Modeling Infinitely Divisible Scaling: beyond Powerlaws

Rolf Riedi

Dept of Statistics

Cornell, April 2005

Scaling Analysis

An empirical view

Why Cascades

Turbulence: models wanted

- Kolmogorov 1941 :
- < $[v(x+r)-v(x)]^q > \sim r^{q/3}$
- Kolmogorov 1962 :
- < $[v(x+r)-v(x)]^{q} > \sim r^{H(q)}$
- Data is non-Gaussian
- ...presents structure on all scales

Courtesy P. Chainais

Powerlaws?

Real world data

- can deviate from powerlaws: network traffic
- Lukacs:

if the data does not fit to the model then too bad for the data.

Infinitely divisible scaling

Self-similarity: $\mathbb{E}[|B(t+\delta) - B(t)|^q] \simeq \delta^{qH}$ Multifractal scaling: $\mathbb{E}[|M(t+\delta) - M(t)|^q] \simeq \delta^{\tau(q)}$ IDC scaling: $\mathbb{E}[|X(t+\delta) - X(t)|^q] \simeq \exp[n(\delta)\zeta(q)]$

- Multifractal scaling reduces to self-similarity if τ is linear in q. (sometimes called mono-fractal)
- IDC reduces to multifractal scaling if n(δ) = -log(δ)
 thus, for powerlaws
- In general $n(\delta)$ gives the speed of the cascade
- IDS suggested as a framework for statistical analysis in turbulence [Castaing] ...but where are the models?
- Greatest potential for models based on multiplication

Multiplicative models

 In distribution, the increment X(t+δ)-X(t) looks like a n(δ)-fold product of iid multipliers

$$IDS: \mathbb{E}[e^{q \log |X(t+\delta) - X(t)|}] = \mathbb{E}[|X(t+\delta) - X(t)|^q]$$
$$\simeq \exp[n(\delta)\zeta(q)]$$
$$= (e^{\zeta(q)})^{n(\delta)}$$

- Since n(δ) is a function of scale, multipliers are over scale not over time
- Warning: this does not mean that there are actual multipliers such that $X(t+\delta)-X(t) = M_1...M_{n(\delta)}$ a.s. :
 - For Brownian motion these n factors would have to be constant which is non-sense (B(t) would be a.s. a square root)

$$B(2^{-n}) \stackrel{d}{=} (1/\sqrt{2})^n B(1)$$

Rudolf Riedi Rice University

Infinitely Divisible Cascades

Intuition: A modeling framework for ID-scaling

RICE

Rudolf Riedi Rice University

Toy: Binomial cascade

Rudolf Riedi Rice University

Binomial as a product of pulses

We may write

$$\mu(I_n(\epsilon)) = \int_{I_n(\epsilon)} Q_n(t) dt$$

where

$$Q_n(t) = 2^n p^{n-l_n} (1-p)^{l_n}$$

and $l_n(\epsilon(t))$ is constant over each I_n .

r=1

Assign multipliers 2p and 2(1 - p) to dyadic intervals and compute $Q_n(t)$ as the product of multipliers contained in the cone

$$C_r(t) = \{(t_i, r_i) : t - r_i/2 < t_i < t + r_i/2, r_i > r\}$$

From Binomial to IDC

We may write

$$\mu(I_n(\epsilon)) = \int_{I_n(\epsilon)} Q_n(t) dt$$

where $Q_n(t)$ is a product of multipliers.

- Assign multipliers according to
 - a marked point process...

• ... or a random measure

Infinitely Divisible Cascades

Definitions: Infinitely divisible measures Cascades

Rudolf Riedi Rice University

Infinitely Divisible Measure

- M is an infinitely divisible measure
 - Randomly scattered:
 - M(E), M(F) independent for disjoint E and F
 - Measure of set E is inf. div. r.v.

$$\mathbb{E}[e^{qM(E)}] = \exp\left[-\rho(q)m(E)\right]$$

Ex 1: Poisson count measure: M(E) = Poisson variable with mean m(E) $\mathbb{E}[e^{qM(E)}] = \sum_{k \ge 0} e^{-m(E)} \frac{m(E)^k}{k!} e^{qk} = \exp\left[(e^q - 1)m(E)\right]$ $\rho(q) = 1 - e^q$

Infinitely Divisible Measure

- M is an infinitely divisible measure
 - Randomly scattered:
 - M(E), M(F) independent for disjoint E and F
 - Measure of set E is inf. div. r.v.

$$\mathbb{E}[e^{qM(E)}] = \exp\left[-\rho(q)m(E)\right]$$

Ex 1: Poisson count measure: M(E) = Poisson variable with mean m(E)

$$\rho(q) = 1 - e^q$$

Ex 2: Poisson process, marked with W M(E) = Compound Poisson, marks W, mean m(E)

$$\rho(q) = 1 - \mathbb{E}[W^q]$$

Rudolf Riedi Rice University

Infinitely Divisible Measure

- M is an infinitely divisible measure
 - Randomly scattered:
 - Measure of set E is inf. div. r.v.

$$\mathbb{E}[e^{qM(E)}] = \exp\left[-\rho(q)m(E)\right]$$

Ex 1: Poisson: mean m(E) $\rho(q) = 1 - e^{q}$

- Ex 2: Compound Poisson: mean m(E), mark W $\rho(q) = 1 - \mathbb{E}[W^q]$
- Ex 3: Gaussian measure: variance factor m(E) $(\mu=0 \text{ w.l.o.g.} \text{ due to later normalization})$

$$p(q) = -q\mu - q^2\sigma^2/2$$

stat.rice.edu/~riedi

Infinitely Divisible Cascade

- M is an infinitely divisible measure
 - Randomly scattered
 - Measure of set E is inf. div. r.v.

 $\mathbb{E}[e^{qM(E)}] = \exp\left[-\rho(q)m(E)\right]$

– Assume exp(M(E)) has finite mean ($\rho(1)$ defined)

- Parameters:
 - Infinitely divisible law via $\rho(q)$
 - control measure dm(t,r)
 - Cone: causal $C_r(t) = \{(t_i, r_i) : t r_i < t_i < t, r_i > r\}$ symmetrical $C_r(t) = \{(t_i, r_i) : t - r_i/2 < t_i < t + r_i/2, r_i > r\}$

• IDC: $\tilde{Q}_r(t) = \exp[M(C_r(t))]$ $Q_r(t) = \frac{\tilde{Q}_r(t)}{\mathbb{E}[\tilde{Q}_r(t)]}$

Rudolf Riedi Rice University

Infinitely Divisible Cascades

1st Properties: Scaling

Rudolf Riedi Rice University

Scaling of Infinitely Divisible Cascades

- M is an infinitely divisible measure
 - Randomly scattered
 - Measure of set E is inf. div. r.v.

$$\mathbb{E}[e^{qM(E)}] = \exp\left[-\rho(q)m(E)\right]$$

• IDC:
$$\tilde{Q}_r(t) = \exp[M(C_r(t))]$$
 $Q_r(t) = \frac{Q_r(t)}{\mathbb{E}[\tilde{Q}_r(t)]}$
 $\frac{\mathbb{E}[e^{qM(E)}]}{\mathbb{E}[M(E)]^q} = \exp\left[-\underbrace{(\rho(q) - q\rho(1))}{\varphi(q)}m(E)\right]$

• Scaling: $\mathbb{E}[Q_r(t)^q] = \exp[-\varphi(q)m(C_r(t))]$

Self-similarity:	$\mathbb{E}[B(t+\delta) - B(t) ^q] \simeq \delta^{qH}$	$m(C) \rightarrow n(\delta)$ speed
Multifractal scaling:	$\mathbb{E}[M(t+\delta) - M(t) ^q] \simeq \delta^{\tau(q)}$	$\Pi(C_r) \ge \Pi(0)$, speed
IDC scaling:	$\mathbb{E}[X(t+\delta) - X(t) ^q] \simeq \exp[n(\delta)\zeta(t)]$	$q)$ $\varphi(q) \rightarrow \zeta(q)$, law

Rudolf Riedi Rice University

 \approx

1.2

Infinitely Divisible Cascade: examples

• IDC Scaling: $\mathbb{E}[Q_r(t)^q] = \exp\left[-\underbrace{(\rho(q) - q\rho(1))}_{\varphi(q)} m(C_r(t))\right]$

- Note: $\varphi(0) = \varphi(1) = 0$ and φ is convex

Ex 1: Poisson: mean m(E) $\rho(q) = 1 - e^q$ $\varphi(q) = 1 - e^q + q(e - 1)$ Ex 2: Compound Poisson: mean m(E), mark W $\rho(q) = 1 - \mathbb{E}[W^q]$ $\varphi(q) = 1 - \mathbb{E}[W^q] - q(1 - \mathbb{E}[W])$ $\varphi(2) = -\mathbb{E}[(W - 1)^2]$ Ex 3: Gaussian measure: variance factor m(E)

$$\rho(q) = -q\mu - q^2\sigma^2/2$$
 $\varphi(q) = -(q^2 - q)\sigma^2/2$

Ex 4: Stable,
$$\alpha < 1$$
, $\beta = -1$
 $\varphi(q) = \sigma^{\alpha}(q - q^{\alpha}) \left(1 - \tan(\frac{\pi \alpha}{2})\right)$ for $q > 0$.

Special case: CPC

- Marked Poisson process (T_i, R_i, W_i)
 - m(A) = E[#points in A]
 - Marks W_i are i.i.d.

Cascade Process at scale r:

$$Q_r(t) = \gamma_r \cdot \prod_{\substack{(t_i, r_i) \in C_r(t)}} W_i$$
$$\gamma_r = 1/\mathbb{E} \left[\prod_{\substack{(t_i, r_i) \in C_r(t)}} W_i \right]$$

CPC: dual view

• Pulse at (T_i, R_i, W_i)

$$P_i(t) = \begin{cases} W_i & \text{if } T_i \le t < T_i + R_i \\ 1 & \text{else} \end{cases}$$

- The pulse multipliers active at time t are the ones with (T_i, R_i) in the cone
- Cascade Process at scale r:

$$Q_r(t) = \gamma_r \cdot \prod_{r_i > r} P_i(t)$$

 Compare with infinite Poisson source model from queuing

Infinitely Divisible Cascades

First look at parameters: Control measure

• Stationary increments

Scaling

Rudolf Riedi Rice University

Stationarity of Q(t)

• IDC defined as

$$Q_r(t) = \frac{\tilde{Q}_r(t)}{\mathbb{E}[\tilde{Q}_r(t)]} \qquad \tilde{Q}_r(t) = \exp[M(C_r(t))]$$
• Recall

$$\mathbb{E}[e^{qM(E)}] = \exp[-\rho(q)m(E)]$$

 Stationary if m is time-translation invariant, e.g.:

$$dm(t,r) = g(r)dtdr$$

Infinitely divisible nature

Exploit affinity of cone:

$$\mathcal{C}_r^b = \{(t_i, r_i) \in \mathcal{C}_r : r < b\} \qquad \mathcal{C}_r = \mathcal{C}_r^b \cup \mathcal{C}_b$$

Rudolf Riedi Rice University

Binomial: perfect rescaling

• We may write

$$\mu(I_n(\epsilon)) = \int_{I_n(\epsilon)} 2^n p^{n-l_n} (1-p)^{l_n} dt$$

• The number of multipliers in an octave

$$C_r^b(t) := C_r(t) \setminus C_b(t)$$

depends only on $b/r \geq 1$.

- Generalize
 - $Q_r^b(t) = \exp[M(C_r^b(t))]$ depends only on b/r (in distribution).

-
$$m(C^b_r(t))$$
 depends only on $b/r.$

- $m(C_r^b(t)) = c \log(b/r)$ and $dm(t,r) = c/r^2 dt dr$.

CPC: Invariance and powerlaws

$$Q_r(t) = Q_b(t) \times Q_r^b(t)$$

$$EQ_r^b(t)^q = \exp\left[-\varphi(q)m(\mathcal{C}_r^b)\right)$$

Invariance:

• In law:

 Q_r^b rescaled version of $Q_{r/b}$

- $m(\mathcal{C}_r^b)) = m(\mathcal{C}_{r/b})$
- $m(\mathcal{C}_r^b)) = c \log(b/r)$
- $dm(t,r) = c/r^2 dt dr$
- powerlaws: $Q_{b^n}(t) = Q_b(t) \times Q_{b^2}^b(t) \dots \times Q_{b^n}^{b^{n-1}}(t)$ $\mathbb{E}Q_r(t)^q = \exp\left[-\varphi(q)c\log(r)\right] = r^{-c\varphi(q)}$

C_b(t)

Scaling: beyond powerlaws

- Degrees of freedom:
 - Shape of Cone can be compensated by transforming the scale (t,r) → (t,r')
 - Corresponds to warped control measure
- Interest in rich behavior at small scale:
 Control measure "explodes" at r=0
- Scale-invariance goes along with powerlaws

Credits

- Continuous multiplicative cascades from stochastic equations
 Schmitt [Marsan 2001]
- Multifractal random walk [Bacry Delour Muzy 2001]
- Products of pulses Barral [Mandelbrot 2002]
- Log-infinitely divisible cascades [Bacry Muzy 2002]
- Compound Poisson Cascades, Infinitely divisible cascades [Chainais Abry R. 2002; 2003]

Infinitely Divisible Cascades

Advanced Properties: Convergence and non-degeneracy

Rudolf Riedi Rice University

Degenerate cascades

- $\{Q_r(t)\}_{r>0}$: positive, left-continuous martingale
 - Converges almost surely
- Q degenerates
 - As r→0, $Q_r(t)$ →0 for a.a. t, a.s.
 - Reason: LLN for log[Q] and E[log Q] < log E[Q] = 0

• Set
$$A_r(t) = \int_0^t Q_r(s) ds$$

- $\{A_r(t)\}_{r>0}$ is positive martingale
- Non-degenerate:

If A converges in L_p (p>1) then

$$\mathbb{E}[A(t)] = \lim_{r} \mathbb{E}[A_r(t)] = \lim_{r} \int_0^t \mathbb{E}[Q_r(s)] ds = t$$

L2 convergence

 L2 convergence and correlations are governed by control measure of cone intersections, ie, of cones

• A converges in L2 iff

$$\mathbb{E}[A_r(t)^2] = \int_0^t \int_0^t \mathbb{E}[Q_r(u)Q_r(v)]dudv < K.$$

$$\mathbb{E}[Q_r(u)Q_r(v)] = \exp\left\{-\varphi(2)m\left(\mathcal{C}_r(u)\cap\mathcal{C}_r(v)\right)\right\}$$

• Scale invariant m:

 $\mathbb{E}[Q_r(t)Q_r(s)] = |t-s|^{c\varphi(2)} e^{-c\varphi(2)(|t-s|-1)} \text{ for } r \le |t-s| \le 1$ $1 \qquad \qquad \text{for } 1 \le |t-s|.$

Rudolf Riedi Rice University

Convergence in Lq

Let $1 < q \leq 2$. A sufficient condition for convergence of $A_r(t)$ in \mathcal{L}^q is

 $\limsup_{n \to \infty} \frac{1}{n} m(C_{tk_o^{-n-1}}) < \frac{q-1}{\varphi(q)} \log(1/k_o) \quad (1)$ for some integer $k_o \ge 2$ (recall that $\varphi(q) < 0$). In the scale invariant case of $m(C_r) = -c \log(r)$ this becomes

$$(q-1) + c\varphi(q) > 0.$$
 (2)

[Barral] for CPC, extension to IDC [CAR]

Rudolf Riedi Rice University

Infinitely Divisible Cascades

Scaling Parameter estimation

Rudolf Riedi Rice University

Estimation issues

- In practice we observe only Q_r and not the entire cascade
- To recover hidden scaling information consider

$$A_r(t) = \int_0^t Q_r(s) ds$$

- ...and study – A.s. limit $A(t) = \lim_{r \to 0} A_r(t)$
 - Scaling of limit

$$\mathbb{E}[A(t)^q] = \mathbb{E}[(A(t+s) - A(s))^q]$$

Rudolf Riedi Rice University

Auto-correlation

Recall

 $\mathbb{E}[Q_r(u)Q_r(v)] = \exp\left\{-\varphi(2)m\left(\mathcal{C}_r(u) \cap \mathcal{C}_r(v)\right)\right\}$

 $\varphi(2) = -\sigma^2$

 $arphi(2) = -\sigma^{lpha}(2-2^{lpha})\left(1- an(rac{\pilpha}{2})
ight)$

- \rightarrow Estimation of dm=g(r)dtdr
- Examples:
 - Poisson $\varphi(2) = 1 (1 e)^2$
 - Compound Poisson $\varphi(2) = -\mathbb{E}[(W-1)^2]$
 - Gaussian
 - Stable

Binomial: scaling of moments

• We may write

$$\mu(I_n(\epsilon)) = \int_{I_n(\epsilon)} 2^n p^{n-l_n} (1-p)^{l_n} dt$$

- The density "Q" is constant over dyadic intervals
 - Convergence straightforward
 - Moments scale perfectly...
 - ...at least over perfectly dyadic scales
- Generalize

$$A_r(t) = \int_0^t Q_b(s)Q_r^b(s)ds = b \int_0^t Q_b(s)d \left[\underbrace{A_{r/b}^{(1)}\left(\frac{s}{b}\right)}_{t/b}\right]$$

IDC independent of Q_b

Scaling of A(t)

Fix q > 0, $b \in (0, 1)$, $\rho(\cdot)$ and dm = g(r)dtdr.

- Moment condition: A_r converges in \mathcal{L}^q . - Variational condition: "Technical" e.g.: CPC and log-normal - Speed condition: "sub-invariant", e.g., $dm(t,r) = r^{\beta} dt dr$ ($\beta < 2$) and log-deviations. Then there exist constants C_q and \underline{C}_q such that for any t < 1 $\underline{C}_{q}t^{q}\exp\left[-\varphi(q)m(\mathcal{C}_{t})\right] \leq \mathbb{E}A(t)^{q} \leq \overline{C}_{q}t^{q}\exp\left[-\varphi(q)m(\mathcal{C}_{t})\right].$

Convergence in Lp

- Under assumptions of "scaling" theorem
- Scale-invariant case (dm(t,r)=c/r² dtdr)
 - Sufficient condition for convergence in Lp

 $(p-1)+c \varphi(p)>0$ - Necessary condition for convergence in Lp $(p-1)+c \varphi(p)\geq 0$

Proof idea

 $\mathbb{E}[A(t)^p] \ge 2\mathbb{E}[A(t/2)^p] \simeq 2(t/2)^p(t/2)^{c\varphi(p)}$

Summary IDC scaling

- Multifractal formalism holds in selfsimilar case [Barral-Mandelbrot]
- Infinitely Divisible Scaling

Recall

$$\Xi Q_r(t)^q = \exp\left[-\varphi(q)m(\mathcal{C}(r,0))\right]$$

$$\mathbb{E}A(t)^q \simeq t^q \exp\left[-\varphi(q)m(\mathcal{C}(t,0))\right]$$

- powerlaw only if $m(C(r,0)) = -c \log(r)$
- Established
 - for IDC in self-similar case [Bacry-Muzy, Barral]
 - for CPC and log-normal IDC in certain nonpowerlaw cases [Chainais-R-Abry]

Simulation and Estimation

Simulations of CPC

• Stationary Cascade:

RICE

Non-powerlaw scaling

Rudolf Riedi Rice University

Empirical analysis of network traffic

IDC scaling:

$$S_q := \mathbb{E}[|X(t+\delta) - X(t)|^q]$$

$$H(q) := \log S_q \simeq n(\delta)\zeta(q)$$
fix p:
$$H(q)/H(p) \simeq \zeta(q)/\zeta(p)$$
independent of scale

- Clear indication of transition in speed
- Different mechanisms at work at small and large scales

Rudolf Riedi Rice University

Experimental results (turbulence)

Courtesy P. Chainais

Multifractal Subordination RICE

Processes with multifractal oscillations

Rudolf Riedi Rice University

Multifractal time warp

B_H(M(t)): B_H fBm, dM independent measure

- A versatile model
- M(t): Multifractal
 Time change
 Trading time
- B: Brownian motion
 Gaussian fluctuations

Hölder regularity

• Levy modulus of continuity: – With probability one for all t $|B_H(t + \delta) - B_H(t)| \simeq |\delta|^H$

- Thus, exponent gets stretched: $|B_H(M(t+\delta)) - B_H(M(t))| \simeq |M(t+\delta) - M(t)|^H \simeq |\delta|^{H\alpha(t)}$

- and spectrum gets squeezed: $\dim E_a[B_H(M)] = \dim E_{a/H}[M]^{-1}$

Multifractal Estimation for B(M(t))

• Weak Correlations of Wavelet-Coefficients: (with P. Goncalves)

Improved estimator due to weak correlations

Rudolf Riedi Rice University

Take home

- IDC:
 - Stationary increments
 - Continuous multiplication
 - Versatile scaling
- Unexplored
 - Higher dimensions: anisotropy
 - LRD
 - Pulse shapes
 - Estimation Theory

Reading on this talk

- www.stat.rice.edu/~riedi
- This talk
- Intro for the "untouched mind"
 Explicit computations on Binomial
- Monograph on "Multifractal processes"
 - Multifractal formalism (proofs, references)
 - Multifractal subordination (warping)
- Papers on "Infinitely Divisible Cascades" [with Chainais and Abry]
- links

The end

Rudolf Riedi Rice University