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I may have committed a number of errors in writing these solutions, but they
should be �ne for the most part. Use them at your own risk!

Probability January 2003

Problem 1

a) Usual de�nitions

b) Xn =

{
n2wp1/n2

0wp1− 1/n2 converges a.s. to zero by Borel-Cantelli and hence

also in probability, but not in L1 since E(Xn − 0) = E(Xn) = 1.

Xn =

{
1wp1/n

0wp1− 1/n
with Xn independent converges in L1and thus in prob-

ability to zero, but not to zero by Borel-Cantelli.

X =

{
1wp1/n

0wp1− 1/n
, Y = 1 − X. Obviously Y and X have the same

distribution but P (|X − Y | > 0) = 1, so we don't have convergence in
probability.

Problem 2

a) (i) P (A
⋂

B) ≥ 0) (ii) A1...An disjoint,
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Q (
⋃∞

i=1 Ai) = P ((
⋃∞

i=1 Ai)
⋂

B) =P (
⋃∞

i=1 (Ai
⋂

B)) = {disjoint} =
∑∞

i=1 P (Ai
⋂

B) =∑∞
i=1 Q(Ai)

For Q to be a probability measure, we need Q(Ω) = P (Ω
⋂

B) = P (B) = 1.

b) Start with indicators

(i) X = IA. Then E(X; B) =
∫
B IAdP = P (A

⋂
B) = Q(A) =

∫
Ω XdQ

(ii) X =
∑n

i=1 akIAk
. Then

∫
Ω XdQ =

∫
Ω

∑n
i=1 akIAk

dQ =
∑n

i=1 ak

∫
Ω IAk

dQ =∑
akP (AkB)=

∫
B

∑n
i=1 akIAk

dP = E(X; B).

(iii) X ≥ 0. Let 0 ≤ Xn ↑ X with Xnsimple and
∫
Ω XdQ = ...=

∫
B XdP

(iv) General X. Proceed as usual.

Problem 3

a) It means that (i) Yn is σ(X1...Xn) measurable and (ii) E(Yn+1|σ(X1...Xn)) =
Yn.

b) 1) Ynis a function of X1...Xnand thus σ(X1...Xn) measurable, and E(Yn+1|σ(X1...Xn)) =
{independent} =E(Yn+1) = 0 6= Yn, so it's not a martingale.

2) Ynis a function of X1...Xnand thus σ(X1...Xn) measurable, and E(Yn+1|σ(X1...Xn)) =∑n
k=1 Xk + E(Xn+1) =

∑n
k=1 Xk = Yn, so it's a martingale.

3) Ynis NOT a function of X1...Xnand thus NOT σ(X1...Xn) measurable, so
it's not a martingale.

4) Ynis a function of X1...Xnand thus σ(X1...Xn) measurable and E(Yn+1|σ(X1...Xn)) =∏n
i=1 XiE(Xn+1) = 0 6= Yn, so not a martingale.

5) Ynis a function of X1...Xnand thus σ(X1...Xn) measurable and E(Yn+1|σ(X1...Xn)) =∏n
i=1 2XiE(2Xn+1), and E(2Xn+1) = 1

2
2−1 + 1

2
2 6= 1, so it's not a martingale.

Problem 4

By the Strong Law of Large Numbers,
∑

Xi/n converges to 1/2 almost surely.
For logGn = 1

n

∑
logXi, since E(logX) = −1 (can be found integrating the

pdf as usual) by SLLN again we have that logGn converges almost surely to
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−1. Hence by the Continuous Mapping Principle Gn converges almost surely
to e−1.

Now since E(1/X) = ∞, by SLLN 1
n

∑ 1
Xi
→a.s. ∞ and by CMP n∑

1/Xi
→a.s.

0. (note that SLLN also applies when the expectation is ∞.

Problem 5

1) The chain is irreducible since all states communicate and the period of all
states is 1 since p22 > 0 and periodicity is a class property. To �nd E(τ0)
we'll �nd the stationary distribution �rst. π = πP gives π0 = 1/4, π1 = 1/4,
π2 = 1/2 and thus E(τ0) = 1/π0 = 4.

2) a)This is a branching process, so E(Zn) = (2p)n.

b) We know that π = 1 i� 2p ≤ 1 so p ≤ 1/2. Hence for p > 1/2 we got
π < 1, and π is the smallest solution to π = G(π), where G is the pgf of a
binomial(2,p). Solve for s inG(s) = (1 − p)2 + 2p(1 − p)s + p2s2 = s to get
π =

(
1−p

p

)2
.

c) By independence, it's πN .

Problem 6

b) For X continuous we know F (X) is Unif(0, 1) and hence E(X) = 1/2.
For X categorical consider Y = Fx(X), and let Z be any continuous random
variable such that it's cdf �matches� the cdf of X in each of its jumps, i.e.
Fz(z) = P (Z ≤ z) = P (X ≤ z) = Fx(z) for all z discontinuity point. Note
that Fz(z) ≥ Fx(z), with strict equality in the discontinuity points (if this is
confusing, plotting both cdfs may help to see it clearer). That gives us that
E(FX(z)) ≥ E(FZ(z)) = 1/2, the latter equality due to Z being a continuous
random variable.

c) I don't know how to do it.
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Probability January 2004

Problem 1

a) Usual de�nition

b) (i) Let x ∈ (0, 1). P (mn ≤ x) = 1 − P (mn > x) = 1 − (P (X1 > x))n =
1− (1− x)n → 1, i.e. mn →D 0

(ii) P (nmn ≤ x) = 1− (P (X1 > x/n))n = 1− (1− x/n)n → 1− e−x, which
is the cdf of an exp(1).

c) Theorem.
∑

P (|Xn −X| > ε) < ∞⇒ Xn →a.s. X

Since
∑

P (|mn − 0| > ε) =
∑

P (mn > ε) =
∑

(1 − ε)n < ∞, we have
mn →a.s. 0. In general nmn doesn't converge almost surely to X, although
by Skorohod's theorem we know that ∃Yn =D nmn, Y =D X such that
Yn → Y .

Problem 2

a) Delta method.

b) Let's �nd �rst the asymptotic distribution of logGn = 1
n

∑
logXi. It can

be seen that E(logXi) = −1
2
and V (logXi) = 1

4
, so by the Central Limit

Theorem
√

n
(
logGn + 1

2

)
→D N(0, 1/4), and since g(x) = ex ⇒ g′(x) =

exthe delta method gives that
√

n
(
Gn − e−1/2

)
→D N(0, e/4)

Now, for Hnlet's �rst �nd the asymptotic distribution of H−1
n = 1

n

∑ 1
Xk

.
Since E(1/X) = 2, V (1/X) = ∞ the CLT doesn't apply to H−1

n .

Problem 3

a) BCI and BCII

b) (i) Xn =

{
n2 wp1/n2

0 wp1− 1/n2

}
independent.
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(ii) Xn =

{
n− 1 wp1/n

0 wp1− 1/n

}
doesn't converge in L1 nor a.s., but it does

in probability.

(iii) Xn =

{
n wp1− 1/n2

−n(n2 − 1) wp1/n2

}
, by BCI Xn →a.s. −∞, but E(Xn) =

0.

(iv) Xn =

{
n wp1− 1/n2

−n4 wp1/n2

}
. By BCI Xn →a.s. 0 but E(Xn) → −∞.

Problem 4

1) (a) {0} is transient and {1}, {2} are recurrent.

(b) We can �nd the stationary distribution of the Markov Chain de�ned by
{1, 2},

P =

(
1
3

2
3

1
3

2
3

)
and π = πP gives π1 = 1/3 and π2 = 2/3. Hence E(N |X0 =

2) = 3/2.

(c) Let Y be the number of transitions until we leave 0. P (Y = y) = 2
3

(
1
3

)y−1

for y = 1, 2, 3... i.e. Y ∼ Geom(2/3). Hence E(Y ) = 3/2.

2) Not necessary

Problem 5

a) State MCT and DCT

b) (i)
∫∞
1 I[n,n+1](x)dx =

∫ n+1
n dx = 1 ∀n

(ii) Since
∣∣∣ sin(nx)

enxx2

∣∣∣ ≤ 1
exx2 whic is integrable, DCT gives

∫∞
1

sin(nx)
enx

1
x2 dx →∫∞

1
1
x2 lim

sin(nx)
enx dx = 0

(iii)
∫∞
1 x/ndx = 1

n

∫∞
1 xdx = ∞ ∀n

(iv) For n odd, −
∫∞
1 x/n2dx = − 1

n2∞ = −∞ ∀n, and for n even
∫∞
1 x/n2dx =

1
n2∞ = ∞ ∀n, so the limit doesn't exist.

5



(v) The function inside the integral is positive and decreasing with n, with
its limit being 0 so for n ≥ 2∣∣∣ (1+nx2)
(1+x2)n

∣∣∣ < 1+2x2

(1+x2)2
which is integrable since the degree of the denominator is

4 and for the numerator it's 2. Hence DCT applies to give
∫∞
1

(1+nx2)
(1+x2)n dx →∫∞

1 lim (1+nx2)
(1+x2)n dx = 0.

Problem 6

a) Yn is a function of X1...Xn ⇒ σ(X1...Xn) measurable. Some algebra
shows that E(S4

n+1|σ(X1...Xn)) = S4
n + 6S2

n + 1, E(S2
n+1|σ(X1...Xn)) = S2

n +
1. Thus E(Yn+1|σ(X1...Xn)) =E(S4

n+1 − 6(n + 1)S2
n+1 + 3(n + 1)2 + 2(n +

1)|σ(X1...Xn))= ... = S4
n − 6nS2

n + 3n2 + 2n = Yn.

Hence {Yn}is a martingale.

b) The optional stopping theorem gives that Yo, Yν is a martingale so in
particular E(Yν) = E(Yo) = 0. Since E(Yν) = E(S4

ν − 6νS2
ν + 3ν2 + 2ν) =

... = −5a4 + 2a2 + 3E(ν2), we get that

E(ν2) = 5a4−2a2

3
and V (ν) = 2

3
a2(a2 − 1).
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