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ON-OFF limits & the small scales
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• ON-OFF explains two asymptotic regimes with self-
similar limits
– Beta regime: 
– highly multiplexed slow connections fBm
– Alpha regime:
– Few fast large connections Levy stable

• However, limits are at large scales, not small. 
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Tree based models

A hierarchical approach
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Dyadic Multiscale Analysis
Time 

Flow up : Xn
(2m) = X2n

(m) + X2n+1
(m)

Start at bottom with trace Xn
(1)

V1 = Var X(m)

V2 = Var X(m/2)

V3 = Var X(m/4)

Vj = Var X(1)

Multiscale statistics
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Dyadic Multiscale Synthesis
Time 

Scale

Flow down :  ¿ Xn
(2m) Xn

(m) ? 

Start at top with sum of all Xn
(1)

Signal: bottom nodes

V1

V2

V3

Vj

Multiscale parameters
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Additive Innovations

Synthesis: 
• Start at root
• Flow down the tree

• Additive, independent 
innovations Wn

(m)

• Conservation:
X2n

(m)   = (Xn
(2m) + Wn

(2m))/2
X2n+1

(m)= (Xn
(2m)  – Wn

(2m))/2

+Wn
(2m) –Wn

(2m)

X2n
(m) X2n+1

(m)

–W2n
(m)

Xn
(2m)

X4n+1
(m/2)
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Additive Tree: Linear Processes

CLT: asymptotically Gaussian

Additive Innovations Wn
(m) ~ N(0, σ2 m-(2H+1)) : Model for BH(t)
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Multiplicative Innovations

Positive process:
• Add `small’ innovation: 

| Wn
(m) | < Xn

(m)

• Introduces dependence X,W
• Model:

Wn
(m) = An

(m) •Xn
(m)

with independent |An
(m)|<1

• Conservation:

Multiplicative Innovation

+Wn
(2m) –Wn

(2m)

Xn
(2m)

X2n
(m) X2n+1

(m

Xn
(2m)

X2n
(m) X2n+1

(m)

+Wn
(2m)+An

(2m) Xn
(2m)
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Multiplicative Cascade-Model

(1 ± An
(m))/2 ~ Beta (σm)

Control variance σm to 
• Match variance of trace 

(model fitting)...or...
• match variance progression of LRD with H:

Multiplicative Innovations

positive, spiky (log-normal). LRD 
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Network relevance

Simulation
Performance (Queuing)

Inference (bandwidth estimation) later
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Multiscale Marginals

4ms

16ms

64ms

scale Auckland 2000 MWM Gaussian

Equal variance on all scales
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Queuing analysis

• Tree structure allows for 
analytical queuing
formula

• Multiplicative model 
superior to additive

• Importance of multiscale 
marginal distributions

Q-tail: P[Q>b]
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Binomial Cascade

Multifractal Toy 



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Why Cascades

• Turbulence: 

• Datatraffic: Cascades provide better match

Courtesy P. Chainais
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The Toy: Binomial Cascade

• Start with unit mass
1

1-pp

0

Mass re-distribution

½ 1

0 ½ 1

2(1-p)
2p

• Iterate

• Redistribute uniformly 
portion p <½ to the left
portion 1-p to the right
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Multifractal Spectrum
• Oscillate ~ |t|α local strength α α=.7 α=.9 α=.8

• Dim(Ea): Spectrum 
prelevance of α

a

Dim(Ea)
• Collect points t with same α : 
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Binomial

We take dyadic partition:

Range of exponents:
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“Typical” exponents  

t=0, t=1 seem  “atypical”.
Intuition: for a “typical” t:

Rigorously: Law of Large Numbers
• Binary digits єk are independent, P[єk=0]= P[єk=1]= ½:
• t is uniformly distributed (i.e., with Lebesgue measure L)

•

• “Typical” exponent: 
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A first point on the Spectrum  

Conclusion: 
• At almost all locations we have a0, so:

• “Where” or “how many” are the other 
exponents?
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Large Deviations

and the 
Multifractal Formalism
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Counting via Large Deviations

• Notation:
– Number of dyadic intervals with exponent ~ a:

– Partition sum: a microscope inspired by LDP

– Assume powerlaws:

– Typically (LDP)



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

LDP and the Legendre transform

• Finding the dominating terms in S(q):

• …shows that τ and f are Legendre pairs
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Legendre spectrum

• Thm: provided αn(t) are bounded we have

• …in other words

• …and the multifractal spectrum is the Legendre
transform of the partition scaling exponent
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Legendre transform 101

• Elementary calculus:

– Draw tangent of slope a to τ(q). 
– The intersection with y-axis yields  -τ*(a)
– Dual: Tangent at τ*(a) has slope q 

slope a
slope q

Legendre
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Binomial Spectrum

continued
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Multifractal analysis of the Binomial

• Partition function

• Via Legendre: Most often we see exponent a0 such 
that f(a0) is maximal. This happens where the 
tangent is horizontal, thus where q=0. So, as before:
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Insight from Large Deviations
• From steepest ascent:

• Dominant terms in Sn(q), for fixed q, are the ones with

• …and vice versa: these terms contribute such that

• For the Binomial these correspond to choosing 
digits in the ratio pq to (1-p)q
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Spectrum of the MWM
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Xn
(2m)

X2n
(m) X2n+1

(m)

Multifractal Wavelet Model

+An
(2m) Xn

(2m)



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Multifractal analysis of the MWM

• Partition function

• Special case of Beta-variables A
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Spectrum of self-similar 
processes

Mono-fractals
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MFA of Self-similar processes

Linear Spectrum!
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Wavelets

A powerful multiscale tool
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History of wavelets

• Fourier series (1807) 
• Levy (1930): Haar basis superior to Fourier 

for Brownian motion
• Weiss-Coifman (‘60-’80): 

– decompose functions into atoms

• Grossman-Morlet ’80: defined wavelets
• Mallat ’85: pyramidal algorithm, o.n. basis
• Meyer: continuously diff wavelets
• Daubechies: compactly supported 

wavelets
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Ortho-normal Wavelets

• Multi-resolution analysis (Mallat, Daubechies):
–

–
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Wavelets: what they look like

Complex wavelets

Multidimensional wavelets

Daubechies 4 Mother wavelet Daubechies 6    Coiflet 3
Haar 4          Symmlet 6
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Continuous wavelets

• Continuous rescaling of mother wavelet
• Continuous (redundant) set of coefficients
• Often used: Mexican hat (exp(-x2))’’

• Form of a convolution Fourier, Parseval

Color code
Yellow:
significant coefficient
Blue: 
weak coefficient

t: time

a: scale
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Wavelet vs Fourier

• Fourier 
– timing information is hidden

in the phase
– sin(t) and cos(t)  are not 

localized in time

• Power spectral density
– Identifies frequency content 

only, but not their location
– Relation to Auto-correlation

Signal

Fast Fourier Transform
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Wavelet vs Fourier

• Power spectrum 
– provides no timing information
– sin(t) and cos(t)  are not 

localized in time

• Wavelets are localized 
– both in time 
– and in frequency

Location 
with high 
frequency

Low frequency
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Toy examples

Brownian MotionWhite noise Cascade 

Wavelet trafo indicates:
Mono-fractal

Wavelet trafo indicates:
Multi-fractal
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Continuous wavelet at work

• Wavelets are an excellent tool to 
identify local frequency content

Fractional Gaussian Noise Geological Well data
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Haar wavelet
• Haar wavelet (See plot)

•

• Coefficients

–

–



Haar wavelet at work

Haar approximation 
of sin(x)

Haar approximation 
of some f(x)

Overall Mean= ½

Left half Mean   =0
Right half Mean =1



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Additive Tree is Haar Model

Synthesis: 
• Start at root
• Flow down the tree
• Additive, independent 

innovations Wn
(m)

• these are essentially the 
Haar wavelet coefficients

• Idea: use any wavelet
– The better the frequency 

response, the better the 
spectral approximation to 
fBm

+Wn
(2m) –Wn

(2m)

X2n
(m) X2n+1

(m)

–W2n
(m)

Xn
(2m)

X4n+1
(m/2)
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LRD vs. Large Deviations

Large vs Small scales
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Doubly stochastic modeling

Setting: 
• Background process θj,k

• Given θj,k the observed 
multiscale loads Uj,k are 
independent of mean θj,k

• E[Uj,k | θ ] = θj,k

• θj,k fill a multiscale tree 
θj+1,2k + θj+1,2k+1 = θj,k

Uj+1,2k+1Uj+1,2k

Uj,k

θj+1,2k+1θj+1,2k

θj,k

+

=



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Gaussian versus Poisson

• Gaussian

Uj,k = N (θj,k,σ2
j,k)

• Poisson

Uj,k = P(θj,k)

Iteration scheme for synthesis

Uj+1,2k | Uj,k =

N(Uj,k/2 + (θj+1,2k - θj+1,2k+1 )/2 , σ2
j,k/2)

additive innovation
Binom(Uj,k , θj+1,2k / θj,k)

multiplicative innovation
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Scaling from a modeling perspective

• ON-OFF limits and LRD 
– User driven: heavy tail file sizes
– Additive, Gaussian
– Large scales

• Cascades and multifractal scaling
– Network driven: heterogeneity of RTT
– Multiplicative, log-Normal
– Small scales
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