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LRD estimation

Time domain
Spectral domain
Wavelet domain



Time domain

Auto-covariance
Variance time plots

Rescaled Range Statistic
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Auto-correlation
• Auto-covariance of second-order stationary time 

series 

• Sample auto-covariance from finite data

• Connection to LRD and Hurst exponent:
– If γ(k) is not summable then LRD
– Hurst exponent:

– Estimation: 2H-2 = slope of linear fit to log(γ(k)) vs. log (k)
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Auto-correlation

Consistent with 
White Noise

Requires sufficient data, estimation of γ at large lag: high error

Linear fit to log-log plot
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Variance time plots

• Aggregated time series:

• LRD:

• Independence: H= ½
• Excess variance is indicative of correlation

• Estimating the variance

• Inherent difficulty: due to dependence the error of the 
variance estimate is larger than with iid data
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Adjusted Range Statistics

• Sample mean and sample variance after n 
observations:

• Adjusted range statistic:

•

• Estimation inprecision! 

Mean drain

Actual influx until k

H= ½

H=1

FGN (H=0.7)
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Spectral domain
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LRD and spectral density

• Assume γ has spectral density f

• If γ is ultimately monotone then LRD is 
equivalent with either



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Spectral estimation

• Fourier trafo of auto-covariance errors accumulate
• Wiener Khinchine (wide-sense-stationary process)

Fourier Transform of autocorrelation function 
=
power spectral density (generalization of |Fourier|2)

• Quick and dirty for L2 signals (instead of processes)

• LRD series
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Spectral estimation

• Estimate power spectrum via so-called 
periodogram

• LRD:

• Estimate H via the slope of a linear fit 
to the log(periodogram) against log(λ) 
[see figure]
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[Taqqu et al, in “Fractals”]
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Aggregate Variance : Biased for large H (down bias) 
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Rescaled Range Statistics : BIASED (high at .5, low at .9)
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Periodogram (spectral) : GOOD. slight bias (up)

WINNIG SCHEME: Whittle (semi-parametric spectral estimator)
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WINNIG SCHEME: Whittle (semi-parametric spectral estimator)
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Wavelet domain

Un-biased (!) estimation of LRD
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Spectral properties of wavelets

Wavelets: 
• localized both in space and 

frequency

• affine family (see figure):
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Wavelet domain

• Frequency response of
• Motivates to estimate power spectrum via 

• Estimate H via linear regression on log-log:
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Three wave-mirac-lets for fBm

• Wavelet coefficients for fBm are stationary
– Allows for estimation

• …less correlated
– Reduces the estimation error of sample variance

• …yield unbiased estimate of H
– Bias of wavelet-periodogram-estimator is 

multiplicative…and does not affect the slope of 
the log-log data!
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For fBm stationary and decorrelated
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Bias of wavelet-periodo-estimator

• Convolutive bias

• …becomes multiplicative bias in the 
special case for 

Because Ψ is almost 
a delta distribution

Bias factor independent of j !Estimator scales
as it should:
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Summary: Wavelet H-estimation for fBm

• Estimator is meaningful 
– Wavelet coefficients are stationary

• De-correlated less error
• Un-biased estimate of H



Cross-traffic inference



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Probing

• Ideally:
delay spread of packet pair spaced by T sec

correlates with

cross-traffic volume at time-scale T
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Probing Uncertainty Principle

• Should not allow queue to empty
between probe packets

• Small T for accurate measurements
– but probe traffic would disturb 

cross-traffic 
(and overflow bottleneck buffer!)

• Larger T leads to measurement 
uncertainties
– queue could empty between probes
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Multifractal Cross-Traffic Inference

• Model bursty cross-traffic using MWM
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Efficient Probing:  exponential spaced

• MWM tree inspires geometric chirp probe
• MLE estimates of cross-traffic at multiple 

scales
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Cross-Traffic Inference
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ns-2 Simulation

• Inference improves with increased 
utilization
Low utilization (39%) High utilization (65%)
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ns-2 Simulation (Adaptivity)

• Inference improves as MWM parameters 
adapt

MWM parameters Inferred x-traffic



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Adaptivity (MWM Cross-Traffic)



Spatio-Temporal Available 
Bandwidth Estimation

On-line localization of 
the tight link in a path
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Key Definitions

• Available bandwidth: left-over capacity on link
• Tight link: link with least available bandwidth 
• Goal:

• locate tight link in space and over time
• using end-to-end probing
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Applications

• Network monitoring
- locating hot spots

• Network aware applications
- Server selection
- Route selection

• Science: where do Internet tight links occur 
and why?
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Methodology

ii
BA min=

Path available bandwidth

Sub-path available bandwidth

imi
BmA

≤≤
=

1
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Methodology:
• For m>tight link, A[1,m] remains constant
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Packet Tailgating

• Packet train contains:
– Large packets stressing, with m hops life time
– Small packets tailgating, full life time

• Purpose:
– Large packets “measure” bandwidth via their delay
– Small packets transport this timing information to the 

receiver
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Efficient probing: PathChirp
• Traditional probing paradigm: 

– Produce (light) congestion
– PacketPair: 

• Sample the traffic

– Pathload: flood at variable rate
• intolerable level of congestion  

– TOPP: 
• PacketPairs at variable spacing

• New: 
– PathChirp: 

• Variable rate within 
a train of probes

• More efficient, light
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Lite-probing: pathChirp
• real world tool 

– Queuing delay cross traffic 
– Averaged excursions available 

resources

• Light weight
– Probe at various rates simultaneously

• …converges in a handful of RTTs

Departure pattern

Queuing against departure

Methodology

Number of chirps 

12 chirps

Real world experiments

Estimation against true x-trafficInternet experiment
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Bandwidth: a Probabilistic entity

• Available bandwidth depends on temporary 
congestion level of potential tight links
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STAB: Spatio Temporal available Bandwidth

• STAB detects new tight link and reduced available 
bandwidth around 250 secs into simulation
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Queuing

Self-similar queuing
Large Deviation queuing

Multi-scale queuing
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Queuing 101

• Reich’s formula
– Arriving traffic load

– Queue length is (assuming the queue was idle at 
one point; follows from simple iteration)
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Large Deviations for Qing
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Multiscale Queuing

• Delivers non-asymptotic approximations
– Can be estimated from true traffic using only few 

observations
– Can be used to estimate queues of analytical models 

such as MWM and FGN-tree

• Shows that exponential times are optimal for 
computing the queue length
– In the sense of being sparsest while keeping the correct 

asymptotic

• Queuing formula from traffic arrivals at dyadic 
scales (depends on more than LRD!):
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MSQ in simulation
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There is more to Qing than LRD
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