Trees, Wavelets and Large Deviations

Rolf Riedi

Dept of Statistics

Stochastic Systems and Modelling in Networking and Finance Part III Dependable Adaptive Systems and Mathematical Modeling Kaiserslautern, August 2006

ON-OFF limits & the small scales

RICE

Rudolf Riedi Rice University

- ON-OFF explains two asymptotic regimes with selfsimilar limits
 - Beta regime:
 - highly multiplexed slow connections \rightarrow fBm
 - Alpha regime:
 - Few fast large connections \rightarrow Levy stable
- However, limits are at large scales, not small.

Highly multiplexed limit is Gaussian

$$\frac{1}{m^{1/2}}\sum_{i=1}^m (X_i(t) - \mathsf{E}X_i(t)) \xrightarrow{m \to \infty} G(t)$$

At large scales self-similar, ie: fBm

2

$$\frac{1}{T^{H}} \int_{0}^{Tt} G(u) du \xrightarrow{fdd} \sigma B_{H}(t)$$

$$H = 3 - \min(\alpha_{\text{on}}, \alpha_{\text{off}})$$

Rudolf Riedi Rice University

Large *scale* limit K is self-similar has indep. increments and heavy tails

$$\frac{1}{T^H} \int_0^{Tt} (X_i(t) - \mathsf{E}X_i(t)) \stackrel{T \to \infty}{\longrightarrow} K_i(t)$$

Highly multiplexed becomes Levy stable motion

$$rac{1}{m^H} \sum_i K_i(t) \stackrel{m o \infty}{\sim} L_H(t)$$

 $H = \frac{-}{\min(\alpha_{\text{On}}, \alpha_{\text{Off}})}$ stat.rice.edu/~riedi

A hierarchical approach

RICE

Rudolf Riedi Rice University

Dyadic Multiscale Analysis

Rudolf Riedi Rice University

Additive Innovations

- Synthesis:
- Start at root
- Flow down the tree
- Additive, independent innovations W_n^(m)
- Conservation: $X_{2n}^{(m)} = (X_n^{(2m)} + W_n^{(2m)})/2$ $X_{2n+1}^{(m)} = (X_n^{(2m)} - W_n^{(2m)})/2$

Additive Tree: Linear Processes

CLT: asymptotically Gaussian

Additive Innovations W_n^(m) ~ $\mathcal{N}(0, \sigma^2 m^{-(2H+1)})$: Model for B_H(t)

Rudolf Riedi Rice University

Multiplicative Innovations

Positive process:

- Add `small' innovation: $| W_n^{(m)} | < X_n^{(m)}$
- Introduces dependence X,W
- Model:

 $W_n^{(m)} = A_n^{(m)} \cdot X_n^{(m)}$ with independent $|A_n^{(m)}| < 1$

• Conservation:

$$X_{2n}^{(m)} = X_n^{(2m)} \cdot (1 + A_n^{(2m)})/2$$
$$X_{2n+1}^{(m)} = X_n^{(2m)} \cdot (1 - A_n^{(2m)})/2$$

Multiplicative Innovation Rudolf Riedi Rice University

Multiplicative Cascade-Model

- Match variance of trace (model fitting)...or...
- match variance progression of LRD with H:

$$\operatorname{Var} X^{(m)} = \operatorname{Var} X^{(2m)} \cdot \frac{1}{4} \cdot \operatorname{Var}(A^{(2m)}) \sim m^{2H} \quad \Rightarrow \operatorname{Var}(A^{(2m)}) = 2^{-2H+2}$$
stat.rice.edu/~ried

Network relevance

Simulation Performance (Queuing) Inference (bandwidth estimation) → later

RICE

Rudolf Riedi Rice University

Multiscale Marginals

Rudolf Riedi Rice University

Equal variance on all scales

Queuing analysis

Multifractal Toy

RICE

Rudolf Riedi Rice University

Why Cascades

Turbulence:

Kolmogorov 41: $\mathbb{E}[|v(t+\delta) - v(t)|^q] \simeq \delta^{q/3} \Rightarrow \text{fBm } H = 1/3$ Kolmogorov 62: $\mathbb{E}[|v(t+\delta) - v(t)|^q] \simeq \delta^{\tau(q)}$?????

• Datatraffic: Cascades provide better match Rudolf Riedi Rice University stat.rice.edu/~riedi

The Toy: Binomial Cascade

Rudolf Riedi Rice University

Multifractal Spectrum

 $\alpha = .7 \quad \alpha = .9$

а

 $\alpha = 8$

بالمبالية الالبيارية

- Oscillate ~ $|t|^{\alpha} \rightarrow |oca|$ strength α $\alpha(t) := \liminf \alpha_n(t)$ $\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$ $I_n(t)$: dyadic interval containing t $\Delta I_n(t)$: oscillation indicator total increment over I_n , max increment in I_n , wavelet coefficients,...
- Collect points t with same α : $E_a := \{t : \alpha(t) = a\}$ $Dim(E_a)$
- $Dim(E_a)$: Spectrum \rightarrow prelevance of α

Rudolf Riedi Rice University

Binomial

Recall $\alpha(t) := \liminf_{n} \alpha_n(t)$ $\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$ $l_n(t) = \#\{k \le n : \epsilon_k = 1\}$

We take dyadic partition:

$$I_n(t) = I(\epsilon_1 \dots \epsilon_n) := [t_n, t_n + 1/2^n))$$

$$\Delta I_n(t) = X_{2^n t_n}^{(-n)} = p^{l_n(t)} (1-p)^{n-l_n(t)}$$

$$\alpha_n(t) = -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1-p)$$

Range of exponents:

$$t = 0: \ l_n = 0, \ \alpha_n \to -\log_2(p) > 1:$$
 Smooth
 $t = 1: \ l_n = n, \ \alpha_n \to -\log_2(1-p) < 1:$ Bursty
Rudolf Riedi Rice University

"Typical" exponents

t=0, t=1 seem "atypical". Intuition: for a "typical" t:

Recall

$$\alpha(t) := \liminf_{n} \alpha_n(t)$$

$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$

 $l_n(t) = \#\{k \le n : \epsilon_k = 1\}$

$$l_n(t) \simeq n/2$$

Rigorously: Law of Large Numbers

- Binary digits ϵ_k are independent, $P[\epsilon_k=0] = P[\epsilon_k=1] = \frac{1}{2}$:
- t is uniformly distributed (i.e., with Lebesgue measure \mathcal{L})

$$\frac{l_n(t)}{n} = \frac{1}{n} \sum_{k=1}^n \epsilon_k \to \mathbb{E}_{\mathcal{L}}[\epsilon] = 1/2$$

• "Typical" exponent: $\alpha_n(t) = -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1 - p)$ $\rightarrow a_0 := -\frac{1}{2} \log_2(p) - \frac{1}{2} \log_2(1 - p) > 1$

Rudolf Riedi Rice Universit,

A first point on the Spectrum

Conclusion:

• At almost all locations we have a₀, so:

$$\dim E_{a_0} = 1$$

 "Where" or "how many" are the other exponents?

Rudolf Riedi Rice University

and the Multifractal Formalism

Rudolf Riedi Rice University

Counting via Large Deviations

Recall $I_n(t) = I(\epsilon_1 \dots \epsilon_n)$ $\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$ $E_a := \{t : \alpha(t) = a\}$

- Notation:
 - Number of dyadic intervals with exponent ~ a:

$$N_{n,\delta}(a) := \#\{(\epsilon_1 \dots \epsilon_n) : a - \delta \leq \alpha_n(\epsilon_1 \dots \epsilon_n) < a + \delta\}.$$

Partition sum: a microscope inspired by LDP

$$S_n(q) := \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q = \sum_{\epsilon_1 \dots \epsilon_n} |2^n|^{q\alpha_n(\epsilon_1 \dots \epsilon_n)}.$$

- Assume powerlaws:

$$N_{n,\delta}(a) \sim 2^{nf(a)}$$
 $S_n(q) \sim 2^{-n\tau(q)}$

- Typically (LDP)

Rudolf Riedi Rice University

$$f(a) = \inf_{q} (qa - \tau(q))$$

LDP and the Legendre transform

• Finding the dominating terms in S(q):

Finding the dominating terms in S(q):

$$2^{-n\tau(q)} \sim S_n(q) = \sum_{\substack{(\epsilon_1...\epsilon_n)}} |\Delta I_n(\epsilon_1...\epsilon_n)|^q$$

$$= \sum_{l=1}^m \sum_{\alpha_n(\epsilon_1...\epsilon_n) \in [l\delta - \delta/2, l\delta + \delta/2]} |\Delta I_n(\epsilon_1...\epsilon_n)|^q$$

$$\sim \sum_{l=1}^m N_{n,\delta/2}(l\delta) \cdot 2^{-nql\delta}$$

$$\sim \sum_{l=1}^m 2^{-n(ql\delta - f(l\delta))}$$

$$\sim 2^{-n(\inf_a(qa - f(a)))}$$

• ...shows that τ and f are Legendre pairs

$$\tau(q) = \inf_{a} (qa - f(a)) \qquad f(a) = \inf_{q} (qa - \tau(q))$$

Rudolf Riedi Rice University

statince.edu/~riedi

Recall

 $I_n(t) = I(\epsilon_1 \dots \epsilon_n)$

 $\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$

Legendre spectrum

• Thm: provided $\alpha_n(t)$ are bounded we have

$$f(a) = \tau^*(a) \quad \text{for } a = \tau'(q).$$

...in other words
$$\#\{(\epsilon_1 \dots \epsilon_n) : a - \delta \le \alpha_n(\epsilon_1 \dots \epsilon_n) < a + \delta\}$$
$$\sim 2^{n \inf_q(qa - \tau(q))}$$

...and the multifractal spectrum is the Legendre transform of the partition scaling exponent

Rudolf Riedi Rice University

Legendre transform 101

• Elementary calculus:

 $\tau^*(a) := \inf_q (qa - \tau(q)) = \overline{q}a - \tau(\overline{q})$

where \overline{q} is defined by $a = \tau'(\overline{q})$

- Draw tangent of slope a to $\tau(q)$.
- The intersection with y-axis yields $-\tau^*(a)$ lynds
- Dual: Tangent at $\tau^*(a)$ has slope q /_{slope q}

Legendre

continued

Rudolf Riedi Rice University

Multifractal analysis of the Binomial

$$S_n(q) = \sum_{\epsilon_1 \dots \epsilon_n} |\Delta I_n(\epsilon_1 \dots \epsilon_n)|^q$$

=
$$\sum_{\epsilon_1 \dots \epsilon_n} [p^{n-l_n(\epsilon_1 \dots \epsilon_n)}(1-p)^{l_n(\epsilon_1 \dots \epsilon_n)}]^q$$

=
$$\sum_{l=0}^n \binom{n}{k} [p^{n-l}(1-p)^l]^q$$

=
$$[p^q + (1-p)^q]^n.$$

- Partition function $\tau(q) = \lim_{n \to \infty} -\frac{1}{n} \log_2 S_n(q) = -\log_2 [p^q + (1-p)^q]$
- Via Legendre: Most often we see exponent a₀ such that f(a₀) is maximal. This happens where the tangent is horizontal, thus where q=0. So, as before:

$$a_0 = \tau'(0) = -\frac{1}{2}\log_2(p) - \frac{1}{2}\log_2(1-p) > 1$$

Rudolf Riedi Rice Univers.,

Insight from Large Deviations

• From steepest ascent:

$$S_n(q) = \sum_{\epsilon_1...\epsilon_n} |\Delta I_n(\epsilon_1...\epsilon_n)|^q \simeq 2^{-n(\inf_a(qa-f(a)))}$$
$$= 2^{-n(q\overline{a}-f(\overline{a}))} \simeq \sum_{\alpha_n(\epsilon_1...\epsilon_n)\simeq a} |\Delta I_n(\epsilon_1...\epsilon_n)|^q$$

• Dominant terms in $S_n(q)$, for fixed q, are the ones with $\alpha_n(\epsilon_1 \dots \epsilon_n) = \frac{\log \Delta I_n}{\log |I_n|} \simeq \overline{a} = \tau'(q)$

• ...and vice versa: these terms contribute such that

$$S_n(q) \simeq 2^{-n\tau(q)} = (p^q + (1-p)^q)^n$$

 For the Binomial these correspond to choosing digits in the ratio p^q to (1-p)^q

Rudolf Riedi Rice University

Spectrum of the MWM

Multifractal Wavelet Model

Choose independent r.v. $A_{(j)}$ symmetrically distributed in [-1, 1].

Define recursively

$$W_{j,k} = A_{(j)} \cdot U_{j,k}$$

Resulting stationary (1st order) series

$$X_k \stackrel{d}{=} U_{J_0,0} \cdot \prod_{j=J_1}^{J_0} (1 + A_{(j)})/2 \sum_{X_{2n}}^{(m)} X_{2n}^{(m)}$$

Rudolf Riedi Rice University

stat.rice.edu/~riedi

 $=X_n^{(2m)} \cdot (1+A_n^{(2m)})/2$

 $X_{2n+1}^{(m)} = X_n^{(2m)} \cdot (1 - A_n^{(2m)})/2$

Multifractal analysis of the MWM

Partition function

$$\frac{-1}{n} \log_2 \sum_{i=1}^n \sum_{k_i=0,1} \mathbb{E} \left(\prod_{i=1}^n (1+(-1)^{k'_i} A_{(-i,k_i)}) \right)^{q'_i}$$

Binomial formula

sum over the 2^n dyadic points of order n

$$\stackrel{\downarrow}{=} \frac{-1}{n} \log_2 \prod_{i=1}^n \left(\mathbb{E}(1 + A_{(-i)})^q + \mathbb{E}(1 - A_{(-i)})^q \right)$$
Symmetry of $A_{(-i)}$

$$\stackrel{\downarrow}{=} -1 - \frac{1}{n} \sum_{i=1}^n \log_2 \mathbb{E}[(1 + A_{(-i)})^q]$$

$$\rightarrow -1 - \log_2 \mathbb{E}[(1 + A)^q] \qquad \text{provided } A_{(j)} \stackrel{distr}{\to} A.$$

 Special case of Beta-variables A $A_{(j)} \simeq \beta(p_{(j)}, p_{(j)}) \text{ with } p_{(j)} \to p \text{ as } j \to -\infty$ $\tau(q) = -1 - \log_2 \frac{\Gamma(p+q)\Gamma(2p)}{\Gamma(2p+q)\Gamma(p)}.$

Rudolf Riedi Rice University

Spectrum of self-similar processes

Mono-fractals

RICE

Rudolf Riedi Rice University

MFA of Self-similar processes

Assume Y is H-sssi with increments

$$X_{k}^{(n)} = Y(k2^{-n}) - Y((k-1)2^{-n})$$
$$\mathbb{E}\sum_{k=1}^{2^{n}} |X_{k}^{(n)}|^{q} = 2^{n} \mathbb{E}|X_{1}^{(n)}|^{q} = 2^{n-nqH} \mathbb{E}|X_{1}^{(1)}|^{q},$$
$$fBm: q_{bot} = -1, q_{top} = \infty,$$

Assume $\mathbb{E}|X_1^1|^q < \infty$ for $q_{\text{bot}} < q < q_{\text{top}}$.

 α -stable process: $q_{\text{bot}} = -1$, $q_{\text{top}} = \alpha$.

Then

$$\tau(q) = \begin{cases} qH-1 & \text{for } q_{\text{bot}} < q < q_{\text{top}}, \\ -\infty & \text{else}. \end{cases}$$
 Linear Spectrum!
$$f(a) = \begin{cases} 1 + q_{\text{top}}(\alpha - H) & \text{for } \alpha < H \\ 1 + q_{\text{bot}}(\alpha - H) & \text{for } \alpha \geq H. \end{cases}$$

A powerful multiscale tool

RICE

Rudolf Riedi Rice University

History of wavelets

- Fourier series (1807)
- Levy (1930): Haar basis superior to Fourier for Brownian motion
- Weiss-Coifman ('60-'80):
 decompose functions into atoms
- Grossman-Morlet '80: defined wavelets
- Mallat '85: pyramidal algorithm, o.n. basis
- →Meyer: continuously diff wavelets
- →Daubechies: compactly supported wavelets

Ortho-normal Wavelets

• Multi-resolution analysis (Mallat, Daubechies):

– There are compactly supported ψ and ϕ s.t.

$$\psi_{j,k}(t) := 2^{-j/2} \psi(2^{-j}t-k)$$

$$\phi_{j,k}(t) := 2^{-j/2} \phi(2^{-j}t-k)$$

form orthonormal bases of \mathcal{L}^2 .

- For X supported on $[0, 2^{J_0}]$

$$X(t) = \sum_{k} U_{J_0,k} \phi_{J_0,k}(t) + \sum_{j=-\infty}^{J_0} \sum_{k} W_{j,k} \psi_{j,k}(t),$$

with

$$W_{j,k} := \int X(t) \psi_{j,k}^*(t) dt$$
 and $U_{j,k} := \int X(t) \phi_{j,k}^*(t) dt.$

Rudolf Riedi Rice University

Wavelets: what they look like

Daubechies 4 Mother wavelet

Continuous wavelets

- Continuous rescaling of mother wavelet
- Continuous (redundant) set of coefficients
- Often used: Mexican hat $(exp(-x^2))''$

$$T(a,t) = \frac{1}{a} \int X(s)\psi\left(\frac{s-t}{a}\right) ds$$

• Form of a convolution \rightarrow Fourier, Parseval

a: scale Color co Yellow: significa Blue: weak co

Color code Yellow: significant coefficient Blue: weak coefficient

Wavelet vs Fourier

Fourier

- timing information is hidden in the phase
- sin(t) and cos(t) are not
 localized in time

- Identifies frequency content only, but not their location
- Relation to Auto-correlation

Fast Fourier Transform stat.rice.edu/~riedi

Rudolf Riedi Rice University

Wavelet vs Fourier

with high

Location

Power spectrum

- provides no timing information
- sin(t) and cos(t) are not localized in time

- and in frequency

Toy examples

Wavelet trafo indicates: Mono-fractal Rudolf Riedi Rice University Wavelet trafo indicates: Multi-fractal_{stat.rice.edu/~riedi}

Continuous wavelet at work

• Wavelets are an excellent tool to identify local frequency content

Fractional Gaussian Noise

Geological Well data

Rudolf Riedi Rice University

Haar wavelet

• Haar wavelet (See plot)

form orthonormal bases of \mathcal{L}^2 .

Clearly

$$\psi_{j,k}(t) := 2^{-j/2} \psi \left(2^{-j}t - k \right)$$

 $\phi_{j,k}(t) := 2^{-j/2} \phi \left(2^{-j}t - k \right)$

Haar scaling Φ and wavelet Ψ functions.

Coefficients

$$- W_{j,k} = 2^{-j/2} \left[\int_{2^{j}k}^{2^{j}(k+\frac{1}{2})} f(x)dx - \int_{2^{j}(k+\frac{1}{2})}^{2^{j}(k+1)} f(x)dx \right]$$

$$- \text{For } Z(t) = \int_{0}^{t} fdx, \ X_{k}^{(m)} = Z(km) - Z(km-m)$$

$$W_{j+1,k} = X_{2k}^{(2^{j})} - X_{2k+1}^{(2^{j})}$$

Rudolf Riedi Rice

Haar wavelet at work

Haar approximation of some f(x)

$$f = \frac{1}{2}\phi - \frac{1}{2}\psi_{00} + \frac{1}{2\sqrt{2}}\psi_{10} - \frac{1}{2\sqrt{2}}\psi_{11} + \frac{1}{4}\psi_{20} - \frac{5}{4}\psi_{21} + \frac{1}{4}\psi_{22} - \frac{1}{4}\psi_{23}$$

Additive Tree is Haar Model

- Synthesis:
- Start at root
- Flow down the tree
- Additive, independent innovations W_n^(m)
- these are essentially the Haar wavelet coefficients
- Idea: use any wavelet
 - The better the frequency response, the better the spectral approximation to fBm

LRD vs. Large Deviations RICE

Large vs Small scales

RICE

Rudolf Riedi Rice University

Doubly stochastic modeling

Setting:

- Background process $\theta_{j,k}$
- Given θ_{j,k} the observed multiscale loads U_{j,k} are *independent* of *mean* θ_{j,k}
- $E[U_{j,k} | \theta] = \theta_{j,k}$
- $\theta_{j,k}$ fill a multiscale tree $\theta_{j+1,2k} + \theta_{j+1,2k+1} = \theta_{j,k}$

Rudolf Riedi Rice University

Gaussian versus Poisson

Gaussian
 Poisson

$$U_{j,k} = \mathcal{N}(\theta_{j,k}, \sigma_{j,k}^2) \qquad \qquad U_{j,k} = \mathcal{P}(\theta_{j,k})$$

Iteration scheme for synthesis $U_{j+1,2k} | U_{j,k} =$

$$\begin{split} \mathcal{N}(U_{j,k}/2 + (\theta_{j+1,2k} - \theta_{j+1,2k+1})/2, \, \sigma^2_{j,k}/2) \\ \text{additive innovation} \\ \mathcal{B}inom(U_{j,k}, \, \theta_{j+1,2k} \, / \, \theta_{j,k}) \end{split}$$

multiplicative innovation

Rudolf Riedi Rice University

Scaling from a modeling perspective

• ON-OFF limits and LRD

- User driven: heavy tail file sizes
- Additive, Gaussian
- Large scales
- Cascades and multifractal scaling
 - Network driven: heterogeneity of RTT
 - Multiplicative, log-Normal
 - Small scales