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Why Cascades

Turbulence: models wanted

• Kolmogorov 1941 :   
< [v(x+r)-v(x)]q > ~ r q/3

• Kolmogorov 1962 :   
< [v(x+r)-v(x)]q > ~ rH(q)

• Data is non-Gaussian
• …presents structure on all scales

Courtesy P. Chainais



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Powerlaws?

Real world data 
• can deviate from powerlaws: network traffic
• Lukacs: 
if the data does not fit to the model then too bad for the data.
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Infinitely divisible scaling

• Multifractal scaling reduces to self-similarity if τ is linear in q. 
(sometimes called mono-fractal)

• IDC reduces to multifractal scaling if n(δ)=-log(δ)
– thus, for powerlaws

• In general n(δ) gives the speed of the cascade

• IDS suggested as a framework for statistical analysis 
in turbulence [Castaing] …but where are the models?

• Greatest potential for models based on multiplication
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Multiplicative models

• In distribution, the increment X(t+δ)-X(t) looks like a n(δ)-fold 
product of iid multipliers

• Since n(δ) is a function of scale, multipliers are over scale not 
over time

• Warning: this does not mean that there are actual multipliers 
such that X(t+δ)-X(t) = M1…Mn(δ) a.s. :

– For Brownian motion these n factors would have to be constant 
which is non-sense (B(t) would be a.s. a square root) 
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Infinitely Divisible Cascades

Intuition:
A modeling framework for ID-scaling
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Toy: Binomial cascade
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Binomial as a product of pulses
p 1-p
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From Binomial to IDC

• Assign multipliers according to

• a marked point process… • …or a random measure
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Infinitely Divisible Cascades

Definitions:
Infinitely divisible measures

Cascades
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Infinitely Divisible Measure

• M is an infinitely divisible measure
– Randomly scattered: 

• M(E), M(F) independent for disjoint E and F

– Measure of set E is inf. div. r.v.

Ex 1: Poisson count measure:
M(E) = Poisson variable with mean m(E)
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Infinitely Divisible Measure

• M is an infinitely divisible measure
– Randomly scattered: 

• M(E), M(F) independent for disjoint E and F

– Measure of set E is inf. div. r.v.

Ex 1: Poisson count measure:
M(E) = Poisson variable with mean m(E)

Ex 2: Poisson process, marked with W
M(E) = Compound Poisson, marks W, mean m(E)
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Infinitely Divisible Measure

• M is an infinitely divisible measure
– Randomly scattered: 
– Measure of set E is inf. div. r.v.

Ex 1: Poisson:mean m(E)

Ex 2: Compound Poisson: mean m(E), mark W

0
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t

r

C
r
(t) Ex 3: Gaussian measure: variance factor m(E)

(μ=0 w.l.o.g. due to later normalization)
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Infinitely Divisible Cascade

• M is an infinitely divisible measure
– Randomly scattered
– Measure of set E is inf. div. r.v.

– Assume exp(M(E)) has finite mean (ρ(1) defined) 

• Parameters: 
– Infinitely divisible law via ρ(q)
– control measure dm(t,r) 
– Cone: causal

symmetrical

• IDC:
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Infinitely Divisible Cascades

1st Properties:
Scaling



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Scaling of Infinitely Divisible Cascades

• M is an infinitely divisible measure
– Randomly scattered
– Measure of set E is inf. div. r.v.

• IDC:

• Scaling:

m(Cr) n(δ), speed
ϕ(q)   ζ(q), law
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Infinitely Divisible Cascade: examples

• IDC Scaling:

– Note: ϕ(0)= ϕ(1)= 0 and ϕ is convex

Ex 1: Poisson:mean m(E)

Ex 2: Compound Poisson: mean m(E), mark W

0
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t

r

C
r
(t) Ex 3: Gaussian measure: variance factor m(E)

Ex 4: Stable, α<1, β=-1
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Special case: CPC

Cascade Process at scale r:

Cr(t)• Marked Poisson process (Ti, Ri, 
Wi) 
– m(A) = E[#points in A]
– Marks Wi are i.i.d.
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CPC: dual view

Active 
pulses

• Pulse at (Ti, Ri, Wi)

• The pulse multipliers active at time t 
are the ones with (Ti, Ri) in the cone

• Cascade Process at scale r:

• Compare with infinite Poisson source 
model from queuing
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Infinitely Divisible Cascades

First look at parameters:
Control measure

• Stationary increments 
• Scaling
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Stationarity of Q(t)

• IDC defined as 

• Recall

• Stationary if m is time-translation 
invariant, e.g.:
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Infinitely divisible nature 

C(t)Cb(t)

Cr
b(t)

r

b

Exploit affinity of cone: 

Note: Qr is Martingale
Also: 
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Binomial: perfect rescaling

•

•

• Generalize
–

–
–
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C(t)Cb(t)

Cr
b(t)

Invariance: 
• In law: 

Qr
b rescaled version of Qr/b

•
•
•
• powerlaws:

CPC: Invariance and powerlaws
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Scaling: beyond powerlaws

• Degrees of freedom:
– Shape of Cone can be compensated by 

transforming the scale (t,r) (t,r’)
– Corresponds to warped control measure

• Interest in rich behavior at small scale:
– Control measure “explodes” at r=0

• Scale-invariance goes along with powerlaws
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Credits

• Continuous multiplicative cascades from stochastic equations 
Schmitt [Marsan 2001]

• Multifractal random walk [Bacry Delour Muzy 2001]

• Products of pulses Barral [Mandelbrot 2002]

• Log-infinitely divisible cascades [Bacry Muzy 2002]

• Compound Poisson Cascades, Infinitely divisible cascades 
[Chainais Abry R. 2002; 2003]
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Infinitely Divisible Cascades

Advanced Properties:
Convergence and 
non-degeneracy
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Degenerate cascades

• {Qr(t)}r>0: positive, left-continuous martingale
– Converges almost surely

• Q degenerates
– As r 0, Qr(t) 0 for a.a. t, a.s.
– Reason: LLN for log[Q] and E[log Q]<log E[Q]=0

• Set

• {Ar(t)}r>0 is positive martingale
• Non-degenerate:

If A converges in Lp (p>1) then
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L2 convergence

• L2 convergence and correlations 
are governed by control measure of 
cone intersections, ie, of cones

• A converges in L2 iff

• Scale invariant m:

1

r

C
r
(s) ∩ C

r
(t)

0 s t
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Convergence in Lq

[Barral] for CPC, extension to IDC [CAR]
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Infinitely Divisible Cascades

Scaling 
Parameter estimation
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Estimation issues

• In practice we observe only Qr
and not the entire cascade

• To recover hidden scaling 
information consider

• …and study
– A.s. limit

– Scaling of limit

?



Rudolf Riedi Rice University                                    stat.rice.edu/~riedi

Auto-correlation

• Recall

Estimation of dm=g(r)dtdr
• Examples: 

– Poisson
– Compound Poisson
– Gaussian
– Stable
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Binomial: scaling of moments

•

• The density “Q” is constant over 
dyadic intervals
– Convergence straightforward
– Moments scale perfectly…
– …at least over perfectly dyadic scales

• Generalize

C(t)Cb(t)

Cr
b(t)

IDC independent of Qb
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Scaling of A(t)
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Convergence in Lp

• Under assumptions of “scaling” theorem

• Scale-invariant case ( dm(t,r)=c/r2 dtdr )
– Sufficient condition for convergence in Lp

– Necessary condition for convergence in Lp
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Summary IDC scaling

• Multifractal formalism holds in self-
similar case [Barral-Mandelbrot]

• Infinitely Divisible Scaling

– powerlaw only if m(C(r,0)) = -c log(r)
– Established

• for IDC in self-similar case [Bacry-Muzy,Barral]

• for CPC and log-normal IDC in certain non-
powerlaw cases [Chainais-R-Abry]
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Simulation and Estimation
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Simulations of CPC

• Stationary Cascade:

• Non-powerlaw scaling
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Empirical analysis of network traffic

• Clear indication of 
transition in speed

• Different mechanisms at 
work at small and large 
scales
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Experimental results (turbulence)

H(q) n(a): non-powerlaw

Courtesy P. Chainais
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Multifractal Subordination

Processes with 
multifractal oscillations
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Multifractal time warp

BH(M(t)): BH fBm, dM independent measure 

A versatile model

– M(t): Multifractal
Time change
Trading time

– B: Brownian motion
Gaussian fluctuations

dM(t)

B(M(t))
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Hölder regularity

• Levy modulus of continuity:
– With probability one for all t

– Thus, exponent gets stretched:

– and spectrum gets squeezed:
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Multifractal Estimation for B(M(t))

• Weak Correlations of Wavelet-Coefficients:
(with P. Goncalves)

Haar Daubechies2

• Improved estimator due to weak correlations
• Multifractal Spectrum

M(t+s) - M(t) ~ sa(t)

B(t+u) - B(t)  ~ uH (∀ t)

B(M(t+s)) – B(M(t)) ~ sH*a(t)

Estimation 
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Take home

• IDC: 
– Stationary increments
– Continuous multiplication
– Versatile scaling

• Unexplored
– Higher dimensions: anisotropy
– LRD
– Pulse shapes
– Estimation Theory
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Reading on this talk

• www.stat.rice.edu/~riedi
• This talk
• Intro for the “untouched mind”

– Explicit computations on Binomial

• Monograph on “Multifractal processes”
– Multifractal formalism (proofs, references)
– Multifractal subordination (warping)

• Papers on “Infinitely Divisible Cascades”
[with Chainais and Abry]

• links
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The end
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