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Introduction

The following R routines are provided in the file ebayes.12e.r (available at
http://www.stat.rice.edu/ rusi).

ebayes.12e: core routine that performs 2 group differential expression
analysis via partial mixture estimation. Additionally, it implements
pairwise t and Wilcoxon tests with Benjamini & Hochberg’s p-value
adjustment.

qqnorm.pme: creates qq-normal plot to assess the partial mixture as-
sumption that the equally expressed genes are normally distributed.

ma.boxplot: creates MA-plot to assess the assumption that the differ-
ences between group means are identically distributed.

find.fdr: auxiliary routine that, given the posterior probability that
each gene is differentially expressed, computes the Bayesian FDR (1).

find.threshold: auxiliary routine that, given the posterior proba-
bility that each gene is differentially expressed, computes the optimal
threshold to declare significance while controling the Bayesian FDR (2)).

wupdc: fits a partial Normal mixture component via weighted LoF
distance minimization.

rewupdc: fits a partial Normal mixture component via iteratively re-
weighted Lo F distance minimization.
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e wupdc.findw: fits a partial Normal or partial T component via weighted
Lo E minimization, fixing the parameters of the component so that only
its weight (i.e. the proportion of differentially expressed genes) needs
to be estimated.

These routines only implement the weighted LoFE criterion for partial
mixture estimation. For them to work correctly one should also download and
source the routines that implement the non-weighted Lo E criterion. These
can be found in the file mpdc.r, which is available at David W. Scott’s page
(http://www.stat.rice.edu/ scottdw/code/12e).

2 Partial mixture estimation estimating the
null distribution

Let’s start by simulating expression data for 10,000 genes (we set the seed for
the random number generator so that you can reproduce exactly the results).
We define mean expression values in a ranging from 5 to 10, and we define
differences in group means m to be a decreasing function of a. We then
draw 2 observations for each group, with the variance also being a decreasing
function of a. We have observed this sort of decrease in mean differences
and variances in several real datasets, which is why we set up the simulation
this way. Finally, we randomly set approximately 5% of the genes to be
differentially expressed by adding 1/4 to the expression values in the first

group.

> source(""/projects/12e/1 R Routines/ebayes.l2e.R")
> source(""/projects/12e/1 R Routines/mpdc.R")

> set.seed(1)

> n <- 10000

> a <- seq(5, 10, length = n)

>m<- 2/a - 0.2

> mul <- 0.5 * (a + m)

> mu2 <- 0.5 * (a - m)

> x <- matrix(rnorm(n * 2, mul, 1/a), ncol
> y <- matrix(rnorm(n * 2, mu2, 1/a), ncol
> truede <- (runif(n) < 0.05)

> x[truede, ] <- x[truede, ] + 0.25

> groups <- rep(0:1, each = 2)

2)
2)

Before obtaining any results, we should check whether the partial mix-
ture assumption that the difference between group means are identically dis-
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tributed is reasonable (in fact we know it not to hold because of the way we
simulated the data). Figure [Ifa) is generated with the following code using
the function ma.boxplot.

> m <- ma.boxplot(cbind(x, y), groups, plot = TRUE, xlab = "Average expression
+ ylab = "Difference in means (M)")
> abline(h = 0)

The overall mean expression A=rowMeans (x)+rowMeans (y) are categorized
into 50 groups, and for each group a boxplot of the differences between groups
M=rowMeans (x) -rowMeans (y) is presented. We observe that both the mean
and the variance of M depends on the value of A, therefore indicating a
violation of the identically distributed assumption. A simple-minded way to
fix this is by centering and scaling each M value according to its estimated
mean and standard deviation. The routine ma.boxplot accomplishes this by
obtaining mean and variance estimates for each boxplot separately.

> m.norm <- ma.boxplot(cbind(x, y), groups, centerx = TRUE, scalex = TRUE,
+ plot TRUE, xlab = "Average expression (A)", ylab = "Difference in means
> abline(h = 0)

The argument centerx=TRUE indicates to center the data and scalex=FALSE
indicates to divide by the estimated standard deviation. The normalized
values are saved in m.norm. The resulting plot is presented in [Ib).

At this point we are ready to fit a partial mixture to the values in m.norm,
and from it obtain a list of differentially expressed genes. We use the rou-
tine ebayes.12e. The arguments wl2e=TRUE and wl2e.adjP=TRUE indicate
that the weighted Lo E criterion should be used (as opposed to non-weighted
LyF), and that two lists of genes should be obtained: one controlling for the
Bayesian and the other the frequentist FDR. By default the routines keeps
the FDR below 0.05.

> ebayes.fit <- ebayes.l2e(x = m.norm, wl2e = TRUE, wl2e.adjP = TRUE)
> ebayes.fit$w0.wl2e

[1] 0.9883232

> table(ebayes.fit$rej.wl2e, truede)

truede
FALSE TRUE
0 9465 528

1 0 7
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Figure 1: Assessing identically distributed assumption

> table(ebayes.fit$rej.wl2e.adjP, truede)

truede
FALSE TRUE
0 9465 535

The weighted Lo E fit estimates 98.8% of the genes to be equally expressed,
while in reality this proportion is slightly lower than 95%. When we compare
the obtained gene lists with the real differential expression status (saved in
truede) we see that the pseudo-Bayesian procedure finds 7 genes (all of which
are truly differentially expressed), while the frequentist procedure does not
find any genes for this particular dataset.

When comparing these results with t-tests with Benjamini & Hochberg
p-value adjustment, we find that this approach does not find any genes either.
We obtain the same results when using the Significance Analysis of Microar-
rays as implemented in the library siggenes. SAM estimates the proportion
of differentially expressed genes to be 87.8%. The fact that we find few or
not genes with all these methods should not be surprising, considering that
we only have two observations per group and that the amount of differential
expression is relatively small.

> library(genefilter)
> z.ttest <- rowttests(cbind(x, y), as.factor(groups))



> rej.ttest <- (p.adjust(z.ttest$p.value, method = "BH") < 0.05)
> table(rej.ttest, truede)

truede
rej.ttest FALSE TRUE
FALSE 9465 535

> library(siggenes)
> sam.x <- sam(cbind(x, y), groups, q.version = 2)

We're doing 6 complete permutations

> rej.sam <- -(sam.x@q.value < 0.05) * sign(sam.x@d)
> table(abs(rej.sam), truede)

truede
FALSE TRUE
0 9465 535

> sam.x@p0
[1] 0.878399

Finally, we assess the normality assumption in our partial mixture fit by
obtaining a qg-normal plot of the normalized values m.norm.

> ggqnorm.pme (m.norm)

The resulting plot is shown in Figure 2l The horizontal lines indicate the
interval where 98.8% of the data falls, that is the partial mixture does not
assume normality for the observations outside of this interval.

3 Partial mixture estimation fixing the null
distribution

We now analyze the data from Section [2] by computing a moderated t-test
statistic and assuming that its null distribution follows a Student’s t distri-
bution. That is, only the proportion of differentially expressed genes will be
estimated.

First, we compute the moderated t-test statistic using the functions lmFit
and eBayes from library limma (3; [4). We then find that the estimated
degrees of freedom for the moderated t-test statistic are 18.39 (note that the
classical t-test that assumes equal variances has 2 degrees of freedom).
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> library(limma)

> design <- cbind(Grpl = 1, Grp2vsl = groups)
> fit <- 1mFit(cbind(x, y), design)

> eb <- eBayes(fit)

> nu <- mean(eb$df.residual + eb$df.prior)

> nu

[1] 18.39283

Second, we assess if it is reasonable to assume that the tests statistics are
equally distributed for all genes, and also whether they follow a t distribution
with nu degrees of freedom.

> a <- rowMeans(x) + rowMeans(y)

> acat <- cut(a, breaks = quantile(a, probs = seq(0, 1, length = 50)))
> boxplot(eb$t[, 2] ~ acat)

> abline(h = 0, 1ty = 2)

From Figure (a) we see that the equally distribution does not hold, so
we use the function ma.boxplot to obtain Figure [3(b). This is still not per-
fectly identically distributed, since the variance of the test statistic seems to
be larger for smaller values of a, but we will carry on the analysis neverthe-
less. Note that it would not be appropriate to scale the data (i.e. setting
scalex=TRUE), since that would force the overall distribution of the test
statistic to have unit standard deviation, and so we would expect to estimate
that the proportion of equally expressed genes is 1. Intuitively, the key to
our approach is that it assumes that part of the genes have test statistics
with variance 1, which are interpreted to be equally expressed genes, but for
the rest of the genes the variance should be greater than 1.

> tstat <- ma.boxplot(m = eb$t[, 2], a = a, centerx = TRUE, scalex = FALSE,
+ plot = TRUE)
> abline(h = 0, 1ty = 2)

We perform the partial mixture analysis with the function ebayes.12e.
This automatically loads the library quantreg, which is used to obtain a
Cauchy kernel density estimate of the overall distribution of the test statistic.

> ebayes.fit <- ebayes.l2e(tstat, group, wl2e = T, fdr = 0.05,
+ nufix = nu)

Package SparseM (0.73) loaded. To cite, see citation("SparseM")
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Figure 3: Identically distributed assumption for moderated t-test statistic

> ebayes.fit$w0.wl2e
[1] 0.9609105

> table(abs(ebayes.fit$rej.wl2e), truede)

truede
FALSE TRUE

0 9462 527

1 3 8

We estimate the proportion of equally expressed genes to be 96.1%, which
is much closer to the true value 95% than the estimate we obtained in Section
We then check whether the genes declared to be differentially expressed
are actually so. Out of the 11 genes found, 8 were actually differentially
expressed and the other 3 were false positives. This is not surprising, since in
Figure (b) we saw that the partial mixture assumptions are violated. Still,
in practical terms it’s probably not a bad performance, considering that the
competing methods did not find any genes and that only two samples per
group were available.

Finally, we check the assumption that the test statistic is t-distributed
by means of a qq-plot (Figure [f(a)). The assumption seems reasonable. We
obtain a plot of the estimated posterior probabilities as a function of the test
statistic (Figure [4(b)).
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Figure 4: (a): assessing assumption of t distributed; (b): posterior probabil-
ities vs. value of the test statistic

> qqt(tstat, df = nu)

> plot(ebayes.fit$tstat, ebayes.fit$wl2e.pde, xlab = "Test statistic”,
+ ylab = "Posterior prob. of DE")
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