to bottom
q runs through �� ��	� �� � � � ����	� ��� For a better visualization of the quality of a linear
approximation of these plots� the piecewise increments ���� are shown on the right�

Several arguments speak for the reliability of the numerical estimation of � � There are
certainly the excellent correlation coe�cients of the least square �t as is evident from
Fig� 
� A strong advocate is also the excellent agreement with the �weak multifractal
formalism� ���� i�e� fL is a convincing concave hull to fG� Fig� � displays estimates of
fG computed via a �double kernel method� �RL�� at various levels of aggregation n with
an �optimal� � � ��n�� For comparison note that n of �
� and m of ��� are related by
m � N
�n where N � 
�� is the number of records� Finally� the shapes of various fL have
de�nite characteristic features� They are� e�g� di�erent for incoming and outgoing tra�c
throughout the data considered here �see below� and they con�rm certain theoretical
predictions when comparing di�erent aspects �see Fig� � and �������

Unfortunately� it is beyond the scope of this paper to report in detail on fG� It is worth

while� though� to mention the non concave part in the spectrum of Z �see Fig� ��� The
�wiggle� of fG suggests that the tra�c has two �phases�� in analogy with multifractals
with similar spectra �R� Ex� 
�� The �rst and immediate guess saw these phases in the
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incoming and the outgoing tra�c and is responsible for their being consequently analyzed
separately� The surprise came with the news that the outgoing tra�c showed indeed only
one bump as expected� but the incoming tra�c displayed now two almost entirely sepa

rated bumps� In conclusion� the incoming tra�c most likely consists of two �phases� which
are widely independent� i�e� which occur at �well separated� times� one being more bursty
and occurring more rarely� the other one being more regular and almost always present�
These observations have been con�rmed by later studies �NM�� �Incoming and outgoing
tra�c are not independent in this sense which is why the two bumps of the spectrum of
the incoming tra�c get washed out when the two streams are merged to the combined
tra�c��
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Figure �� The Legendre spectrum fL is a convincing concave hull to the coarse grain
spectrum fG� as predicted by the �weak multifractal formalism� ���� The apparent non
concave shape of fG is produced uniquely by the incoming component of the tra�c� The
two clearly separated bumps suggest that the incoming tra�c consists of two independent
�phases��

With the statistical approach the scaling behavior is less favorable� For the centered data
Xi �� Zi � $IEZ the scaling behavior of the partition sum SXm�q� was acceptable only
for positive q �see Fig� ��� For negative q the log"log plots were far from being linear�

obviously due to very small values jX�m�
k j 

 � produced when centering the data� From

the point of view of scaling� thus� it can be regarded as a disadvantage having to center
the data in the �statistical scaling approach��

But the estimates �Zm�q� su�er from high variability even in the positive q range� The
estimation of H in particular depends highly on the choice of the scaling region and
cannot be called robust �Subsection ����� Nevertheless� the scaling function �Z�q� is fairly
linear for q � �� This linearity corresponds to a Legendre transform �� which �stops� at
the point with slope q � � �see Fig� 	�� The decreasing part� though displayed� is not
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reliable since there was poor scaling for negative q �see Fig� ��� Most importantly� with
the centered data Xi � Zi � $IEZ a less signi�cant di�erence could be observed between
incoming and outgoing tra�c� i�e� the reliable increasing part of the ��
spectra �Fig� 	�
are note as clearly distinguishable as the ones of the non
centered data �Fig� ���
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Figure �� Scaling behavior of the centered data Xi � Zi � $IEZ for the same source
as in Fig� 
� demonstrated in plots of the piecewise increments �Zm�q� � ��Z�m� q� �
log� S

Z
�m�q� � log� S

Z
m�q� �compare ������ It is clear that one cannot talk of scaling for

negative q� But also for positive q one �nds high variations of up to ���& �see close up
on the right�� This lack of robustness has drastic consequences which are discussed in
Subsection ���� in particular in Table 
�

����� Inter�arrival times �Time per packets	

The next simple aspect from the point of view of an analysis is �time per packet�� When
separating incoming and outgoing tra�c the absolute arriving times were kept rather
than the inter
arrival times when separating incoming and outgoing tra�c� This takes
into account the mutual in%uence of the two data streams as it is observed at the gateway
and is the natural way of proceeding since there are also other protocols apart from TCP
passing through the same gateway� making a clear distinction impossible and� in fact�
undesired�

All of what has been said about the quality of the multifractal and the statistical scaling
behavior for the the �bytes per packets� appies here too� See Fig� � for the multifractal
spectra� It is notable� that there is no signi�cant di�erence between incoming and outgoing
tra�c when analyzing the inter
arrival time process from the statistical point of view�
which seems to be common practice so far �see Fig� 	� Subsection ���� Table 
��
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Berkeley, centered: Bytes per packets
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Figure 	� The Legendre transform of �Z�q� and �T �q� which were obtained by least
square �tting of Fig� � for �Z�q� and the corresponding data for �T �q� in the scaling
region m � 
	� � � � � 
�� The complete curves have been calculated despite of poor scaling
in the range q 
 � which corresponds to the decreasing part of the spectra� The di�erence
between incoming and outgoing tra�c shows only with the aspect �bytes per packets��
From an analysis of the inter
arrival times� the two tra�c look alike� In particular� the
LRD parameter H �peak of the spectra� lie in the range ����
� ���	� for Ti� In this context
it is important to mention� though� that the spectra show a clear edge at the maximum�
This is equivalent to saying that ��q� is linear for a considerable range of q which indicates
statistical self
similarity ��
��

A tentative explanation for this insensitivity may be found in the fact that data transfer
by TCP requires acknowledgment so that incoming as well as outgoing inter
arrival times
depend mostly on the round trip time of a connection� A measurement of H will capture
the LRD� i�e� the second order statistics� A multifractal analysis will in addition to this
display information about the negative moments in its decreasing part� Thus� it captures
also the burstiness of the inverse process P which contains more explicit information about
the tra�c load �Fig� ��� But the inversion formula ���� holds for measures only� and not
for general processes�

����� Aspects with respect to time

From point of view of an application in tra�c modeling the most interesting aspect are
certainly the ones with respect to �time�� When cumulating data into time
intervals of
equal length one has to be aware� though� that additional information may be created�
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As the various methods all yield the same � �RL�� the multifractal behavior may be
considered as being established�

The three methods of cumulating are the following� all based on new time instances
tk � k � 
t with a �xed time interval 
t�


 Compute the �number� of packets Pk arriving in the arti�cial time interval Ik ��
�tk� tk���� accounting for each e�ective arrival interval �Ti� Ti��� according to its �time
spent in Ik� �

Pk � Pk�
t� �
X
i

j�Ti� Ti��� � Ikj

j�Ti� Ti���j

where j � j denotes the length of an interval� Similarly� the �number� of bytes Bk

�arriving� in Ik is

Bk � Bk�
t� �
X
i

Zi �
j�Ti� Ti��� � Ikj

j�Ti� Ti���j
�

With this method� arti�cial information has been created�


 Approximate uniform inter
arrival times 
t as closely as possible by choosing actual
time instances Tl�k� such that

Tl�k� � Tl�k��� � 
t 
 Tl�k����

For this procedure to make sense� we need 
t � Ti�� � Ti for all i� Now� take
P �k �
t� �� l�k � ��� l�k� and� consequently�

B�k � B�k�
t� �
l�k�����X
i�l�k�

Zi�

No additional information has been created for the price of having non
uniform time
intervals� In order to switch from time scale 
t to 
 � 
t� � � 
t� � � 
t etc� one may


 repeat the procedure with time step 

t� i�e� consider P �k �
 � 
t�� P
�
k �� � 
t�� etc�

and similarly for B��


 or simply cumulate recursively� i�e� consider P ��k �
t� �� P �k �
t�� P
��
k �


l�� �
t� ��
P ���k���


l
t� � P ���k �

l
t�� and similarly for B���

It is clear that the computation is faster in the second case but that the approxima

tion is better in the �rst case� The piecewise increments �m showed no signi�cant
di�erence for the three methods� leading to virtually the same estimates of ��q�
�RL���

Of particular interest is the aspect �packets per time� Pk since it is �inverse� to the aspect
�time per packet� Ti� Theory �MR� RM� says that the spectra of inverse measures are
related by the formula

fT ��� � �fP ��	��� ����
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resp�
�T � �qP and �P � �qT �

Note� that the transformation ��� f� �� ��	�� �	� � f� exchanges the bisector of the axes
f � � with the horizontal line f � �� the two typical touching lines of a spectrum�
Whence� the �symmetry� of the spectra fL

T and fL
P which is clearly visible in Fig� ��
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Figure �� At Berkeley� the incoming tra�c shows spectra fL which are characteristically
di�erent from the the ones of the outgoing tra�c and the combined tra�c� This becomes
apparent when studying any aspect� Of special interest are the aspects Pk and Ti ��packets
per time� and �time per packet�� due to their intrinsic symmetry� These aspects provide
samplings of measures which are inverse to each other �MR� RM�� Theory says that the
spectra of inverse measures must be related through the formula fL

P ��� � �fL
T ��	���

The estimates� which were obtained from ��q� for q � �������� � � � � ��� show a convincing
match�

Several remarks are in order�


 First� the fact that the predicted symmetry between fL
T and fL

P holds with high
accuracy proves that these spectra contain signi�cant and correct information�


 Second and most importantly� it should be stressed that the main di�erence between
the observed outgoing and incoming tra�c remains hidden to an analysis based on
statistical scaling analysis of the inter
arrival times Ti� since this di�erence manifests
itself in the part of the spectrum corresponding to negative q� There� the scaling of
centered data is poor �see Fig� � and �� and the resulting partition function is linear
and contains no information �see Fig� 	��


 Finally� all aspects re%ecting the �tra�c load� �Zi� Pk and Bk� show that the outgoing
tra�c observed at Berkeley is clearly more regular and less bursty than the incoming
tra�c �RL���
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��� Tra�c at CNET Labs

An analysis of tra�c at the LAN at CNET Laboratories showed again excellent multi

fractal scaling� certainly superior to the statistical scaling �see Subsection ���� as well as
Fig� ���

It was again striking to �nd such a clear di�erence between incoming and outgoing tra�c�
The characteristic di�erence between incoming� outgoing and combined tra�c at CNET
is best visible in an analysis of Z� i�e� �bytes per packets�� This time� the outgoing tra�c
yields very small �� in fact only � � � and a �left
sided� spectrum with only an increasing
part� while the incoming and the combined tra�c showed considerably less tendency
towards burstiness �see Fig� ��� Tra�c with a �left sided� spectrum is very irregular� or
�bursty�� Comparing with the �ndings for the tra�c at Berkeley it has to be concluded
that it is not necessarily the incoming tra�c which contributes the bulk of the bursty
tra�c at the gateway of a LAN�

An explanation is o�ered by the fact that the bulk of the connections at CNET are
contributed by World Wide Web connections� Here� the situation is more simple� or
unbalanced� than at the complex LAN at Berkeley� A few clients in the LAN of CNET
acknowledge the data received from the WWW interrupted by some sporadic sending of
data� such as an email message� The outgoing tra�c is� thus� sporadic� and bursty� though
not of heavy load� The incoming tra�c� on the other hand� has a more or less constant
heavy %ow with irregular but less violent behavior�

Indeed� the left
sided spectrum of the outgoing tra�c reminds one rather of the spectrum
of a L�evy stable motion than of the right
sided spectra of fractional Brownian motion
�see �LR� and forthcoming publications�� This is in perfect agreement with the ON'OFF
model of Mandelbrot �ET� which leads in the limit to fractional Brownian motion for a
�large� number of sources� but to a L�evy process if only few sources are present�

Stationarity of data tra�c is still an issue which is strongly discussed� It is clear that
there is obvious non
stationarity due to human nature� It is� therefore� notable� that early
morning hours as well as heavily loaded working hours show fairly similar multifractal
spectra �see Fig� ��� In particular� the outgoing tra�c at CNET is �left
sided� at all times
of various days which hints to a L�evy process as a model �see forthcoming publications��

��� Statistical versus multifractal scaling

Recall that the given positive data was denoted by Zi and that

Xi �� Zi � $IEZ � Zi � �	N
NX
i��

Zi�
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CNET_0416: Bytes per packet
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Figure �� Left The Legendre spectra fL of the �bytes per packets� at CNET obtained
using q � �������� � � � � �� For the outgoing tra�c �dashed�� fL consists in a considerably
broad increasing part� For the incoming as well as the combined tra�c the fL spectrum
is �right sided� and comparably narrow� Right Spectra of the outgoing tra�c at CNET
at di�erent hours of a day� Though there is obvious non
stationarity it is notable that
the tra�c is �left
sided� at all times�

is the corresponding centered data� A multifractal analysis is in order for Zi while a
statistical analysis estimating the parameter of self
similarity H is suitable for Xi�

In order to compare the two scaling behaviors note that
PN�m

k�� X
�m�
k � �� whence

SZm�
� �
N�mX
k��

�Z
�m�
k �

� � m�
N�mX
k��

�X
�m�
k �m $IEZ�� � SXm�
� �mN� $IEZ��� ����

For the statistical estimator $IEjX�m�jq � �m��q	N�SXm�q� used in �TTW
� this translates
to

$IEjZ�m�j� � $IEjX�m�j� � � $IEZ��

�the sample second moment equals the sample variance plus the sample mean squared��

At this point a conceptual di�culty arises� The statistical test looks for asymptotic
behavior as m � �� while multifractal analysis is formulated in terms of the limit

m � m	N � �� The equation above shows now that scaling can�t be perfect for both
simultaneously except in the trivial case ��
� � ��
� � ��

Nevertheless� the scaling behavior of both� SZm and S
X
m may be acceptable in a scaling

region� i�e� a range of values of m with nearly linear behavior in log
log coordinates�
Some remarks are in order�
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Figure �� The superior scaling of non
centered data is most obvious when looking at the
aspect B �bytes per packet� for the outgoing tra�c at CNET� but the same behavior was
found throughout the entire analysis �see� e�g� Fig� ���

First� SZN�q� � �S
Z
N����

q implies �ZN �q� 
 q� while SXN �q� � � � const yields �
Z
N�q� 
 ��

This forces the scaling to break down as m � N � It is clear that the e�ect on �Xm is
stronger since both� � and � increase with q �see Fig� � and ��� In the limit m � �� on
the other hand� imprecision of the measurement will a�ect the scaling behavior�

Second� being a rate function ��q� is convex� Since ���� � �� and ���� � �� we must
have ��
� � �� On the other hand� ��
� � � follows from H � �� Thus� the term of order
m� will not be essential for m� ��

All this makes clear that scaling should be expected rather in the multifractal limit
m	N � �� If scaling is present there� ���� suggests

��
� � min��� ��
�� � ��
� � 
H � �� ��	�

Equation ��	� illustrates� �rst of all� the way in which multifractal analysis goes beyond
the �mono
fractal� statistical tests based on an estimation of H� As an estimator of H�
however� ���
� � ��	
 is certainly of limited use� To illustrate this point in some detail�
and in order to show what di�erent conclusions a statistical and a multifractal approach
allow� some estimations of H through $Hs �� ���
� � ��	
 and $Hm �� ���
� � ��	
 have
been calculated� As becomes apparent� $Hm is considerably larger than $Hs throughout
the data� Table � illustrates� though� that one has to take the whole spectrum ��q� into
consideration� not only one value such as ��
��

With the statistical method of moments� �nally� we encounter as an essential problem a
general scaling behavior of a lesser quality� and more importantly� a signi�cant dependence
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$Hm outgoing incoming combined

Berkeley� Z ���� ���� ����
Berkeley� B ��	� ���� ��	


CNET� Z ���� ���� ����
CNET� B ���� ���� ����

Table �� The multifractal estimator $Hm � ���
� � ��	
 of the Hurst exponent for the
aspects Z �bytes per packet� and B �bytes per time�� The other two aspects showed
no conclusive di�erence between outgoing and incoming tra�c� As this table illustrates�
conclusions on the irregularity of data cannot rely on the value ��
� only� With the aspect
B at CNET� e�g� $Hm suggests that the incoming tra�c is more bursty than the outgoing
one� a conclusion which is certainly denied when taking the whole spectrum into account
�Fig� ���

of the estimator on the choice of the scaling region �see Table 
�� It has to be added in
defense to this approach that despite of poor scaling the partition functions �B�q� and
�T �q� of the centered aspects B and T are indeed fairly linear for q � �� up to values
of q as large as 
�� In other words� the corresponding Legendre transforms ����� form
an �edge� at their maximum �Fig� 	�� This linearity forms the basis of the statistical
estimator of H and supports the conjecture of statistical self
similarity�

In summary� with the traces of this study the multifractal analysis is superior to the
statistical method of moments for the following reasons�


 Throughout all data considered in this work� the multifractal scaling was more
convincing�


 The necessary procedure of centering the data introduces inaccuracy in the statis

tical method of moments� whence the scaling is unacceptable for negative q�


 Essential properties concerning regularity and burstiness were found when looking
at the whole spectrum and not only at one parameter�


 With the inter
arrival times Ti the properties just mentioned manifest themselves in
the range corresponding to negative q and were� thus� even less accessible through
the statistical method of moments�

Conclusions�

The data tra�c at Berkeley and at CNET labs both show indisputable multifractal behav

ior� Moreover� the scaling is extraordinary in both� quality and size of the scaling region�
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$Hs outgoing incoming combined

Berkeley� Z ��
� ���	 ���

Berkeley� T ���	 ��
� ����
Berkeley� B ���� ���� ���	
Berkeley� P ���� ���	 ����
CNET� Z ���� ���� ��
�
CNET� T ���� ���� ����

CNET� Z ���	 ���� ��
�
CNET� T ��
� ���� ��
�

Table 
� The statistical estimator $Hs for various aspects� The lines at the end are obtained
from the same data �as indicated�� however with di�erent scaling regions 

� � � � � 
�� as
compared to 
�� � � � � 
�� which was applied at the top � lines �compare Fig� ���

The latter is especially astonishing when compared to �ndings in other �elds� the scaling
region of TCP tra�c spans four to �ve orders of magnitude as compared to the one to two
orders which are typical in other �elds� There is also evidence of statistical self
similarity�
but notably only for q � � and less convincing� Possible reasons for the high quality of
the multifractal scaling are the hierarchy inherent to telecommunication protocols� as well
as the fact that data transfers involve splitting wholes into pieces� Further support comes
from the multiplicative approach to queueing as sketched in Subsection 
�
�

The multifractal analysis of the tra�c� in particular the various spectra fL� are best in

terpreted from a �distant point of view�� Rather than looking at the exact values fL���
one looks at the shapes of the spectra� These spectra reveal telling information about the
irregularities as well as regularities of the data tra�c� E�g� it is possible to distinguishing
between incoming and outgoing tra�c� as well as between the two LAN
s under investi

gation� Moreover� a more re�ned� direct measurement of �
� suggests that the incoming
tra�c at Berkeley consists of two largely independent �phases� �Subsection �����

With an estimation of the statistical parameter H �Table 
� such conclusion could not be
drawn� In particular� when considered as a self
similar process the inter
arrival times are
insensitive to the di�erence between incoming and outgoing tra�c� To the contrary when
treating this process as a multifractal� The main reason for this may be seen in the fact
that the multifractal analysis captures also information about the inverse process� i�e� the
tra�c load� through the negative moments� But the inversion formula �MR� RM� holds
for measures only� and not for general processes�

One could wonder which tra�c� outgoing or incoming� should be more regular� both being
subject to some smoothing e�ects� the incoming tra�c comes from aWAN where a greater
number of sources could lead to some averaging� while the outgoing tra�c is produced by
a LAN where response times are shorter and %ow control should be more e�cient� The
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multifractal analysis� especially the comparison of the tra�c at Berkeley and at CNET�
shows that the very type of a LAN has a much greater in%uence than the mentioned
e�ects� A tentative explanation of the very sporadic outgoing tra�c at CNET could be
found in the fact that the essential part of this tra�c consists in WWW consultations of
only a few clients which makes L�evy stable motion a more accurate model than fractional
Brownian motion�

With random binomial measures �see Fig� �� simple models of data tra�c become avail

able� Thereby� one should not �t a whole spectrum of scaling exponents ��q� to a given
trace but rather adjust a few parameters which determine the distribution of the random
weights M�� M� �Subsection 
��� or more generally the distribution of the random multi

pliers ���� The model used in Fig� �� e�g� has no parameter and was obtained by taking
M� 
 U ��� ��� M� �� � �M� 
 U ��� ��� It is clear that this is too simple a model� The
more astonishing is the visual similarity with an actual trace�

Several tasks lay ahead� First� it would be useful to calculate essential statistical in

formation such as forecasting for such random measures� or multifractal processes� The
knowledge of the whole multifractal spectrum will then allow more precise statistics than
the knowledge of one scaling or �burst� exponent H only� Secondly� �physically� relevant
models with multifractal properties going beyond Subsection 
�
 are needed for a better
understanding of TCP tra�c� These issues will be addressed in forthcoming papers�
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