Trees, Wavelets and Large Deviations

Rolf Riedi

Dept of Statistics

Stochastic Systems and Modelling in Networking and Finance
Part III
Dependable Adaptive Systems and Mathematical Modeling
Kaiserslautern, August 2006
ON-OFF limits & the small scales
• ON-OFF explains two asymptotic regimes with self-similar limits
 - Beta regime:
 - highly multiplexed slow connections $\Rightarrow \text{fBm}$
 - Alpha regime:
 - Few fast large connections $\Rightarrow \text{Levy stable}$
• However, limits are at large scales, not small.

Highly multiplexed limit is Gaussian

$$\frac{1}{m^{1/2}} \sum_{i=1}^{m} (X_i(t) - \mathbb{E}X_i(t)) \xrightarrow{m \to \infty} G(t)$$

At large scales self-similar, ie: fBm

$$\frac{1}{TH} \int_0^{Tt} G(u)du \xrightarrow{fdd} \sigma B_H(t)$$

$H = \frac{3 - \min(\alpha_{on}, \alpha_{off})}{2}$

Large scale limit K is self-similar has indep. increments and heavy tails

$$\frac{1}{TH} \int_0^{Tt} (X_i(t) - \mathbb{E}X_i(t)) \xrightarrow{T \to \infty} K_i(t)$$

Highly multiplexed becomes Levy stable motion

$$\frac{1}{mH} \sum_i K_i(t) \xrightarrow{m \to \infty} L_H(t)$$

$$H = \frac{1}{\min(\alpha_{on}, \alpha_{off})}$$
Tree based models

A hierarchical approach
Dyadic Multiscale Analysis

Time \rightarrow

Flow up: $x_n^{(2^m)} = x_{2n}^{(m)} + x_{2n+1}^{(m)}$

Multiscale statistics

$V_1 = \text{Var } x^{(m)}$

$V_2 = \text{Var } x^{(m/2)}$

$V_3 = \text{Var } x^{(m/4)}$

$V_j = \text{Var } x^{(1)}$

Start at bottom with trace $x_n^{(1)}$

Number of scales $j = \log_2(m)$
Dyadic Multiscale Synthesis

Start at top with sum of all $X_n^{(1)}$

Flow down: $\uparrow X_n^{(2m)} \rightarrow X_n^{(m)}$?

Signal: bottom nodes

Multiscale parameters

V_1
V_2
V_3
V_j
Additive Innovations

Synthesis:
• Start at root
• Flow down the tree

• Additive, independent innovations W_n^m

• Conservation:
$$X_{2n}^m = \frac{(X_n^{2m} + W_n^{2m})}{2}$$
$$X_{2n+1}^m = \frac{(X_n^{2m} - W_n^{2m})}{2}$$
Additive Tree: Linear Processes

CLT: asymptotically Gaussian

Additive Innovations $W_n^{(m)} \sim \mathcal{N}(0, \sigma^2 m^{-(2H+1)})$: Model for $B_H(t)$
Multiplicative Innovations

Positive process:
- Add `small’ innovation: \(|W_n(m)| < X_n(m)\)
- Introduces dependence \(X,W\)
- Model:
 \[W_n(m) = A_n(m) \cdot X_n(m) \]
 with independent \(|A_n(m)| < 1\)
- Conservation:
 \[X_{2n}^{(m)} = X_n^{(2m)} \cdot (1 + A_n^{(2m)})/2 \]
 \[X_{2n+1}^{(m)} = X_n^{(2m)} \cdot (1 - A_n^{(2m)})/2 \]
Multiplicative Cascade-Model

Multiplicative Innovations

\[(1 \pm A_{n}^{(m)})/2 \sim \text{Beta} \left(\sigma_{m}\right)\]

Control variance \(\sigma_{m}\) to

- Match variance of trace (model fitting)…or…
- Match variance progression of LRD with \(H\):

\[
\text{Var} X^{(m)} = \text{Var} X^{(2m)} \cdot \frac{1}{4} \cdot \text{Var}(A^{(2m)}) \sim m^{2H} \quad \Rightarrow \quad \text{Var}(A^{(2m)}) = 2^{-2H+2}
\]

positive, spiky (log-normal). LRD
Network relevance

Simulation
Performance (Queuing)
Inference (bandwidth estimation) → later
Multiscale Marginals

scale	Auckland 2000	MWM	Gaussian
4ms | ![Graph 1](Image 159x60 to 538x504) | ![Graph 2](Image 159x528 to 405x733) | ![Graph 3](Image 160x366 to 275x510)
16ms | ![Graph 4](Image 435x534 to 540x678) | ![Graph 5](Image 159x60 to 538x504) | ![Graph 6](Image 159x528 to 405x733)
64ms | ![Graph 7](Image 159x60 to 538x504) | ![Graph 8](Image 159x528 to 405x733) | ![Graph 9](Image 160x366 to 275x510)

Equal variance on all scales
Queuing analysis

- Tree structure allows for analytical queuing formula
- **Multiplicative** model superior to additive
- Importance of multiscale marginal distributions

\[
Q_i \quad \text{(queue size at time } i) \\
\]

\[
X_i \quad \text{(packets/time)} \\
\]

\[
\text{Infinite-length buffer} \quad \text{link capacity } \text{"c"} \\
\]

\[
\text{Q-tail: } P[Q > b] \\
\]

Graph showing log-log plot with lines for different models:
- Auckland 2000
- MWM
- Queuing formula
- Gaussian LRD model

\[
\begin{align*}
\log_{10}[F(Q > x)] & \quad \text{versus } x = \text{Queue size in KB} \\
\end{align*}
\]
Binomial Cascade

Multifractal Toy
Why Cascades

- Turbulence:
 - Kolmogorov 41: \(\mathbb{E}[|v(t + \delta) - v(t)|^q] \sim \delta^{q/3} \Rightarrow \text{fBm } H = 1/3 \)
 - Kolmogorov 62: \(\mathbb{E}[|v(t + \delta) - v(t)|^q] \sim \delta^{\tau(q)} \)

- Datattraffic: Cascades provide better match

Courtesy P. Chainais

Rudolf Riedi Rice University

stat.rice.edu/~riedi
The Toy: Binomial Cascade

- Start with unit mass
- Redistribute uniformly portion $p < \frac{1}{2}$ to the left portion $1-p$ to the right

- Iterate

$$i = \sum_{k=1}^{\infty} \epsilon_k / 2^k \quad \text{with} \quad \epsilon_k = 0, 1$$

$$I(\epsilon_1 \ldots \epsilon_n) := [t_n, +1/2^n]) \quad t_n := \sum_{k=1}^{n} \frac{\epsilon_k}{2^k}$$

$$l_n(l) := \#\{k \leq n : \epsilon_k = 1\} = \sum_{k=1}^{n} \epsilon_k$$

Increment: $$X_{2^{n}t_n}^{(-n)} = p^{n-l_n(l)}(1-p)^{l_n(l)}$$
Multifractal Spectrum

- Oscillate $\sim |t|^\alpha \rightarrow$ local strength α

\[
\alpha(t) := \liminf_n \alpha_n(t)
\]

\[
\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}
\]

$I_n(t)$: dyadic interval containing t

$\Delta I_n(t)$: oscillation indicator
total increment over I_n,
max increment in I_n,
wavelet coefficients,...

- Collect points t with same α:

$E_\alpha := \{t : \alpha(t) = \alpha\}$

- $\text{Dim}(E_\alpha)$: Spectrum
 \rightarrow prevalence of α
Binomial

We take dyadic partition:

\[I_n(t) = I(\epsilon_1 \ldots \epsilon_n) := [t_n, t_n + 1/2^n) \]

\[\Delta I_n(t) = X_{2^{l_n}(t)}^{(\frac{n}{2})} = p^{l_n(t)}(1 - p)^{n-l_n(t)} \]

\[\alpha_n(t) = -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1 - p) \]

Range of exponents:

\[t = 0: \ l_n = 0, \ \alpha_n \to -\log_2(p) > 1: \ \text{Smooth} \]

\[t = 1: \ l_n = n, \ \alpha_n \to -\log_2(1 - p) < 1: \ \text{Bursty} \]
“Typical” exponents

t=0, t=1 seem “atypical”.
Intuition: for a “typical” t:

\[l_n(t) \approx n/2 \]

Rigorously: Law of Large Numbers

- Binary digits \(\epsilon_k \) are independent, \(P[\epsilon_k=0] = P[\epsilon_k=1] = 1/2 \):
- \(t \) is uniformly distributed (i.e., with Lebesgue measure \(\mathcal{L} \))

\[
\frac{l_n(t)}{n} = \frac{1}{n} \sum_{k=1}^{n} \epsilon_k \rightarrow \mathbb{E}_\mathcal{L}[\epsilon] = 1/2
\]

- “Typical” exponent:

\[
\alpha_n(t) = -\frac{n - l_n(t)}{n} \log_2(p) - \frac{l_n(t)}{n} \log_2(1-p)
\]

\[\rightarrow a_0 := -\frac{1}{2} \log_2(p) - \frac{1}{2} \log_2(1-p) > 1 \]
A first point on the Spectrum

Conclusion:

• At almost all locations we have a_0, so:

\[
\dim E_{a_0} = 1
\]

• “Where” or “how many” are the other exponents?
Large Deviations

and the
Multifractal Formalism
Counting via Large Deviations

- **Notation:**
 - Number of dyadic intervals with exponent $\sim a$:
 $$N_{n,\delta}(a) := \#\{(\epsilon_1 \ldots \epsilon_n) : a-\delta \leq \alpha_n(\epsilon_1 \ldots \epsilon_n) < a+\delta\}.$$
 - Partition sum: a microscope inspired by LDP
 $$S_n(q) := \sum_{\epsilon_1 \ldots \epsilon_n} |\Delta I_n(\epsilon_1 \ldots \epsilon_n)|^q = \sum_{\epsilon_1 \ldots \epsilon_n} 2^n |q \alpha_n(\epsilon_1 \ldots \epsilon_n)|.$$
 - Assume powerlaws:
 $$N_{n,\delta}(a) \sim 2^{nf(a)} \quad S_n(q) \sim 2^{-n\tau(q)}.$$
 - Typically (LDP)
 $$f(a) = \inf_q (q a - \tau(q))$$

Recall:

$$I_n(t) = I(\epsilon_1 \ldots \epsilon_n)$$
$$\alpha_n(t) = \frac{\log \Delta I_n(t)}{\log |I_n(t)|}$$
$$E_a := \{ t : \alpha(t) = a \}$$
LDP and the Legendre transform

• Finding the dominating terms in $S(q)$:

$$2^{-n\tau(q)} \sim S_n(q) = \sum_{(c_1 \ldots c_n)} |\Delta I_n(\epsilon_1 \ldots \epsilon_n)|^q$$

$$= \sum_{l=1}^{m} \sum_{\alpha_n(c_1 \ldots c_n) \in [l\delta - \delta/2, l\delta + \delta/2]} |\Delta I_n(\epsilon_1 \ldots \epsilon_n)|^q$$

$$\sim \sum_{l=1}^{m} N_{n,\delta/2}(l\delta) \cdot 2^{-nql\delta}$$

$$\sim \sum_{l=1}^{m} 2^{-n(q\delta - f(l\delta))}$$

$$\sim 2^{-n(\inf_{a}(qa - f(a)))}$$

• ...shows that τ and f are Legendre pairs

$$\tau(q) = \inf_{a} (qa - f(a)) \quad f(a) = \inf_{q} (qa - \tau(q))$$
Legendre spectrum

- **Thm:** provided $\alpha_n(t)$ are bounded we have

$$f(a) = \tau^*(a) \text{ for } a = \tau'(q).$$

- ...in other words

$$\#\{(\epsilon_1 \ldots \epsilon_n) : a - \delta \leq \alpha_n(\epsilon_1 \ldots \epsilon_n) < a + \delta\} \sim 2^n \inf_q (qa - \tau(q))$$

- ...and the multifractal spectrum is the Legendre transform of the partition scaling exponent
Legendre transform 101

- Elementary calculus:

\[\tau^*(a) := \inf_q(qa - \tau(q)) = \bar{q}a - \tau(\bar{q}) \]

where \(\bar{q} \) is defined by \(a = \tau'(\bar{q}) \)

- Draw tangent of slope \(a \) to \(\tau(q) \).
- The intersection with y-axis yields \(-\tau^*(a) \)
- Dual: Tangent at \(\tau^*(a) \) has slope \(q \)
Binomial Spectrum

continued
Multifractal analysis of the Binomial

\[S_n(q) = \sum_{\epsilon_1 \ldots \epsilon_n} |\Delta I_n(\epsilon_1 \ldots \epsilon_n)|^q \]

\[= \sum_{\epsilon_1 \ldots \epsilon_n} [p^{n-l_1(\epsilon_1 \ldots \epsilon_n)}(1 - p)^l_1(\epsilon_1 \ldots \epsilon_n)]^q \]

\[= \sum_{l=0}^{n} \binom{n}{k} [p^{n-l}(1 - p)^l]^q \]

\[= [p^q + (1 - p)^q]^n. \]

- Partition function

\[\tau(q) = \lim_{n \to \infty} \frac{1}{n} \log_2 S_n(q) = -\log_2 [p^q + (1 - p)^q] \]

- Via Legendre: Most often we see exponent \(a_0\) such that \(f(a_0)\) is maximal. This happens where the tangent is horizontal, thus where \(q=0\). So, as before:

\[a_0 = \tau'(0) = -\frac{1}{2} \log_2(p) - \frac{1}{2} \log_2(1 - p) > 1 \]
Insight from Large Deviations

- From steepest ascent:

\[
S_n(q) = \sum_{\epsilon_1\ldots\epsilon_n} |\Delta I_n(\epsilon_1\ldots\epsilon_n)|^q \sim 2^{-n(\inf_a(qa-f(a))}
\]

\[
= 2^{-n(q\bar{a}-f(\bar{a}))} \sim \sum_{\alpha_n(\epsilon_1\ldots\epsilon_n)\approx a} |\Delta I_n(\epsilon_1\ldots\epsilon_n)|^q
\]

- Dominant terms in \(S_n(q)\), for fixed \(q\), are the ones with

\[
\alpha_n(\epsilon_1\ldots\epsilon_n) = \frac{\log \Delta I_n}{\log |I_n|} \approx \bar{a} = \tau'(q)
\]

- ...and vice versa: these terms contribute such that

\[
S_n(q) \sim 2^{-n\tau(q)} = (p^q + (1-p)^q)^n
\]

- For the Binomial these correspond to choosing digits in the ratio \(p^q\) to \((1-p)^q\)
Spectrum of the MWM
Choose independent r.v. $A_{(j)}$ symmetrically distributed in $[-1, 1]$.

Define recursively

$$W_{j,k} = A_{(j)} \cdot U_{j,k}$$

Resulting stationary (1st order) series

$$X_k \overset{d}{=} U_{J_0,0} \cdot \prod_{j=J_1}^{J_0} \frac{1 + A_{(j)}}{2}$$

$$X_{2n}^{(m)} = X_n^{(2m)} \cdot \frac{1 + A_n^{(2m)}}{2}$$

$$X_{2n+1}^{(m)} = X_n^{(2m)} \cdot \frac{1 - A_n^{(2m)}}{2}$$

Rudolf Riedi Rice University
Multifractal analysis of the MWM

- Partition function

\[\frac{-1}{n} \log_2 \sum_{i=1}^{n} \sum_{k_i=0,1} \mathbb{E} \left(\prod_{i=1}^{n} (1 + (-1)^{k_i} A_{(-i,k_i)}) \right)^q \]

Binomial formula

\[\equiv \frac{-1}{n} \log_2 \prod_{i=1}^{n} \left(\mathbb{E}(1 + A_{(-i)})^q + \mathbb{E}(1 - A_{(-i)})^q \right) \]

Symmetry of \(A_{(-i)} \)

\[\equiv -1 - \frac{1}{n} \sum_{i=1}^{n} \log_2 \mathbb{E}[(1 + A_{(-i)})^q] \]

\[\rightarrow -1 - \log_2 \mathbb{E}[(1 + A)^q] \quad \text{provided } A(j) \xrightarrow{\text{distr}} A. \]

- Special case of Beta-variables \(A \)

\(A(j) \simeq \beta(p(j), p(j)) \) with \(p(j) \rightarrow p \) as \(j \rightarrow -\infty \)

\[\tau(q) = -1 - \log_2 \frac{\Gamma(p + q)\Gamma(2p)}{\Gamma(2p + q)\Gamma(p)} . \]
Spectrum of self-similar processes

Mono-fractals
MFA of Self-similar processes

Assume Y is H-sssi with increments

$$X_k^{(n)} = Y(k2^{-n}) - Y((k - 1)2^{-n})$$

$$\mathbb{E} \sum_{k=1}^{2^n} |X_k^{(n)}|q = 2^n \mathbb{E} |X_1^{(n)}|q = 2^{n-nqH} \mathbb{E} |X_1^{(1)}|q,$$

Assume $\mathbb{E} |X_1^{1}|q < \infty$ for $q_{bot} < q < q_{top}$.

Then

$$\tau(q) = \begin{cases}
qH - 1 & \text{for } q_{bot} < q < q_{top}, \\
-\infty & \text{else.}
\end{cases}$$

Linear Spectrum!

$$f(\alpha) = \begin{cases}
1 + q_{top}(\alpha - H) & \text{for } \alpha < H \\
1 + q_{bot}(\alpha - H) & \text{for } \alpha \geq H.
\end{cases}$$
Wavelets

A powerful multiscale tool
History of wavelets

- Fourier series (1807)
- Levy (1930): Haar basis superior to Fourier for Brownian motion
- Weiss-Coifman ('60-'80):
 - decompose functions into atoms
- Grossman-Morlet '80: defined wavelets
- Mallat '85: pyramidal algorithm, o.n. basis
- \(\rightarrow \) Meyer: continuously diff wavelets
- \(\rightarrow \) Daubechies: compactly supported wavelets
Ortho-normal Wavelets

• Multi-resolution analysis (Mallat, Daubechies):

 There are compactly supported ψ and ϕ s.t.

 $\psi_{j,k}(t) := 2^{-j/2} \psi(2^{-j}t - k)$

 $\phi_{j,k}(t) := 2^{-j/2} \phi(2^{-j}t - k)$

 form orthonormal bases of \mathcal{L}^2.

 For X supported on $[0, 2^{J_0}]$

 $X(t) = \sum_k U_{j_0,k} \phi_{j_0,k}(t) + \sum_{j=-\infty}^{J_0} \sum_k W_{j,k} \psi_{j,k}(t),$

 with

 $W_{j,k} := \int X(t) \psi_{j,k}^*(t) \, dt \quad \text{and} \quad U_{j,k} := \int X(t) \phi_{j,k}^*(t) \, dt.$
Wavelets: what they look like

Daubechies 4 Mother wavelet

Complex wavelets

Daubechies 6
Coiflet 3

Haar 4
Symmlet 6

Multidimensional wavelets
Continuous wavelets

- Continuous rescaling of mother wavelet
- Continuous (redundant) set of coefficients
- Often used: Mexican hat \((\exp(-x^2))''\)

\[T(a, t) = \frac{1}{a} \int X(s) \psi \left(\frac{s - t}{a} \right) \, ds \]

- Form of a convolution \(\rightarrow\) Fourier, Parseval

Color code:
- Yellow: significant coefficient
- Blue: weak coefficient

\(a: \) scale \(\uparrow\)

\(t: \) time

Rudolf Riedi Rice University

stat.rice.edu/~riedi
Wavelet vs Fourier

- Fourier
 - timing information is hidden in the phase
 - $\sin(t)$ and $\cos(t)$ are not localized in time

- Power spectral density
 - Identifies frequency content only, but not their location
 - Relation to Auto-correlation
Wavelet vs Fourier

• Power spectrum
 – provides no timing information
 – \(\sin(t) \) and \(\cos(t) \) are not localized in time

• Wavelets are localized
 – both in time
 – and in frequency
Toy examples

White noise

Wavelet trafo indicates: Mono-fractal

Cascade

Wavelet trafo indicates: Multi-fractal
Continuous wavelet at work

- Wavelets are an excellent tool to identify local frequency content

Fractional Gaussian Noise

Geological Well data
Haar wavelet

- Haar wavelet (See plot)

- Clearly

\[\psi_{j,k}(t) := 2^{-j/2} \psi(2^{-j}t - k) \]
\[\phi_{j,k}(t) := 2^{-j/2} \phi(2^{-j}t - k) \]

form orthonormal bases of \(L^2 \).

- Coefficients

\[W_{j,k} = 2^{-j/2} \left[\int_{2^j k}^{2^j (k + \frac{1}{2})} f(x) \, dx - \int_{2^j (k + \frac{1}{2})}^{2^j (k + 1)} f(x) \, dx \right] \]

- For \(Z(t) = \int_0^t f(x) \, dx \), \(X_k^{(m)} = Z(k m) - Z(k m - m) \)

\[W_{j+1,k} = X_{2k}^{(2^j)} - X_{2k+1}^{(2^j)} \]
Haar wavelet at work

Haar approximation of \(\sin(x) \)

Overall Mean = \(\frac{1}{2} \)

Left half Mean = 0
Right half Mean = 1

\[
f = \frac{1}{2} \phi - \frac{1}{2} \psi_{00} + \frac{1}{2\sqrt{2}} \psi_{10} - \frac{1}{2\sqrt{2}} \psi_{11} + \frac{1}{4} \psi_{20} - \frac{5}{4} \psi_{21} + \frac{1}{4} \psi_{22} - \frac{1}{4} \psi_{23}
\]
Additive Tree is Haar Model

Synthesis:
- Start at root
- Flow down the tree
- Additive, independent innovations $W_n^{(m)}$
- these are essentially the Haar wavelet coefficients

- Idea: use any wavelet
 - The better the frequency response, the better the spectral approximation to fBm
LRD vs. Large Deviations

Large vs Small scales
Doubly stochastic modeling

Setting:

- Background process $\theta_{j,k}$
- Given $\theta_{j,k}$ the observed multiscale loads $U_{j,k}$ are independent of mean $\theta_{j,k}$
- $E[U_{j,k} \mid \theta] = \theta_{j,k}$
- $\theta_{j,k}$ fill a multiscale tree
 $\theta_{j+1,2k} + \theta_{j+1,2k+1} = \theta_{j,k}$
Gaussian versus Poisson

- Gaussian
 \[U_{j,k} = \mathcal{N}(\theta_{j,k}, \sigma^2_{j,k}) \]

- Poisson
 \[U_{j,k} = \mathcal{P}(\theta_{j,k}) \]

Iteration scheme for synthesis

\[U_{j+1,2k} \mid U_{j,k} = \mathcal{N}(U_{j,k}/2 + (\theta_{j+1,2k} - \theta_{j+1,2k+1})/2, \sigma^2_{j,k}/2) \]

- Additive innovation
 \[\text{Binom}(U_{j,k}, \theta_{j+1,2k} / \theta_{j,k}) \]

- Multiplicative innovation
Scaling from a modeling perspective

- ON-OFF limits and LRD
 - User driven: heavy tail file sizes
 - Additive, Gaussian
 - Large scales

- Cascades and multifractal scaling
 - Network driven: heterogeneity of RTT
 - Multiplicative, log-Normal
 - Small scales