#LyX 1.3 created this file. For more info see http://www.lyx.org/ \lyxformat 221 \textclass article \language english \inputencoding auto \fontscheme default \graphics default \paperfontsize 12 \spacing single \papersize Default \paperpackage a4 \use_geometry 0 \use_amsmath 0 \use_natbib 0 \use_numerical_citations 0 \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation skip \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default \layout Title Probability A exam solutions \layout Author David Rossell i Ribera \layout Standard I may have committed a number of errors in writing these solutions, but they should be fine for the most part. Use them at your own risk! \layout Section* Probability January 2003 \layout Section* Problem 1 \layout Standard a) Usual definitions \layout Standard b) \begin_inset Formula $X_{n}=\left\{ \begin{array}{c} n^{2}wp1/n^{2}\\ 0wp1-1/n^{2}\end{array}\right.$ \end_inset converges a.s. to zero by Borel-Cantelli and hence also in probability, but not in \begin_inset Formula $L_{1}$ \end_inset since \begin_inset Formula $E(X_{n}-0)=E(X_{n})=1$ \end_inset . \layout Standard \begin_inset Formula $X_{n}=\left\{ \begin{array}{c} 1wp1/n\\ 0wp1-1/n\end{array}\right.$ \end_inset with \begin_inset Formula $X_{n}$ \end_inset independent converges in \begin_inset Formula $L_{1}$ \end_inset and thus in probability to zero, but not to zero by Borel-Cantelli. \layout Standard \begin_inset Formula $X=\left\{ \begin{array}{c} 1wp1/n\\ 0wp1-1/n\end{array}\right.$ \end_inset , \begin_inset Formula $Y=1-X$ \end_inset . Obviously \begin_inset Formula $Y$ \end_inset and \begin_inset Formula $X$ \end_inset have the same distribution but \begin_inset Formula $P(|X-Y|>0)=1$ \end_inset , so we don't have convergence in probability. \layout Section* Problem 2 \layout Standard a) (i) \begin_inset Formula $P(A\bigcap B)\geq0)$ \end_inset (ii) \begin_inset Formula $A_{1}...A_{n}$ \end_inset disjoint, \layout Standard \begin_inset Formula $Q\left(\bigcup_{i=1}^{\infty}A_{i}\right)=P\left(\left(\bigcup_{i=1}^{\infty}A_{i}\right)\bigcap B\right)=$ \end_inset \begin_inset Formula $P\left(\bigcup_{i=1}^{\infty}\left(A_{i}\bigcap B\right)\right)=\left\{ disjoint\right\} =\sum_{i=1}^{\infty}P(A_{i}\bigcap B)=\sum_{i=1}^{\infty}Q(A_{i})$ \end_inset \layout Standard For \begin_inset Formula $Q$ \end_inset to be a probability measure, we need \begin_inset Formula $Q(\Omega)=P(\Omega\bigcap B)=P(B)=1$ \end_inset . \layout Standard b) Start with indicators \layout Standard (i) \begin_inset Formula $X=I_{A}$ \end_inset . Then \begin_inset Formula $E(X;B)=\int_{B}I_{A}dP=P(A\bigcap B)=Q(A)=\int_{\Omega}XdQ$ \end_inset \layout Standard (ii) \begin_inset Formula $X=\sum_{i=1}^{n}a_{k}I_{A_{k}}$ \end_inset . Then \begin_inset Formula $\int_{\Omega}XdQ=\int_{\Omega}\sum_{i=1}^{n}a_{k}I_{A_{k}}dQ=$ \end_inset \begin_inset Formula $\sum_{i=1}^{n}a_{k}\int_{\Omega}I_{A_{k}}dQ=\sum a_{k}P(A_{k}B)$ \end_inset \begin_inset Formula $=\int_{B}\sum_{i=1}^{n}a_{k}I_{A_{k}}dP=E(X;B)$ \end_inset . \layout Standard (iii) \begin_inset Formula $X\geq0$ \end_inset . Let \begin_inset Formula $0\leq X_{n}\uparrow X$ \end_inset with \begin_inset Formula $X_{n}$ \end_inset simple and \begin_inset Formula $\int_{\Omega}XdQ=...$ \end_inset \begin_inset Formula $=\int_{B}XdP$ \end_inset \layout Standard (iv) General \begin_inset Formula $X$ \end_inset . Proceed as usual. \layout Section* Problem 3 \layout Standard a) It means that (i) \begin_inset Formula $Y_{n}$ \end_inset is \begin_inset Formula $\sigma(X_{1}...X_{n})$ \end_inset measurable and (ii) \begin_inset Formula $E(Y_{n+1}|\sigma(X_{1}...X_{n}))=Y_{n}$ \end_inset . \layout Standard b) 1) \begin_inset Formula $Y_{n}$ \end_inset is a function of \begin_inset Formula $X_{1}...X_{n}$ \end_inset and thus \begin_inset Formula $\sigma(X_{1}...X_{n})$ \end_inset measurable, and \begin_inset Formula $E(Y_{n+1}|\sigma(X_{1}...X_{n}))=\left\{ independent\right\} =$ \end_inset \begin_inset Formula $E(Y_{n+1})=0\neq Y_{n}$ \end_inset , so it's not a martingale. \layout Standard 2) \begin_inset Formula $Y_{n}$ \end_inset is a function of \begin_inset Formula $X_{1}...X_{n}$ \end_inset and thus \begin_inset Formula $\sigma(X_{1}...X_{n})$ \end_inset measurable, and \begin_inset Formula $E(Y_{n+1}|\sigma(X_{1}...X_{n}))=\sum_{k=1}^{n}X_{k}+E(X_{n+1})=$ \end_inset \begin_inset Formula $\sum_{k=1}^{n}X_{k}=Y_{n}$ \end_inset , so it's a martingale. \layout Standard 3) \begin_inset Formula $Y_{n}$ \end_inset is NOT a function of \begin_inset Formula $X_{1}...X_{n}$ \end_inset and thus NOT \begin_inset Formula $\sigma(X_{1}...X_{n})$ \end_inset measurable, so it's not a martingale. \layout Standard 4) \begin_inset Formula $Y_{n}$ \end_inset is a function of \begin_inset Formula $X_{1}...X_{n}$ \end_inset and thus \begin_inset Formula $\sigma(X_{1}...X_{n})$ \end_inset measurable and \begin_inset Formula $E(Y_{n+1}|\sigma(X_{1}...X_{n}))=\prod_{i=1}^{n}X_{i}E(X_{n+1})=0\neq Y_{n}$ \end_inset , so not a martingale. \layout Standard 5) \begin_inset Formula $Y_{n}$ \end_inset is a function of \begin_inset Formula $X_{1}...X_{n}$ \end_inset and thus \begin_inset Formula $\sigma(X_{1}...X_{n})$ \end_inset measurable and \begin_inset Formula $E(Y_{n+1}|\sigma(X_{1}...X_{n}))=\prod_{i=1}^{n}2^{X_{i}}E(2^{X_{n+1}})$ \end_inset , and \begin_inset Formula $E(2^{X_{n+1}})=\frac{1}{2}2^{-1}+\frac{1}{2}2\neq1$ \end_inset , so it's not a martingale. \layout Section* Problem 4 \layout Standard By the Strong Law of Large Numbers, \begin_inset Formula $\sum X_{i}/n$ \end_inset converges to \begin_inset Formula $1/2$ \end_inset almost surely. For \begin_inset Formula $logG_{n}=\frac{1}{n}\sum logX_{i}$ \end_inset , since \begin_inset Formula $E(logX)=-1$ \end_inset (can be found integrating the pdf as usual) by SLLN again we have that \begin_inset Formula $logG_{n}$ \end_inset converges almost surely to \begin_inset Formula $-1$ \end_inset . Hence by the Continuous Mapping Principle \begin_inset Formula $G_{n}$ \end_inset converges almost surely to \begin_inset Formula $e^{-1}$ \end_inset . \layout Standard Now since \begin_inset Formula $E(1/X)=\infty$ \end_inset , by SLLN \begin_inset Formula $\frac{1}{n}\sum\frac{1}{X_{i}}\rightarrow_{a.s.}\infty$ \end_inset and by CMP \begin_inset Formula $\frac{n}{\sum1/X_{i}}\rightarrow_{a.s.}0$ \end_inset . (note that SLLN also applies when the expectation is \begin_inset Formula $\infty$ \end_inset . \layout Section* Problem 5 \layout Standard 1) The chain is irreducible since all states communicate and the period of all states is 1 since \begin_inset Formula $p_{22}>0$ \end_inset and periodicity is a class property. To find \begin_inset Formula $E(\tau_{0})$ \end_inset we'll find the stationary distribution first. \begin_inset Formula $\pi=\pi P$ \end_inset gives \begin_inset Formula $\pi_{0}=1/4$ \end_inset , \begin_inset Formula $\pi_{1}=1/4$ \end_inset , \begin_inset Formula $\pi_{2}=1/2$ \end_inset and thus \begin_inset Formula $E(\tau_{0})=1/\pi_{0}=4$ \end_inset . \layout Standard 2) a)This is a branching process, so \begin_inset Formula $E(Z_{n})=(2p)^{n}$ \end_inset . \layout Standard b) We know that \begin_inset Formula $\pi=1$ \end_inset iff \begin_inset Formula $2p\leq1$ \end_inset so \begin_inset Formula $p\leq1/2$ \end_inset . Hence for \begin_inset Formula $p>1/2$ \end_inset we got \begin_inset Formula $\pi<1$ \end_inset , and \begin_inset Formula $\pi$ \end_inset is the smallest solution to \begin_inset Formula $\pi=G(\pi)$ \end_inset , where \begin_inset Formula $G$ \end_inset is the pgf of a binomial(2,p). Solve for \begin_inset Formula $s$ \end_inset in \begin_inset Formula $G(s)=(1-p)^{2}+2p(1-p)s+p^{2}s^{2}=s$ \end_inset to get \begin_inset Formula $\pi=\left(\frac{1-p}{p}\right)^{2}$ \end_inset . \layout Standard c) By independence, it's \begin_inset Formula $\pi^{N}$ \end_inset . \layout Section* Problem 6 \layout Standard b) For \begin_inset Formula $X$ \end_inset continuous we know \begin_inset Formula $F(X)$ \end_inset is \begin_inset Formula $Unif(0,1)$ \end_inset and hence \begin_inset Formula $E(X)=1/2$ \end_inset . For \begin_inset Formula $X$ \end_inset categorical consider \begin_inset Formula $Y=F_{x}(X)$ \end_inset , and let \begin_inset Formula $Z$ \end_inset be any continuous random variable such that it's cdf \begin_inset Quotes eld \end_inset matches \begin_inset Quotes erd \end_inset the cdf of \begin_inset Formula $X$ \end_inset in each of its jumps, i.e. \begin_inset Formula $F_{z}(z)=P(Z\leq z)=P(X\leq z)=F_{x}(z)$ \end_inset for all \begin_inset Formula $z$ \end_inset discontinuity point. Note that \begin_inset Formula $F_{z}(z)\geq F_{x}(z)$ \end_inset , with strict equality in the discontinuity points (if this is confusing, plotting both cdfs may help to see it clearer). That gives us that \begin_inset Formula $E(F_{X}(z))\geq E(F_{Z}(z))=1/2$ \end_inset , the latter equality due to \begin_inset Formula $Z$ \end_inset being a continuous random variable. \layout Standard c) I don't know how to do it. \layout Section* Probability January 2004 \layout Section* Problem 1 \layout Standard a) Usual definition \layout Standard b) (i) Let \begin_inset Formula $x\in(0,1)$ \end_inset . \begin_inset Formula $P(m_{n}\leq x)=1-P(m_{n}>x)=1-\left(P(X_{1}>x)\right)^{n}=1-(1-x)^{n}\rightarrow1$ \end_inset , i.e. \begin_inset Formula $m_{n}\rightarrow^{D}0$ \end_inset \layout Standard (ii) \begin_inset Formula $P(nm_{n}\leq x)=1-\left(P(X_{1}>x/n)\right)^{n}=1-(1-x/n)^{n}\rightarrow1-e^{-x}$ \end_inset , which is the cdf of an \begin_inset Formula $exp(1)$ \end_inset . \layout Standard c) Theorem. \begin_inset Formula $\sum P(|X_{n}-X|>\epsilon)<\infty\Rightarrow X_{n}\rightarrow_{a.s.}X$ \end_inset \layout Standard Since \begin_inset Formula $\sum P(|m_{n}-0|>\epsilon)=\sum P(m_{n}>\epsilon)=\sum(1-\epsilon)^{n}<\infty$ \end_inset , we have \begin_inset Formula $m_{n}\rightarrow_{a.s.}0$ \end_inset . In general \begin_inset Formula $nm_{n}$ \end_inset doesn't converge almost surely to \begin_inset Formula $X$ \end_inset , although by Skorohod's theorem we know that \begin_inset Formula $\exists Y_{n}=^{D}nm_{n}$ \end_inset , \begin_inset Formula $Y=^{D}X$ \end_inset such that \begin_inset Formula $Y_{n}\rightarrow Y$ \end_inset . \layout Section* Problem 2 \layout Standard a) Delta method. \layout Standard b) Let's find first the asymptotic distribution of \begin_inset Formula $logG_{n}=\frac{1}{n}\sum logX_{i}$ \end_inset . It can be seen that \begin_inset Formula $E(logX_{i})=-\frac{1}{2}$ \end_inset and \begin_inset Formula $V(logX_{i})=\frac{1}{4}$ \end_inset , so by the Central Limit Theorem \begin_inset Formula $\sqrt{n}\left(logG_{n}+\frac{1}{2}\right)\rightarrow^{D}N(0,1/4)$ \end_inset , and since \begin_inset Formula $g(x)=e^{x}\Rightarrow g'(x)=e^{x}$ \end_inset the delta method gives that \begin_inset Formula $\sqrt{n}\left(G_{n}-e^{-1/2}\right)\rightarrow^{D}N(0,e/4)$ \end_inset \layout Standard Now, for \begin_inset Formula $H_{n}$ \end_inset let's first find the asymptotic distribution of \begin_inset Formula $H_{n}^{-1}=\frac{1}{n}\sum\frac{1}{X_{k}}$ \end_inset . Since \begin_inset Formula $E(1/X)=2$ \end_inset , \begin_inset Formula $V(1/X)=\infty$ \end_inset the CLT doesn't apply to \begin_inset Formula $H_{n}^{-1}$ \end_inset . \layout Section* Problem 3 \layout Standard a) BCI and BCII \layout Standard b) (i) \begin_inset Formula $X_{n}=\left\{ \begin{array}{cc} n^{2} & wp1/n^{2}\\ 0 & wp1-1/n^{2}\end{array}\right\} $ \end_inset independent. \layout Standard (ii) \begin_inset Formula $X_{n}=\left\{ \begin{array}{cc} n-1 & wp1/n\\ 0 & wp1-1/n\end{array}\right\} $ \end_inset doesn't converge in \begin_inset Formula $L_{1}$ \end_inset nor a.s., but it does in probability. \layout Standard (iii) \begin_inset Formula $X_{n}=\left\{ \begin{array}{cc} n & wp1-1/n^{2}\\ -n(n^{2}-1) & wp1/n^{2}\end{array}\right\} $ \end_inset , by BCI \begin_inset Formula $X_{n}\rightarrow_{a.s.}-\infty$ \end_inset , but \begin_inset Formula $E(X_{n})=0$ \end_inset . \layout Standard (iv) \begin_inset Formula $X_{n}=\left\{ \begin{array}{cc} n & wp1-1/n^{2}\\ -n^{4} & wp1/n^{2}\end{array}\right\} $ \end_inset . By BCI \begin_inset Formula $X_{n}\rightarrow_{a.s.}0$ \end_inset but \begin_inset Formula $E(X_{n})\rightarrow-\infty$ \end_inset . \layout Section* Problem 4 \layout Standard 1) (a) \begin_inset Formula $\{0\}$ \end_inset is transient and \begin_inset Formula $\{1\},\{2\}$ \end_inset are recurrent. \layout Standard (b) We can find the stationary distribution of the Markov Chain defined by \begin_inset Formula $\{1,2\}$ \end_inset , \layout Standard \begin_inset Formula $P=\left(\begin{array}{cc} \frac{1}{3} & \frac{2}{3}\\ \frac{1}{3} & \frac{2}{3}\end{array}\right)$ \end_inset and \begin_inset Formula $\pi=\pi P$ \end_inset gives \begin_inset Formula $\pi_{1}=1/3$ \end_inset and \begin_inset Formula $\pi_{2}=2/3$ \end_inset . Hence \begin_inset Formula $E(N|X_{0}=2)=3/2$ \end_inset . \layout Standard (c) Let \begin_inset Formula $Y$ \end_inset be the number of transitions until we leave 0. \begin_inset Formula $P(Y=y)=\frac{2}{3}\left(\frac{1}{3}\right)^{y-1}$ \end_inset for \begin_inset Formula $y=1,2,3...$ \end_inset i.e. \begin_inset Formula $Y\sim Geom(2/3)$ \end_inset . Hence \begin_inset Formula $E(Y)=3/2$ \end_inset . \layout Standard 2) Not necessary \layout Section* Problem 5 \layout Standard a) State MCT and DCT \layout Standard b) (i) \begin_inset Formula $\int_{1}^{\infty}I_{[n,n+1]}(x)dx=\int_{n}^{n+1}dx=1$ \end_inset \begin_inset Formula $\forall n$ \end_inset \layout Standard (ii) Since \begin_inset Formula $\left|\frac{sin(nx)}{e^{nx}x^{2}}\right|\leq\frac{1}{e^{x}x^{2}}$ \end_inset whic is integrable, DCT gives \begin_inset Formula $\int_{1}^{\infty}\frac{sin(nx)}{e^{nx}}\frac{1}{x^{2}}dx\rightarrow\int_{1}^{\infty}\frac{1}{x^{2}}lim\frac{sin(nx)}{e^{nx}}dx=0$ \end_inset \layout Standard (iii) \begin_inset Formula $\int_{1}^{\infty}x/ndx=\frac{1}{n}\int_{1}^{\infty}xdx=\infty$ \end_inset \begin_inset Formula $\forall n$ \end_inset \layout Standard (iv) For \begin_inset Formula $n$ \end_inset odd, \begin_inset Formula $-\int_{1}^{\infty}x/n^{2}dx=-\frac{1}{n^{2}}\infty=-\infty$ \end_inset \begin_inset Formula $\forall n$ \end_inset , and for \begin_inset Formula $n$ \end_inset even \begin_inset Formula $\int_{1}^{\infty}x/n^{2}dx=\frac{1}{n^{2}}\infty=\infty$ \end_inset \begin_inset Formula $\forall n$ \end_inset , so the limit doesn't exist. \layout Standard (v) The function inside the integral is positive and decreasing with n, with its limit being 0 so for \begin_inset Formula $n\geq2$ \end_inset \layout Standard \begin_inset Formula $\left|\frac{(1+nx^{2})}{(1+x^{2})^{n}}\right|<\frac{1+2x^{2}}{(1+x^{2})^{2}}$ \end_inset which is integrable since the degree of the denominator is 4 and for the numerator it's 2. Hence DCT applies to give \begin_inset Formula $\int_{1}^{\infty}\frac{(1+nx^{2})}{(1+x^{2})^{n}}dx\rightarrow\int_{1}^{\infty}lim\frac{(1+nx^{2})}{(1+x^{2})^{n}}dx=0$ \end_inset . \layout Section* Problem 6 \layout Standard a) \begin_inset Formula $Y_{n}$ \end_inset is a function of \begin_inset Formula $X_{1}...X_{n}\Rightarrow\sigma(X_{1}...X_{n})$ \end_inset measurable. Some algebra shows that \begin_inset Formula $E(S_{n+1}^{4}|\sigma(X_{1}...X_{n}))=S_{n}^{4}+6S_{n}^{2}+1$ \end_inset , \begin_inset Formula $E(S_{n+1}^{2}|\sigma(X_{1}...X_{n}))=S_{n}^{2}+1$ \end_inset . Thus \begin_inset Formula $E(Y_{n+1}|\sigma(X_{1}...X_{n}))=$ \end_inset \begin_inset Formula $E(S_{n+1}^{4}-6(n+1)S_{n+1}^{2}+3(n+1)^{2}+2(n+1)|\sigma(X_{1}...X_{n}))$ \end_inset \begin_inset Formula $=...=S_{n}^{4}-6nS_{n}^{2}+3n^{2}+2n=Y_{n}$ \end_inset . \layout Standard Hence \begin_inset Formula $\{ Y_{n}\}$ \end_inset is a martingale. \layout Standard b) The optional stopping theorem gives that \begin_inset Formula $Y_{o}$ \end_inset , \begin_inset Formula $Y_{\nu}$ \end_inset is a martingale so in particular \begin_inset Formula $E(Y_{\nu})=E(Y_{o})=0$ \end_inset . Since \begin_inset Formula $E(Y_{\nu})=E(S_{\nu}^{4}-6\nu S_{\nu}^{2}+3\nu^{2}+2\nu)=...=-5a^{4}+2a^{2}+3E(\nu^{2})$ \end_inset , we get that \layout Standard \begin_inset Formula $E(\nu^{2})=\frac{5a^{4}-2a^{2}}{3}$ \end_inset and \begin_inset Formula $V(\nu)=\frac{2}{3}a^{2}(a^{2}-1)$ \end_inset . \the_end