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Abstract
We develop an approach for microarray differential expression analysis,

i.e. identifying genes whose expression levels differ between two or more
groups. Current approaches to inference rely either on full parametric as-
sumptions or on permutation-based techniques for sampling under the null
distribution. In some situations, however, a full parametric model cannot be
justified, or the sample size per group is too small for permutation methods
to be valid.

We propose a semi-parametric framework based on partial mixture esti-
mation which only requires a parametric assumption for the null (equally ex-
pressed) distribution and can handle small sample sizes where permutation
methods break down. We develop two novel improvements of Scott’s mini-
mum integrated square error criterion for partial mixture estimation [Scott,
2004a,b]. As a side benefit, we obtain interpretable and closed-form esti-
mates for the proportion of EE genes. Pseudo-Bayesian and frequentist pro-
cedures for controlling the false discovery rate are given. Results from sim-
ulations and real datasets indicate that our approach can provide substantial
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advantages for small sample sizes over the SAM method of Tusher et al.
[2001], the empirical Bayes procedure of Efron and Tibshirani [2002] and a
t-test with p-value adjustment to control the FDR [Benjamini and Hochberg,
1995]. Gene expression analysis; Microarray; Partial Mixture estimation.

1 INTRODUCTION
The availability of new biotechnologies such as microarrays has made possible
the collection of large amounts of biological data, and brought forth the challenge
of developing statistical methods to properly analyze it. One scenario that has at-
tracted considerable interest is gene differential expression analysis, i.e., the com-
parison of some measure of gene expression between groups defined, for instance,
by treatments or biological conditions. For example, the apo-AI experiment dis-
cussed in Section 5 compares expression levels between 8 mice with the apo-AI
gene knocked out and 8 inbred control mice. The question of biological interest
is which genes are differentially expressed (DE) between these two groups and
which are equally expressed (EE). The goal is to detect as many DE genes as
possible while not having too many false positives.

More formally, suppose that expression levels for n genes are measured and
normalized to account for systematic biases (see Dudoit et al. [2002b]). Fur-
thermore suppose that in order to discriminate EE and DE genes we compute a
test statistic X for each gene. For example, in the case of Affymetrix oligonu-
cleotide cDNA arrays the measurements can be log red-to-green intensity ratios
and the test statistic could be the difference of the mean log intensities between
two groups. Other statistics are discussed by Efron et al. [2001], Efron and Tib-
shirani [2002], Tusher et al. [2001] and Smyth [2004]. Note that this statistic may
be multivariate, i.e. take values in some set Sx ⊆ <p, as warranted for example by
time-course studies.

The n observed values of the statistic x1, . . . ,xn may be viewed as identically
distributed (and possibly dependent) realizations of a mixture density

f(x) = wf0(x) + (1− w)f1(x), x ∈ Sx, (1.1)

where w is the proportion of EE genes, and f0 and f1 are the densities of the test
statistic for EE and DE genes, respectively.

The statistical challenge is to estimate some or all of the components of this
mixture (or functions thereof) in order to draw inferences and make probability
statements about the genes under consideration. Dudoit et al. [2002b] review some
approaches based on computing t-tests for each gene and adjusting for multiple
comparisons. Tusher et al. [2001] introduced the significance analysis of microar-
rays (SAM), which is based on obtaining p-values through permutations and com-
puting their multiple comparisons equivalent, the q-values. Efron and Tibshirani
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[2002] and Efron [2004] proposed a non-parametric empirical Bayes approach
and Pan et al. [2003] proposed modeling f0 and f via mixtures of normals. New-
ton et al. [2001], Kendziorski et al. [2003], Newton and Kendziorski [2003] and
Newton et al. [2004] introduce parametric empirical Bayes hierarchical models in
which the parameters arise from a mixture of distributions. Do et al. [2005] for-
mulate a fully Bayesian non-parametric mixture model based on permutations that
provides bona fide posterior probabilities. Storey [2007] developed an extension
of the Neyman-Pearson theory of hypothesis testing and proposed the Optimal
Discovery Procedure, a method that has some optimality properties albeit it re-
quires estimating some unknown quantities from the data.

All of the methods mentioned above either make full distributional assump-
tions or rely on resampling methods to sample under f0. In some situations, how-
ever, these approaches can be difficult to justify. Models for the DE distribution
f1 may be difficult to specify when very few genes are DE, meaning there is very
little data available for model fitting or validation. Permutation methods, on the
other hand, need at least a certain number of microarrays per group. If we have
2 groups of 3 observations each, then there are only 10 distinct permutations of
the microarrays, which provides a coarse representation of the test statistic under
the null. Yet sample size is often limited by cost, time, or subject availability, and
hence methods are needed to analyze differential expression when sample sizes
are small and full parametric models are not appropriate.

In this paper we propose a semi-parametric approach that imposes no structure
on f1 and can be used even for small sample sizes. It builds on the work of partial
mixture estimation by Scott [2004a,b], which is the problem of estimating w and
the parameters defining f0 in (1.1), given a sample from the mixture f . Recently,
this approach was used in wavelet applications to denoise signals while relaxing
some of the distributional assumptions that are typically made by other methods
[Scott, 2006].

Our approach requires making only two assumptions. First, we assume some
parametric form for f0. Second, we assume that the test statistic is identically dis-
tributed for all genes (possibly with dependence). Specifying a parametric family
for f0 is often not unreasonable because EE data are typically much more abun-
dant and better behaved that DE data. Obtaining identically distributed statistics
can be achieved via appropriate data pre-processing or normalization procedures,
as we illustrate in real data in Section 5.

In the next section we describe Scott’s original L2E approach to partial mixture
estimation and we develop two improved variants which we call weighted L2E
(WL2E) and fixed-component WL2E, respectively. Interestingly, the latter variant
provides closed-form and interpretable estimates of the proportion of EE genes. In
Section 3 we describe the application of these algorithms to differential expression
analysis. To adjust for multiple testing, we present two techniques, one frequentist
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and one Bayesian, that control the false discovery rate (FDR) at a desired level.
In Section 4, we show by analyzing simulated data and two real datasets that our
method outperforms several existing approaches. A discussion is offered in the
concluding section.

We provide R code implementing the L2E and WL2E methods at www.stat.rice.edu/˜rusi.

2 PARTIAL MIXTURE ESTIMATION
In general, any test statistic that we choose to test for differential expression will
be distributed as a mixture of the form presented in (1.1). Suppose that we are
willing to assume some parametric form for f0, but we do not want to impose any
restrictions on f1. In many situations some parametric choices come as a natural
assumption, e.g., many statistics are approximately normally distributed as the
number of measurements per group increases. Also note that if we expect most of
the genes to be EE, we can assess whether the parametric assumption is reasonable
by exploring the behavior of the observed statistics. For example, we can assess
the normality assumption by obtaining a QQ-normal plot and checking that there
is no departure from normality for most of the observed test statistics.

Partial mixture estimation is the problem of estimating w and f0 only, without
estimating the remaining components of the mixture. Before formally defining
the approach we illustrate the idea with an example that mimics a differential
expression setup. We simulated n = 1000 test statistic values, 60% of them cor-
responding to EE genes that follow a N(0, 1) distribution, 20% under-expressed
genes following a N(−4, 1), and 20% over-expressed genes following a N(4, 1).
As shown in Figure 1(a) the L2E fit (explained below) provides a local estimate of
the overall distribution around 0, therefore effectively estimating the distribution
of the EE genes. The estimate ŵ = 0.68 indicates that the L2E fit perceives 32%
of the data to be anomalous, i.e., not arising from f0.

We distinguish partial mixture estimation from standard robust estimation [Ham-
pel et al., 1986; Huber, 1981], which seeks to estimate fθ but not w. Robust esti-
mators such as M-estimators typically perform well when the DE component f1 is
well separated from f0. This is often not the case in practice, however, and simul-
taneously estimating w can improve the estimate of f0. Furthermore, knowledge
of w is useful in controlling FDR both in a frequenstist and Bayesian sense, as
discussed in Section 3.

In Section 2.1 we review the original L2E criterion [Scott, 2004a,b], whereas
in Sections 2.2 and 2.3 we develop two new criteria to obtain partial mixture fits.
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Figure 1: L2E fit example. (a): f = .6N(0, 1) + .2N(−4, 1) + .2N(4, 1). L2E
estimate: .68N(0.02, 1.20). (b) f = .6N(0, 1) + .2N(−3, 1) + .2N(3, 1). L2E es-
timate: .97N(.03, 1.97). WL2E estimate: .74N(0.01, 1.25). The vertical segments
on the x axis indicate the generated test statistic values
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2.1 L2E CRITERION
To emphasize that as a parametric distribution f0 is indexed by some parameter
θ, from now on we will denote it as fθ. Scott [2001] proposed the L2E criterion
for parametric density estimation, finding that it is quite efficient asymptotically
and that it is robust to departures from the assumed model and to the presence of
outliers. Scott [2004a,b] then used the L2E criterion to estimate the local behavior
of f with a partial mixture component wfθ. His approach seeks to minimize the
integrated squared difference or L2 distance between the true density f and its
local approximation wfθ:∫

Sx

(wfθ(x)− f(x))2 dx = w2

∫
Sx

f 2
θ(x)dx− 2w

∫
Sx

fθ(x)f(x)dx + C, (2.1)

where C is a constant that does not depend on w or θ and hence can be ignored for
the purpose of minimization. Note that if f(·) belongs to the assumed parametric
family, i.e. f(x) = fθ0(x) ∀x ∈ Sx for some θ0, the overall minimum in (2.5) is
ŵ = 1, θ̂ = θ0.

By allowing the estimated component to integrate to w instead of 1, this crite-
rion capitalizes on a virtue of minimum-distance methods not shared by likelihood-
based and other approaches. The estimate will tend to approximate the largest
component of f instead of blurring all components together, to an extent depen-
dent on the separation between the components. The WL2E method developed in
Section 2.2 is less dependent on the components being well-separated. In differ-
ential expression analysis a common assumption is that most genes are EE, i.e.
they define the largest component, so L2E should indeed estimate fθ.

The first integral in (2.1) has a closed form for several common distributions,
including the multivariate normal and t [Wand and Jones, 1995]. This is conve-
nient for computational speed but not strictly necessary, since numerical approxi-
mations can be used. The second integral is the expected value of fθ(X) when X
arises from the mixture density in (1.1), and it can be approximated by the sam-
ple mean computed with respect to the observations x1, . . . ,xn. The L2E partial
mixture estimate is thus obtained by minimizing

w2

∫
fθ(x)2dx− 2w

n

n∑
i=1

fθ(xi) (2.2)

with respect to w and θ. It is important to note that the criterion in (2.2) does not
require the observations to be independent. When fθ is multivariate normal with
mean µ and covariance Σ, the criterion simplifies to [Wand and Jones, 1995]

w2

2dπd/2|Σ|1/2
− 2w

n

n∑
i=1

f(µ,Σ)(xi) (2.3)
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To find θ̂ = (µ̂, Σ̂) and ŵ minimizing this expression we use the R function
nlmin for general nonlinear minimization. Note that in general (2.2) may have
local optima. In our experience with univariate test statistics we have always been
able to avoid local optima by initializing w = 1 and θ to be the maximum likeli-
hood estimate, although multivariate statistics may require more care.

Finally, note that one is not restricted to assuming normality. For example, one
could model fθ with a general multivariate t distribution. In fact, we explored this
possibility but the results were not encouraging, since the heavier tails of the t
tended to absorb outliers and hence obscure DE genes. However, we did find the t
model useful when holding θ fixed, as we explain in Section 2.3.

2.2 WEIGHTED L2E CRITERION
As seen in the example in Figure 1, when the EE genes provide values of the test
statistic well separated from those of the DE genes, the local estimate obtained
via L2E can capture the behavior of the EE genes quite well. However, when
the separation is not so clear problems can arise, as we will illustrate with another
simulated example. We generated n = 1000 test statistic values, 60% representing
EE genes from a N(0, 1), 20% under-expressed from a N(−3, 1) and 20% over-
expressed from aN(3, 1). As it can be seen in Figure 1(b), the L2E estimate tries to
approximate the overall density all over its domain, and therefore fails to capture
its local behavior around zero. Also, L2E estimates ŵ = 0.97.

To overcome this problem, we propose a new criterion. Suppose θ̂ is the L2E
estimate minimizing (2.2). We now seek to minimize a weighted L2 distance∫

fθ̂(x) (wfθ(x)− f(x))2 dx. (2.4)

The weighting factor fθ̂(x) assumes the initial L2E estimate was “reasonably
close,” and places more emphasis on correctly learning the density in the region
with the highest probability density. This process can then be repeated, using the
updated estimate to specify weighting for a new fit, until the process converges
to a fixed point. In our experience convergence is usually achieved within 4 or
5 iterations. We call this approach weighted L2E for partial mixture estimation
(WL2E).

As in Section 2.1, we may expand the integrated weighted squared error as

w2

∫
<n

fθ̂(x)f 2
θ(x)dx− 2w

∫
<n

fθ̂(x)fθ(x)f(x)dx + C (2.5)

As before, the first term in (2.5) has a closed form expression for some distribu-
tions, in particular for the normal family, while the second term is again approx-
imated by a sample mean. Under the assumption of normality, the WL2E partial
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mixture estimate is obtained by minimizing

w2
exp

{
− µ̂′Σ̂−1µ̂

2
− µ′Σ−1µ + 1

2
m′V −1m

}
(2π)p |Σ̂| 12 |Σ||V | 12

− 2w

n

n∑
i=1

fµ̂,Σ̂(xi)fµ,Σ(xi) (2.6)

with respect to (w,µ,Σ), where m =
(

Σ̂−1µ̂ + 2Σ−1µ
)

and V = Σ̂−1 + 2Σ−1.
Returning to the example in Figure 1(b), using WL2E yields (µ̂, σ̂, ŵ) =

(0.01, 1.30, 0.76), which provides a better local approximation than the initial
L2E estimates (µ̂, σ̂, ŵ) = (0.03, 1.97, 0.97). Now we can repeat the process by
using the current weighted estimates to weight again and obtain updated esti-
mates. We repeat this process until the change in the parameter estimates is neg-
ligible, e.g. smaller than 1% in square norm, and we obtain the final estimate of
(µ̂, σ̂, ŵ) = (0.01, 1.25, 0.74).

2.3 FIXED-COMPONENT WL2E
In some situations it is reasonable to assume that θ is known, and that therefore
only w needs to be estimated. Knowledge of w is important in frequentist and
Bayesian procedures that adjust for multiple comparisons (see Section 3). For
example, if xi is a two-sample t-test statistic or a moderated t-test statistic [Smyth,
2004] it may be reasonable to assume that fθ is given by a Student’s t distribution
with known degrees of freedom ν. For large datasets, a normal component may
also be appropriate. Intuitively, this can be advantageous under the presence of a
large amount of DE genes, since a full L2E or WL2E may break down and result
in inflated estimates of the variance, for instance.

In this section we derive simple closed-form expressions to estimate w via
WL2E when fixing fθ, including the important cases of the multivariate normal
and multivariate Student’s t. We also obtained estimators via non-weighted L2E,
but they seemed to be slightly outperformed by their WL2E counterparts, so we do
not describe them here. First consider the normal case. Fixing µ̂ = µ and Σ̂ = Σ
in (2.6), we have a quadratic function in w with minimum (note that the second
derivative is positive) at

ŵ = 3p/2
1

n

n∑
i=1

exp{−(xi − µ)′Σ−1(xi − µ)}. (2.7)

That is, ŵ is equal to the average squared normal density function multiplied by
a constant that accounts for the dimensionality of the problem. In our example of
Figure 1(b), (2.7) gives ŵ = 0.62, which is quite better than the estimate ŵ = 0.76
obtained in Section 2.2.
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Now consider the case in which fθ is assumed to be a multivariate t with
location µ, scale Σ and known degrees of freedom ν. Simple integration allows
one to obtain an expression analogous to (2.6), i.e. quadratic in w with positive
second derivative. Taking the derivative with respect to w and setting equal to
zero gives the minimum:

ŵ =
Γ(ν/2)

Γ(ν+p
2

)

Γ
(

3ν+3p
2

)
Γ
(

3ν+2p
2

) 1

n

n∑
i=1

(
1 +

1

ν
(xi − µ)′Σ−1(xi − µ)

)−(ν+p)

. (2.8)

In Sections 4 and 5 below we apply this result with µ = 0 and Σ = I. Again,
ŵ is equal to the average squared null density times a constant adjusting for the
dimensionality of the problem. In fact, it is straightforward to see that for any
choice of null distribution fθ our estimate takes the form

Ef̂ (fθ(X)q)

Efθ
(fθ(X)q)

, (2.9)

where Eg(h(X)) denotes the expectation of h(X) when X is distributed according
to the density g, and f̂ is the empirical distribution of X. Using the L2E criterion
corresponds to q = 1, whereas the WL2E criterion used in (2.7) and (2.8) corre-
sponds to q = 2. We find that having closed-form and interpretable expressions
to estimate the proportion of equally expressed genes is attractive, since this topic
has received some attention in the literature (see for example Pounds and Morris
[2003] or Langaas et al. [2005]).

3 DIFFERENTIAL EXPRESSION ANALYSIS
The goal of differential expression analysis is to detect as many DE genes as pos-
sible while controlling the number of false positives. We adopt the false discovery
rate (FDR) as a measure of type I error. The FDR is defined in a frequentist sense
as the expected proportion of genes labeled as DE that are actually EE, setting
FDR=0 when the denominator is 0. The Bayesian FDR is defined as the expected
value of this proportion, marginalizing with respect to the posterior distribution
of the parameters in the model. Algorithm 1 details the use of partial mixture
estimation for differential expression analysis.

Algorithm 1. Partial mixture estimation for differential expression analysis

1. Compute a test statistic xi for all genes i = 1, . . . , n, e.g., difference between
2 group means or moderated t-test statistics [Smyth, 2004].
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2. Fit a partial mixture by WL2E to obtain ŵ and fθ̂(x). Alternatively, treat θ as
known and estimate only w as in Section 2.3.

3a. If Bayesian control of the FDR is desired, estimate the overall density f(x)
using any suitable method, e.g., kernel density estimation. Declare DE genes
based on the pseudo-posterior probabilities of DE v̂i = 1− ŵ fθ̂(xi)

f̂(xi)
.

3b. If frequentist control of the FDR is desired, compute p-values for the ob-
served xi using fθ̂ as the null distribution. Declare DE genes based on p-
values adjusted by some procedure for controlling FDR.

There are several variants of the algorithm, depending on the choices made at
each step. With respect to step 1, the approach can work with a number of sensibly
chosen test statistics, the only requirement being that it should be reasonable to
assume that for EE genes it follows the parametric form fθ. In step 2, estimating
θ can be more flexible than treating it as fixed, but it can make the procedure less
resistant to outliers (see results in Sections 4 and 5). Step 3 offers a choice between
Bayesian and frequentist thinking. For option 3a, one needs to estimate the overall
density f . We have found kernel density estimators to perform well, as long as
the tails of fθ are not thicker than those of the kernel. If fθ has too thick tails,
genes with extreme test statistic values will have large fθ̂(xi)/f̂(xi), i.e. small
probability of DE, which is of course undesirable. In our implementations, when
fθ is normal we use the usual normal kernels as implemented in the R function
density (default bandwidth); when fθ is a Student’s t we use a Cauchy kernel as
implemented in the R function akj from the quantreg library. In the remainder
of this section we elaborate on 3a and 3b.

3.1 BAYESIAN CONTROL OF THE FDR
To estimate the FDR we proceed in an empirical Bayes manner. Let vi = 1 −
w fθ(xi)

f(xi)
be the posterior probability that gene i is DE conditional on w, θ and f

(and the data). Both L2E and WL2E partial mixture fits provide estimates for w
and θ, while f is typically easy to estimate from the observed test statistics using
standard methods like kernel density estimation or a mixture of normals. Plugging
in these estimates provides the pseudo-posterior probabilities v̂i. We use the term
pseudo to emphasize the difference with a fully Bayesian approach, which would
compute vi by averaging with respect to the posterior distribution of (w,θ, f).

Let di indicate the decision of declaring gene i as DE, i.e., di = 1 means
declaring it DE and di = 0 declaring it EE. We compute the Bayesian FDR,
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denoted F̃DR:

F̃DR =

∑n
i=1 di(1− v̂i)∑n

i=1 di
, (3.1)

as introduced in Genovese and Wasserman [2002]. The denominator in (3.1) is
just the number of genes declared DE. Efron et al. [2001] proposed declaring DE
those genes with v̂i greater than a certain threshold, i.e., di = I(v̂i > t), but
they leave the choice of t as an arbitrary decision. Müller et al. [2004] studied
this problem from a decision theoretic point of view and found that to minimize
the Bayesian false negative rate while controling for F̃DR one must choose the
smallest t such that F̃DR ≤ α. This threshold is easy to find in practice since F̃DR
is constant between all order statistics v̂(i) and v̂(i+1), and it is valid under any kind
of dependence structure.

Of course, this method of controlling the FDR is dependent on the assumed
model being true. It is also possible to find the optimal threshold non-parametrically
by doing permutations under the null hypothesis, much in the way that Storey
[2007] finds the optimal threshold for his ODP test statistic. The validity of such a
permutation-based approach becomes questionable when the sample size is very
small, which is not unfrequent in microarray studies.

3.2 FREQUENTIST CONTROL OF THE FDR
If the test statistic is 1-dimensional, one can compute the p-value for gene i as the
tail probability ∫

z>|xi−µ̂|
fθ̂(z)dz.

Multi-dimensional xi can often be reduced to a 1-dimensional test statistic
through a function g(xi). For example, one could choose the Wald-type statis-
tic g(xi) = (xi − µ)′V −1(xi − µ) and the integral could be approximated via
an asymptotic χ2 distribution when the xi are normally distributed. More gen-
erally, however, the distribution of g will not be known but the integral can be
approximated by simulating values z1 = g(x∗1), . . . , zB = g(x∗B), where x∗j are in-
dependent draws from fθ̂, and counting the proportion of zj that are greater than
xi.

To control for an overall FDR≤ α, in our experiments we employ the p-value
adjustment of Benjamini and Hochberg [1995], although of course other type-I
error controlling methods are also possible. Note that even though our approach
makes no assumptions about the dependency between genes, this method for p-
value adjustment does assume either independence or some form of positive asso-
ciation.
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4 SIMULATION STUDY

4.1 SETUP
We compare via simulation the power of our partial mixture estimation approach
to three popular methods, while controlling the FDR level at ≤ 0.05. Initially we
considered performing the partial mixture fit by L2E, but results showed that it was
always outperformed by its WL2E counterpart, so to be concise we only provide
results for WL2E.

We consider 3 variants of our approach. The first fits a partial normal mixture
via WL2E and finds DE genes using pseudo-posterior probabilities (see Section
3.1). We refer to this variant as WL2E-PP. The second variant obtains the same fit
but declares DE based on Benjamini & Hochberg p-value adjustment (see Section
3.2), so we refer to it as WL2E-BH. For these two variants we used the difference
between the 2 group means as the test statistic.

For the third variant, we used moderated t-test statistics [Smyth, 2004] as im-
plemented in the R functions lmFit and eBayes in the limma package [Smyth,
2005]. Smyth [2004] showed that, when the null hypothesis of equally expressed
genes holds and the data is normally distributed, the moderated t-test statistic
follows a Student’s t distribution with augmented degrees of freedom. We fit a
fixed-component partial t mixture via (2.8), and declare DE based on posterior
probabilities. Since this is similar to some empirical Bayes methods [Efron and
Tibshirani, 2002; Smyth, 2004], we refer to this variant as WL2E-EBayes. The
function eBayes estimates the augmented degrees of freedom ν̂, though in sim-
ulations ν̂ sometimes seemed to take too large a value, e.g. ν̂ =∞. This decreased
slightly the quality of our fit, so we restricted ν̂ to be ≤ 25.

The three competing methods are Tusher et al. [2001] significance analysis of
microarrays (SAM) , Efron and Tibshirani [2002] empirical Bayes (EBayes) and
a simple two-sample test with BH p-value adjustment. The two-sample test was a
Welch t-test when normal data was being generated (see below) and a Wilcoxon
test otherwise. That is, we reproduced what a data analyst that could perfectly
assess the normality of the data might do. For computational speed, p-values for
both two-sample tests were computed using the asymptotic normal distribution
of the test statistic, rather than basing them on permutations. EBayes and SAM
were used as implemented in the R library siggenes, except that for EBayes
the threshold to declare DE was determined as described in Section 3.1 instead of
using the default 0.9. Since EBayes requires specifying a test statistic upon which
to fit a mixture of the form in (1.1), we used the same one as for the two-sample
test (i.e. t-test statistic for normal data and Wilcoxon test statistic for non-normal
data).

The simulation focuses on the comparison of n=5000 genes between 2 groups
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EE over-expr. under-expr.
normal-normal N(0, 1) N(2, 1) N(−2, 1)
normal-uniform N(0, 1) U(0, 5) U(−5, 0)
uniform-uniform U(−1, 1) U(0, 4) U(−4, 0)
t-t t5(0, 1) t5(2, 1) t5(−2, 1)

Table 1: Simulation scenarios

when we have m=3, 5 or 10 microarrays per group, although our approach is
applicable in non-balanced situations. First, we set a fixed proportion of genes to
be EE, over and under-expressed. We consider three possibilities: (0.8,0.1,0.1),
(0.95,0.025,0.025) and (0.95,0.04,0.01). Second, we generate expression values
according to one of the 4 scenarios described in Table 1. In the first scenario all
distributions are normal, whereas in the second we have normality under EE but
uniformity otherwise. We also consider two scenarios that do not satisfy the partial
mixture hypothesis of normality under EE. In the third scenario we use uniform
distributions and in the fourth we use t-distributions with 5 degrees of freedom
and a general location parameter.

The 3 choices of mixing proportions and the 4 distributional scenarios give
rise to 12 distinct simulation configurations. Actually, we also analyzed some
additional scenarios with smaller amounts of DE. For example, in the normal-
normal case we set the mean for over and under-expressed genes to be 1 and -1,
respectively. In these circumstances all methods performed very poorly due to the
smaller signal-to-noise ratio and are not reported here.

Once the expression data was generated, all the described methods were used
to obtain a list of DE genes and we computed the number of correctly and in-
correctly classified genes. We estimated the power and FDR of each method by
repeatedly generating data, computing the observed power and FDR for each sim-
ulated dataset, and then averaging the results. The number of repetitions was large
enough to ensure that the width of the 95% confidence interval was ≤ 0.01. In
most scenarios 100 repetitions were enough.

4.2 RESULTS
We now present the findings of the simulation set up in Section 4.1. Table 2 pro-
vides the estimated power for each of the considered methods. Power is computed
as the percentage of DE genes that were indeed declared to be DE. Table 3 reports
the corresponding estimated FDR. We observe that the WL2E-PP and WL2E-BH
variants of our partial mixture algorithm perform very similarly, suggesting that
both are equally desirable ways of adjusting for multiple comparisons.
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80%/10%/10% 95%/4%/1% 95%/2.5%/2.5%
m=3 5 10 3 5 10 3 5 10

normal-normal
WL2E-PP 14 65 98 8 40 90 11 46 93
WL2E-BH 12 62 97 11 46 92 11 46 93
WL2E-EBayes 19 59 97 5 28 89 07 31 90
SAM 0 53 96 0 33 91 0 34 90
EBayes 0 37 94 0 12 80 0 16 84
t-test-BH 0 24 93 0 2 79 0 2 78

normal-uniform
WL2E-PP 55 85 99 43 75 98 38 71 97
WL2E-BH 53 84 99 42 75 98 43 75 98
WL2E-EBayes 45 79 99 30 65 98 28 62 98
SAM 0 22 96 0 49 83 0 49 83
EBayes 0 0 86 0 0 41 0 0 57
Wilcoxon-BH 0 0 91 0 0 72 0 0 72

uniform-uniform
WL2E-PP 1 30 90 1 20 77 1 15 73
WL2E-BH 0 27 89 1 19 76 1 19 77
WL2E-EBayes 4 29 87 1 9 64 1 8 61
SAM 0 23 86 0 1 70 0 0 70
EBayes 0 0 72 0 0 17 0 0 31
Wilcoxon-BH 0 0 70 0 0 37 0 0 35

t-t
WL2E-PP 77 96 100 62 90 100 58 89 100
WL2E-BH 74 95 100 61 89 100 61 90 100
WL2E-EBayes 67 94 100 34 84 99 29 82 99
SAM 0 88 99 0 80 99 0 79 99
EBayes 0 0 99 0 0 98 0 0 98
Wilcoxon-BH 0 0 99 0 0 95 0 0 95

Table 2: Power for simulation study (in %). m: number of observations per group.
80%/10%/10% indicates 80% of the genes were EE, 10% over-expressed and 10%
under-expressed. PP is posterior probability and BH is Benjamini-Hochberg.
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80%/10%/10% 95%/4%/1% 95%/2.5%/2.5%
m=3 5 10 3 5 10 3 5 10

normal-normal
WL2E-PP 1 3 5 4 5 5 4 5 5
WL2E-BH 1 3 4 4 4 5 4 4 5
WL2E - EBayes 2 2 4 2 2 3 2 1 3
SAM 0 2 3 0 3 4 0 3 4
EBayes 0 2 3 1 3 3 0 3 3
t-test-BH 4 4 4 5 5 5 5 5 5

normal-uniform
WL2E-PP 3 4 5 4 5 5 5 5 5
WL2E-BH 2 3 4 4 5 5 4 5 5
WL2E-EBayes 1 2 5 2 2 6 2 2 6
SAM 0 5 5 0 2 5 0 2 4
EBayes 0 0 5 0 0 4 0 0 4
Wilcoxon-BH 0 0 4 0 0 4 0 0 4

uniform-uniform
WL2E-PP 0 1 4 0 1 4 0 2 4
WL2E-BH 0 1 3 0 1 4 0 1 4
WL2E-EBayes 0 1 2 0 0 1 0 0 1
SAM 0 3 4 0 0 4 0 0 5
EBayes 0 0 4 0 0 4 0 0 3
Wilcoxon-BH 0 0 4 0 0 5 0 0 4

t-t
WL2E-PP 9 8 8 20 14 11 19 13 10
WL2E-BH 8 7 6 19 13 9 19 13 9
WL2E-EBayes 3 5 8 2 4 9 2 4 9
SAM 0 2 3 0 3 4 0 3 4
EBayes 0 0 7 0 0 11 0 0 12
Wilcoxon-BH 0 0 4 0 0 4 0 0 4

Table 3: FDR for simulation study (in %). m: number of observations per group.
80%/10%/10% indicates 80% of the genes were EE, 10% over-expressed and 10%
under-expressed. PP is posterior probability and BH is Benjamini-Hochberg.
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These two WL2E approaches were the most powerful under almost all con-
ditions in the normal-normal, normal-uniform and uniform-uniform cases, with
very significant advantages being observed for sample sizes of 3 and 5. The fixed-
component WL2E-EBayes also performed quite well. When the sample size was
3 the power of all competitors was virtually zero in all scenarios, whereas WL2E
achieved a power between 12%-19% in the normal-normal and 45%-55% in the
normal-uniform scenario. In all these situations WL2E controlled the FDR below
the desired 5% level, including the uniform-uniform where the normality assump-
tion is violated. The one exception is WL2E-EBayes that presented an FDR=6%
in two of the normal-uniform scenarios.

In the t-t scenario WL2E-BH and WL2E-PP presented an FDR well above
5%, especially for smaller sample sizes, while WL2E-EBayes had better FDR
levels. A possible explanation is that the heavier tails of the t-distribution generate
observations that are regarded as outliers by a partial normal component, and are
therefore tagged as arising from DE genes, whereas the fixed-component estimate
is more resistant to these outliers. It should be noted that in this scenario EBayes
also failed to control the FDR.

SAM was the best among the competitors, exceeding their power while con-
trolling the FDR below the desired level. EBayes outperformed the 2-sample t-test
in the normal-normal case but it tended to be worse than the 2-sample Wilcoxon
test in the normal-uniform and uniform-uniform cases. Note that except in the
normal-normal scenario neither method detected any genes for sample sizes of 3
or 5 observations per group.

5 CASE STUDIES
We analyze the data from the Apolipoprotein AI (apo AI) experiment presented
by Callow et al. [2000] and from the leukemia study of Golub et al. [1999] using
the methods described in the simulation study of Section 4: the three variants of
WL2E, SAM, EBayes and t-test BH, all set to control the FDR ≤ 0.05. When
Dudoit et al. [2003] analyzed the apo AI dataset with several methods, they found
8 DE genes out of 6384. The analysis of Golub’s dataset in the original paper uses
a neighbourhood-based analysis that found 1000 DE genes out of 6817. That is,
the first dataset represents the case in which few DE genes are expected, whereas
in the second the proportion of DE genes is probably relatively large.
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5.1 APOLIPOPROTEIN EXPERIMENT
5.1.1 DESCRIPTION

The apo AI experiment concerned lipid metabolism and artherosclerosis suscep-
tibility in mice. The experiment compared 8 apo AI knock-out mice with 8 inbred
control mice in terms of gene expression. cDNA was obtained from mRNA by re-
verse transcription and it was hybridized to microarrays with 6384 probes. A com-
mon reference sample for all hybridizations (knock-out and control) was obtained
by pooling cDNA from the 8 control mice. We obtained the dataset from http:
//www.stat.berkeley.edu/users/terry/zarray/Data/ApoA1/rg_
a1ko_morph.txt.

For 2 groups and 8 observations per group there are 12,870 possible permuta-
tions, which is a large enough number for SAM and EBayes to estimate the null
distribution f0 reliably.

5.1.2 NORMALIZATION AND MODEL CHECKING

We normalized the gene expression intensities in two steps. First, we corrected for
chip printing effects using the maNormNN method as implemented in the nnNorm
package for the R software (see package documentation for details). For WL2E-
PP and WL2E-BH we use the difference between means xi as a test statistic, i.e.
we do not divide by its estimated standard error as is done in a t-test. Therefore,
we perform a second step to ensure that the variance of the test statistic is constant
across genes. Denote the sum of the two group means for the ith gene as Ai. In
the fashion of the so-called “MA-plots” [Dudoit et al., 2002a], we center the data
by obtaining a lowess local least squares fit of xi versus Ai and substract the
predicted mean, to obtain the residuals ei, i = 1 . . . n. We then regress e2

i versusAi
via lowess, which gives a gene-specific estimate for the residual variance. The
variance-stabilized test statistic is obtained by dividing ei by the square root of its
estimated variance. In both fits the smoothing parameter is chosen by minimizing
the mean absolute error by cross-validation.

Figure 2(a) displays the distribution of xi for different values of Ai after the
variance stabilization procedure. The mean and variance of xi is roughly constant
for allAi values, suggesting that the partial mixture assumption of the test statistic
being identically distributed is not unreasonable.

The WL2E fit estimates are µ̂ = 0, σ̂ = 0.13 and ŵ = 0.96. That is, it
indicates that 96% of the test statistic values arise from a normal distribution and
the remaining 4% are considered anomalies. The normality of the test statistic
is assessed in Figure 2(b), which presents a QQ-normal plot using the weighted
L2E estimates. The horizontal lines contain ŵ =96% of the test statistic values,
i.e., observations outside the region delimited by the lines are not considered to
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Figure 2: Assessing partial mixture assumptions for apo AI dataset. (a): mean
intensity values (A) are categorized in 10 groups according to the observed quan-
tiles. (b): normal quantile plot of the test statistic. Horizontal lines contain a pro-
portion ŵ of the data.

arise from equally expressed genes. We consider that the normality assumption is
plausible, since departure from normality is observed mainly in the tails.

We also computed the regularized t-test statistics needed for the WL2E-EBayes
variant of our algorithm, as described in Section 4.1. The estimated augmented de-
grees of freedom were 18, which is slightly higher than the 14 degrees of freedom
that the classical t-test statistic would have. Equation (2.8) provides the estimate
ŵ = 0.95. To assess the distributional assumptions of the regularized t-test statis-
tic we produced plots analogous to those in Figure 2, finding that the assumptions
were reasonable.

5.1.3 RESULTS

Results of the differential expression analysis are shown in Table 4. WL2E-PP
and WL2E-BH declared a substantially larger number of genes to be DE than
the other methods. WL2E-EBayes finds 10 DE genes, the t-test with Benjamini
& Hochberg’s (BH) p-value adjustment detects 8 genes to be under-expressed in
knock-out mice, whereas both SAM and EBayes did not detect any (for SAM the
complete set of 12870 permutations under the null were used). None of the three
competitors finds any gene to be over-expressed in the knock-out mice. The t-test
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WL2E-PP WL2E-BH WL2E-EBayes EBayes SAM t-test-BH
KO over-expr. 35 32 1 0 0 0
KO under-expr. 25 27 9 0 0 8

Table 4: Gene classification for apo AI dataset. The table describes the number of
genes declared to be over and under-expressed in knock-out mice out of the 6384
genes. PP indicates the use of posterior probabilities; BH is Benjamini-Hochberg
p-value adjustment

BH procedure coincided with the findings of Dudoit et al. [2003], who claimed
significance for the 8 genes with the most extreme values the two-sample t-test
statistic. These 8 genes were also found by all our partial mixture approaches.

We now assess the performance of all approaches when analyzing a subset of
the data. We randomly select samples 2, 3, 5, 7 and 8 from the KO group and
samples 1, 3, 4, 7 and 8 from the control group. Producing a plot analogous to
Figure 2(b) revealed a stronger departure from normality than that observed for
the full dataset. WL2E-PP and WL2E-BH found 100 and 95 genes, respectively,
i.e. more than for the full dataset, and only about 31% of these genes were found
again when analyzing the full dataset. WL2E-EBayes found 10 genes, 8 of which
were confirmed with the full data, and t-test BH found 2, none of which were
confirmed with the full data. SAM and EBayes did not declare any genes to be
DE. These findings suggest that WL2E-PP, WL2E-BH and t-test BH can lead to an
inflated FDR when the normality assumption is violated, but that WL2E-EBayes
is more robust.

5.2 LEUKEMIA STUDY
5.2.1 DESCRIPTION

Golub et al. [1999] compared gene expression levels between acute lymphoblastic
leukemia (ALL) cells and acute myeloid leukemia (AML). We used the version of
the dataset posted with the original publication at http://www.broad.mit.
edu/cgi-bin/publications/display_pubs.cgi?id=201. The study
used Affymetrix HuGeneFL arrays that measured mRNA expression for 7129
genes, and had 27 ALL and 11 AML samples. The original dataset also contains
a variable indicating, for each array, which genes had enough mRNA to be con-
sidered to be present. In our analysis we only included the 4763 genes that were
present in at least 1 microarray.
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5.2.2 NORMALIZATION AND MODEL CHECKING

The dataset is already normalized per Golub et al. [1999]. We first considered
using the difference between group means as the test statistic to which to apply
WL2E-PP and WL2E-BH, in the same way that is described in Section 5.1.2 for
the apo AI study. However, a qq-normal plot analogous to that in Figure 2(b)
revealed a serious departure of normality. For this reason, we decided to use the
regularized t-test statistic that we have been using for the WL2E-EBayes variant
of our algorithm also for the two other variants.

The partial mixture assumptions are assessed in Figure 3. Panel (a) reveals that
the distributional shape of the test statistic is approximately the same for all values
of the mean intensity values Ai. A WL2E fit gives µ̂ = 0.24, σ̂ = 1.79 and ŵ =
0.99. That is, WL2E regards 1% of the test statistic to be outliers. However, 27.8%
of the genes have a test statistic value exceeding 2 in absolute value, indicating
that the proportion of DE genes should be higher than 1%. Also, a SAM analysis
estimated ŵ = 0.53. To solve this discrepancy we use the fact that, under the null
hypothesis, the moderated t-test statistic follows a t distribution with augmented
degrees of freedom. The estimated augmented degrees of freedom are 37, slightly
higher than the 36 that a classical t-test statistic would have, and applying (2.8) we
obtain ŵ = 0.63, which seems a more reasonable value. The Student’s t qq-plot in
panel (b) suggests that the t assumption is reasonable for 63% of the test statistic
values that are closer to the mean.

The difference in the estimated proportion of DE genes between the two WL2E
fits should not be too surprising: in the simulation example of Section 2 we also
observed considerable improvements when fixing fθ. That is, it can be quite ben-
efitial to use theoretical considerations when obtaining a partial mixture fit, rather
than using an optimization algorithm blindly. Our interpretation for this particular
dataset is that WL2E breaks down in the presence of a large amount of outliers,
but a fixed t component fit is more robust.

5.2.3 RESULTS

WL2E-EBayes found 744 genes, whereas EBayes declared 881 genes as DE, SAM
662 and the Wilcoxon test with BH p-value adjustment 610. In terms of concor-
dance between methods, WL2E-EBayes classified about 94% of the genes in the
same category that EBayes did (equally, over or under-expressed). For SAM this
percentages were around 87%, and for Wilcoxon test around 92%.

To assess the performance of the methods with a smaller sample size, we ran-
domly selected samples 2, 6, 10, 19 and 27 from the ALL group and samples 3,
6, 7, 9 and 11 from the AML group, and we repeated all the analyses. With this
smaller sample size EBayes, SAM and the Wilcoxon test declared 0 genes as DE,
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Figure 3: Assessing partial mixture assumptions for Leukemia dataset. (a): mean
intensity values (A) are categorized in 10 groups according to the observed quan-
tiles. (b): horizontal lines contain a proportion ŵ = 0.62 of the data.

whereas WL2E-EBayes found 11 genes, 10 of which had also been declared as
DE when analyzing the full dataset.

6 DISCUSSION
We have proposed the use of partial mixture estimation as a semi-parametric ap-
proach to differential expression analysis. This framework requires a parametric
model on equally expressed genes only, and can handle small group sizes, in con-
trast to other methods that require a full probability model or larger group sizes
for permutation-based null sampling. To perform partial mixture estimation, we
have developed an iterative weighted L2E criterion that improves upon the perfor-
mance of the L2E criterion originally proposed by Scott [2004a,b]. Also, we have
shown that fixing the parameters of the EE genes distribution can further improve
the fit, making it more resistant to outliers and providing simple closed-form ex-
pressions to estimate the proportion of EE genes. Both criteria are extremely fast
computationally; in our experience, the whole procedure implemented in R takes
a few seconds to run, in the worst case scenario.

Our approach requires making only two assumptions. First, we assume that
the observed values of the test statistic used to classify genes are identically dis-
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tributed realizations from a common distribution. The method does not assume
independence. Second, we require that the distribution of equally expressed genes
has a known parametric form. We have illustrated by example how variance stabi-
lizing normalization can render identically distributed observations, and we have
demonstrated accompanying techniques for visual validations of both assump-
tions. The choice of test statistic remains important, since it can have important
effects on the final results. For example, we expect test statistics that borrow in-
formation across genes to perform better than those that are computed for each
gene separately.

Simulation studies and real data analyses have been used to compare our ap-
proach with EBayes, SAM and the t-test with p-value adjustment. The results
suggest that partial mixture estimation can provide significant advantages over
the other approaches, especially when the sample size is small and most genes
are equally expressed. For example, in some simulations with a sample size of
3 per group the power was between 12%-19% for WL2E, and virtually 0% for
all other methods. In the apolipoprotein dataset we detected more genes than the
competitors, with SAM and EBayes finding no genes. In the leukemia dataset our
approach found a number of genes comparable to the competitors. However, when
analyzing a subset of only 5 observations per group we found 11 genes while the
other approaches did not detect any (10 out of these 11 genes were also found
when analyzing the full dataset). Of course, in real datasets it is often not known
what genes are DE and therefore it is difficult to be certain of which method is
performing best.

In our opinion, WL2E-EBayes is the most attractive variant as a general pur-
pose approach, since it seems to have good detection power while preserving a
better control of the FDR when the semi-parametric assumptions do not hold.
However, in some simulations we found that WL2E-BH and WL2E-PP were pre-
ferrable, since they were less conservative in controlling the FDR. In general SAM
seems to perform the best among the competitors, particularly in the simulations.
This seems to agree with the findings of Schwender et al. [2003], who found that
SAM performed better than EBayes in simulations but the latter gave more sig-
nificant hits in a real dataset.

Although partial mixture estimation does not define a full probability model,
we are able to provide some summaries with connections to more formal model-
based approaches such as pseudo-posterior probabilities of differential expres-
sion. The lack of a full probability model is tempered by the fact that differential
expression analysis is most commonly used for data exploration and hypothesis
generation and less for definitive inference.

Possibilities for future work include generalization to other parametric forms,
such as the F distribution for multi-group or time-course problems. Another di-
rection is the development of alternative methods for partial mixture estimation.
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