Capturing Network Traffic Dynamics Using the Tools

Rolf Riedi

Dept of Statistics

Stochastic Systems and Modelling in Networking and Finance Part IV Dependable Adaptive Systems and Mathematical Modeling Kaiserslautern, August 2006

LRD estimation

Time domain Spectral domain Wavelet domain

Time domain

Auto-covariance Variance time plots Rescaled Range Statistic

Auto-correlation

- Auto-covariance of second-order stationary time series $\{X_k\}_{k\geq 1}$

 $\gamma(k) := \mathbb{E}[(X_1 - \mathbb{E}[X])(X_k - \mathbb{E}[X])] = \mathbb{E}[X_1 X_k] - \mathbb{E}[X]^2$

• Sample auto-covariance from finite data $X_1, ..., X_N$

$$\widehat{\gamma(k)} := \frac{1}{N-k} \sum_{j=1}^{N-k} (X_j - \bar{X}) (X_{j+k} - \bar{X}) \qquad \bar{X} = \frac{1}{N} \sum_{j=1}^{N} X_j$$

- Connection to LRD and Hurst exponent:
 - If $\gamma(k)$ is not summable then LRD
 - Hurst exponent:

$$\gamma(k) \sim k^{2H-2}$$

- Estimation: $2H-2 = slope of linear fit to log(\gamma(k)) vs. log (k)$

Rudolf Riedi Rice University

Auto-correlation

Requires sufficient data, estimation of γ at large lag: high error

Rudolf Riedi Rice University

Variance time plots

• Aggregated time series:

$$X_n^{(m)} = X_{(n-1)m+1} + \dots + X_{nm}$$

Aggregated Variance Method

log10/m

og 10(vari

0

• LRD:
$$\gamma(k) \sim k^{2H-2}$$
 iff $VarX^{(m)} \sim m^{2H}$

- Independence: $H = \frac{1}{2}$
- Excess variance is indicative of correlation $VarX^{(2m)} = 2VarX^{(m)} + 2Cov(X_0^{(m)}, X_1^{(m)})$
- Estimating the variance

$$\widehat{\text{Var }} X^{(m)} = \frac{1}{N/m} \sum_{k=1}^{N/m} (X^{(m)}(k))^2 - \left(\frac{1}{N/m} \sum_{k=1}^{N/m} X^{(m)}(k)\right)^2 \qquad \text{FGN } (H = 0.7)$$

 Inherent difficulty: due to dependence the error of the variance estimate is larger than with iid data
 Rudolf Riedi Rice University

Adjusted Range Statistics

Sample mean and sample variance after n observations:

$$\bar{X}(n) = (X_1 + \dots + X_n)/n$$
 $S(n) = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}(n))^2$

Spectral domain

RICE

Rudolf Riedi Rice University

LRD and spectral density

Assume γ has spectral density f

$$\gamma(k) = \int_{-\infty}^{\pi} e^{i\nu k} f(\nu) d\nu, \ k \in \mathbb{Z},$$
$$f(\nu) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} e^{-i\nu k} \gamma(k), \ \nu \in [-\pi, \pi]$$

 If γ is ultimately monotone then LRD is equivalent with either

(i)
$$\sum_{k=-n}^{n} \gamma(k) \sim n^{\alpha} L_1(n)$$
, as $n \to \infty$, $0 < \alpha < 1$,
(ii) $\gamma(k) \sim k^{-\beta} L_2(k)$, as $k \to \infty$, $0 < \beta < 1$,
(iii) $f(v) \sim |v|^{-\gamma} L_3(|v|)$, as $v \to 0$, $0 < \gamma < 1$.

where
$$\gamma = \alpha = 1 - \beta$$

Rudolf Riedi Rice University

Spectral estimation

- Fourier trafo of auto-covariance→ errors accumulate
- Wiener Khinchine (wide-sense-stationary process)
 Fourier Transform of autocorrelation function

 power spectral density (generalization of |Fourier|²)
- Quick and dirty for L2 signals (instead of processes) $\gamma_X(\tau) = \int x(t)x(t-\tau)dt \quad \mathcal{F}x(\nu) = \int x(\tau)e^{i\tau\nu}d\tau$

$$\begin{aligned} \mathcal{F}\gamma(\nu) &= \int \gamma(\tau)e^{i\tau\nu}d\tau \\ &= \int \int x(t)x(t-\tau)\overline{e^{i(t-\tau)\nu}}e^{it\nu}dtd\tau \\ &= \overline{\mathcal{F}x(\nu)}\mathcal{F}x(\nu) = |\mathcal{F}x(\nu)|^2 \end{aligned}$$

LRD series
$$f(\nu) := \sum_{k} \gamma(k) e^{ik\nu} \simeq \nu^{1-2H} \to \infty$$
 ($\nu \to 0$)

Rudo

Spectral estimation

• Estimate power spectrum via so-called periodogram

log10(frequency)

-1

-2

-3

 Estimate H via the slope of a linear fit to the log(periodogram) against log(λ) [see figure] 0

Ru

Ru

Estimators applied to ARIMA(0,d,0)

Rudc

iedi

Wavelet domain RICE

Un-biased (!) estimation of LRD

RICE

Rudolf Riedi Rice University

Spectral properties of wavelets

Frequency

Wavelets:

 localized both in space and frequency

Power spectrum $|\Psi|^2$ with

$$\Psi(\nu) := \int \psi(t) e^{i\nu t} dt$$

peaks at characteristic frequency u_ψ

• affine family (see figure):

$$\Psi_{j,k}(\nu) := \int 2^{-j} \psi(2^j(t-k)) e^{i\nu t} dt = e^{i\nu k} \Psi(\underline{2^{-j}\nu})$$

Rudolf Riedi Rice University

Continuous wavelet transforms of $2^{-j}\psi(2^{j}(t-k))$ for j = 0, 1, 2, 3Time frequency response of $\psi(2^j(t-k))$ peaks at $2^{-j}
u_\psi$

(less localized at

small scales/high frequencies) stat.rice.edu/~riedi

Wavelet domain

- Frequency response of $\psi(2^j(t-k))$ at $2^{-j}\nu_\psi$
- Motivates to estimate power spectrum via

$$\hat{\Gamma}_x(2^{-j}\nu_0) = \frac{1}{n_j}\sum_k |d_x(j,k)|^2 \quad \text{R}$$

• Estimate H via linear regression on log-log:

$$\log_2(\hat{\Gamma}_x(2^{-j}\nu_0)) = \log_2(\frac{1}{n_j}\sum_k |d_x(j,k)|^2) = (2\hat{H} - 1)j + \hat{c}$$

Rudolf Riedi Rice University

Three wave-mirac-lets for fBm

- Wavelet coefficients for fBm are *stationary* – Allows for estimation
- ...less correlated
 - Reduces the estimation error of sample variance
- ... yield unbiased estimate of H
 - Bias of wavelet-periodogram-estimator is multiplicative...and does not affect the slope of the log-log data!

For fBm stationary and decorrelated

Bias of wavelet-periodo-estimator

Convolutive bias

Rud

$$\begin{split} \mathbb{E}\hat{\Gamma}_x(2^{-j}\nu_0) &= \int \Gamma_x(\nu)2^j |\Psi_0(2^j\nu)|^2 d\nu \\ &\simeq \Gamma_x(2^{-j}\nu_0) & \text{Because } \Psi \text{ is almost} \\ &\text{a delta distribution} \end{split}$$

• ...becomes multiplicative bias in the special case for $\Gamma_X(\nu) = c_f \nu^{1-2H}$

$$\begin{split} \mathbb{E}\widehat{\Gamma}_{x}(2^{-j}\nu_{0}) &= c_{f}|2^{-j}|^{(1-2H)}\int |\nu|^{(1-2H)}|\Psi_{0}(\nu)|^{2}d\nu\\ \uparrow &= \underbrace{\Gamma_{x}(2^{-j}\nu_{0})|\nu_{0}|^{(2H-1)}\int |\nu|^{(1-2H)}|\Psi_{0}(\nu)|^{2}d\nu}_{c'2^{-j}(1-2H)} \end{split}$$

Estimator scales
as it should:

$$\mathbb{E}[\widehat{\Gamma}_{x}(2^{-j}\nu_{0})] \sim 2^{-j(1-2H)}$$

Haddle Ried Rice University

$$\begin{split} \mathbb{E}[\widehat{\Gamma}_{x}(2^{-j}\nu_{0})] \sim 2^{-j(1-2H)} \end{aligned}$$

Summary: Wavelet H-estimation for fBm

- Estimator is meaningful

 Wavelet coefficients are stationary
- De-correlated \rightarrow less error
- Un-biased estimate of H

$$\log_2(\hat{\Gamma}_x(2^{-j}\nu_0)) = \log_2(\frac{1}{n_j}\sum_k |d_x(j,k)|^2) = (2\hat{H} - 1)j + \hat{c}$$

Cross-traffic inference

Probing

• Ideally:

delay spread of packet pair spaced by T sec correlates with

cross-traffic volume at time-scale T

Probing Uncertainty Principle

- Should not allow queue to *empty* between probe packets
- Small T for accurate measurements

 but probe traffic would disturb cross-traffic (and overflow bottleneck buffer!)
- Larger T leads to measurement uncertainties
 - queue could empty between probes

Probes

Tp

Multifractal Cross-Traffic Inference

Model bursty cross-traffic using MWM

Rudolf Riedi Rice University

Efficient Probing: exponential spaced

- MWM tree inspires geometric chirp probe
- MLE estimates of cross-traffic at multiple

Cross-Traffic Inference

Rudolf Riedi Rice University

ns-2 Simulation

• Inference improves with increased utilization

Low utilization (39%)

High utilization (65%)

ns-2 Simulation (Adaptivity)

 Inference improves as MWM parameters adapt

MWM parameters

Inferred x-traffic

Adaptivity (MWM Cross-Traffic)

Spatio-Temporal Available Bandwidth Estimation

On-line localization of the tight link in a path

Key Definitions

- Available bandwidth: left-over capacity on link
- Tight link: link with least available bandwidth
- Goal:
 - locate tight link in space and over time
 - using end-to-end probing

Rudolf Riedi Rice University

Applications

• Science: *where* do Internet tight links occur and *why*?

- Network aware application
 - Server selection
 - Route selection
- Network monitoring
 - locating hot spots

Methodology

Rudolf Riedi Rice University

Packet Tailgating

- Packet train contains:
 - Large packets stressing, with *m* hops life time
 - Small packets tailgating, full life time
- Purpose:
 - Large packets "measure" bandwidth via their delay
 - Small packets transport this timing information to the receiver

Rudolf Riedi Rice University

Rudolf Riedi Rice University

Efficient probing: PathChirp

chirp

rate

queuing

delay

- Traditional probing paradigm:
 - Produce (light) congestion
 - PacketPair:
 - Sample the traffic
 - Pathload: flood at variable rate
 - intolerable level of congestion
 - TOPP:
 - PacketPairs at variable spacing
- New:
 - PathChirp:
 - Variable rate within a train of probes
 - More efficient, light

Lite-probing: pathChirp

- real world tool
 - Queuing delay \rightarrow cross traffic
 - Averaged excursions →available resources
- Light weight
 - Probe at various rates simultaneously
- ...converges in a handful of RTTs

Rudolf Riedi Rice University

Bandwidth: a Probabilistic entity

 Available bandwidth depends on temporary congestion level of potential tight links

REAL WORLD EXPERIMENTS UIUC (J. Hou)– Rice Available sub-path bandwidth UIUC – Rice Probability of being tight link Estimates taken 10 mins apart

Rudolf Riedi Rice University

STAB: Spatio Temporal available Bandwidth

• STAB detects new tight link and reduced available bandwidth around 250 secs into simulation

Queuing

Self-similar queuing Large Deviation queuing Multi-scale queuing

Queuing 101

Reich's formula

 Arriving traffic load

$$K_{\tau}[t] := \int_{\tau-t}^{\tau} X_{\omega} \mathrm{d}\omega$$

 Queue length is (assuming the queue was idle at one point; follows from simple iteration)

$$Q_{\tau} := \sup_{t>0} \left(K_{\tau}[t] - ct \right)$$

Rudolf Riedi Rice University

Large Deviations for Qing

(Duffield-O'Connell, Norros): If λ is smooth

$$\lambda(q) := \lim_{t \to \infty} t^{-v} \log \mathbb{E} \exp(q t^{v-a} X_t)$$

then a Large Deviation Principle holds (LDP):

$$\lim_{b \to \infty} \log b^{-v/a} P[\sup_{t > 0} X_t > b] = -\inf_{c > 0} c^{-v/a} \lambda^*(c)$$

 $X_t := \mathrm{fBm}_H(t) - \mu t$:

$$P[\sup_{t\geq 0} X_t > b] \simeq \exp(-\operatorname{const} \cdot b^{2-2H})$$

(choose a = 1, v = 2 - 2H) Rudolf Riedi Rice University H = 1/2: 'classical' result

Multiscale Queuing

- Delivers non-asymptotic approximations
 - Can be estimated from true traffic using only few
 - observations
 - Can be used to estimate queues of analytical models such as MWM and FGN-tree
- Shows that *exponential* times are *optimal* for computing the queue length
 - In the sense of being sparsest while keeping the correct asymptotic
- Queuing formula from traffic arrivals at dyadic scales (depends on more than LRD!):

$$MSQ(b) := 1 - \prod_{j=0}^{n} P(K_{2j} < b + c2^{j}) \ge P(Q_D > b)$$

 $\approx P(Q_0 > b)$

Rudolf Riedi Rice University

MSQ in simulation

• Plot $\log P(Q > b)$ vs. b

MSQ is a close approximation

There is more to Qing than LRD

 $MSQ(b) = 1 - \prod_{i=0}^{n} P(K_{2^{j}} < b + c2^{j})$

• $P(K_{2j} < b + c2^j)$ only roughly characterized by $Var(K_{2j})$ (LRD)

marginal tails influence MSQ