Probability A exam solutions

David Rossell i Ribera

11th January 2005

I may have committed a number of errors in writing these solutions, but they should be fine for the most part. Use them at your own risk!

Probability January 2003

Problem 1

a) Usual definitions

b) $X_n = \begin{cases} n^2 w p 1/n^2 \\ 0 w p 1 - 1/n^2 \end{cases}$ converges a.s. to zero by Borel-Cantelli and hence also in probability, but not in L_1 since $E(X_n - 0) = E(X_n) = 1$.

 $X_n = \begin{cases} 1wp1/n \\ 0wp1 - 1/n \end{cases}$ with X_n independent converges in L_1 and thus in probability to zero, but not to zero by Borel-Cantelli.

 $X = \begin{cases} 1wp1/n \\ 0wp1-1/n \end{cases}, Y = 1 - X. Obviously Y and X have the same distribution but <math>P(|X - Y| > 0) = 1$, so we don't have convergence in probability.

Problem 2

a) (i) $P(A \cap B) \ge 0$) (ii) $A_1...A_n$ disjoint,

 $\begin{array}{l} Q\left(\bigcup_{i=1}^{\infty}A_{i}\right)=P\left(\left(\bigcup_{i=1}^{\infty}A_{i}\right)\cap B\right)=P\left(\bigcup_{i=1}^{\infty}\left(A_{i}\cap B\right)\right)=\left\{disjoint\right\}=\sum_{i=1}^{\infty}P(A_{i}\cap B)=\sum_{i=1}^{\infty}Q(A_{i})\end{array}$

For Q to be a probability measure, we need $Q(\Omega) = P(\Omega \cap B) = P(B) = 1$.

b) Start with indicators

(i) $X = I_A$. Then $E(X; B) = \int_B I_A dP = P(A \cap B) = Q(A) = \int_\Omega X dQ$

(ii) $X = \sum_{i=1}^{n} a_k I_{A_k}$. Then $\int_{\Omega} X dQ = \int_{\Omega} \sum_{i=1}^{n} a_k I_{A_k} dQ = \sum_{i=1}^{n} a_k \int_{\Omega} I_{A_k} dQ = \sum a_k P(A_k B) = \int_B \sum_{i=1}^{n} a_k I_{A_k} dP = E(X; B).$

(iii) $X \ge 0$. Let $0 \le X_n \uparrow X$ with X_n simple and $\int_{\Omega} X dQ = \ldots = \int_B X dP$

(iv) General X. Proceed as usual.

Problem 3

a) It means that (i) Y_n is $\sigma(X_1...X_n)$ measurable and (ii) $E(Y_{n+1}|\sigma(X_1...X_n)) = Y_n$.

b) 1) Y_n is a function of $X_1...X_n$ and thus $\sigma(X_1...X_n)$ measurable, and $E(Y_{n+1}|\sigma(X_1...X_n)) = \{independent\} = E(Y_{n+1}) = 0 \neq Y_n$, so it's not a martingale.

2) Y_n is a function of $X_1...X_n$ and thus $\sigma(X_1...X_n)$ measurable, and $E(Y_{n+1}|\sigma(X_1...X_n)) = \sum_{k=1}^n X_k + E(X_{n+1}) = \sum_{k=1}^n X_k = Y_n$, so it's a martingale.

3) Y_n is NOT a function of $X_1...X_n$ and thus NOT $\sigma(X_1...X_n)$ measurable, so it's not a martingale.

4) Y_n is a function of $X_1...X_n$ and thus $\sigma(X_1...X_n)$ measurable and $E(Y_{n+1}|\sigma(X_1...X_n)) = \prod_{i=1}^n X_i E(X_{n+1}) = 0 \neq Y_n$, so not a martingale.

5) Y_n is a function of $X_1...X_n$ and thus $\sigma(X_1...X_n)$ measurable and $E(Y_{n+1}|\sigma(X_1...X_n)) = \prod_{i=1}^n 2^{X_i} E(2^{X_{n+1}})$, and $E(2^{X_{n+1}}) = \frac{1}{2}2^{-1} + \frac{1}{2}2 \neq 1$, so it's not a martingale.

Problem 4

By the Strong Law of Large Numbers, $\sum X_i/n$ converges to 1/2 almost surely. For $\log G_n = \frac{1}{n} \sum \log X_i$, since $E(\log X) = -1$ (can be found integrating the pdf as usual) by SLLN again we have that $\log G_n$ converges almost surely to -1. Hence by the Continuous Mapping Principle G_n converges almost surely to e^{-1} .

Now since $E(1/X) = \infty$, by SLLN $\frac{1}{n} \sum \frac{1}{X_i} \to_{a.s.} \infty$ and by CMP $\frac{n}{\sum 1/X_i} \to_{a.s.} 0$. (note that SLLN also applies when the expectation is ∞ .

Problem 5

1) The chain is irreducible since all states communicate and the period of all states is 1 since $p_{22} > 0$ and periodicity is a class property. To find $E(\tau_0)$ we'll find the stationary distribution first. $\pi = \pi P$ gives $\pi_0 = 1/4$, $\pi_1 = 1/4$, $\pi_2 = 1/2$ and thus $E(\tau_0) = 1/\pi_0 = 4$.

2) a) This is a branching process, so $E(Z_n) = (2p)^n$.

b) We know that $\pi = 1$ iff $2p \leq 1$ so $p \leq 1/2$. Hence for p > 1/2 we got $\pi < 1$, and π is the smallest solution to $\pi = G(\pi)$, where G is the pgf of a binomial(2,p). Solve for s in $G(s) = (1-p)^2 + 2p(1-p)s + p^2s^2 = s$ to get $\pi = \left(\frac{1-p}{p}\right)^2$.

c) By independence, it's π^N .

Problem 6

b) For X continuous we know F(X) is Unif(0,1) and hence E(X) = 1/2. For X categorical consider $Y = F_x(X)$, and let Z be any continuous random variable such that it's cdf "matches" the cdf of X in each of its jumps, i.e. $F_z(z) = P(Z \le z) = P(X \le z) = F_x(z)$ for all z discontinuity point. Note that $F_z(z) \ge F_x(z)$, with strict equality in the discontinuity points (if this is confusing, plotting both cdfs may help to see it clearer). That gives us that $E(F_X(z)) \ge E(F_Z(z)) = 1/2$, the latter equality due to Z being a continuous random variable.

c) I don't know how to do it.

Probability January 2004

Problem 1

a) Usual definition

b) (i) Let $x \in (0,1)$. $P(m_n \le x) = 1 - P(m_n > x) = 1 - (P(X_1 > x))^n = 1 - (1-x)^n \to 1$, i.e. $m_n \to 0$

(ii) $P(nm_n \le x) = 1 - (P(X_1 > x/n))^n = 1 - (1 - x/n)^n \to 1 - e^{-x}$, which is the cdf of an exp(1).

c) Theorem. $\sum P(|X_n - X| > \epsilon) < \infty \Rightarrow X_n \rightarrow_{a.s.} X$

Since $\sum P(|m_n - 0| > \epsilon) = \sum P(m_n > \epsilon) = \sum (1 - \epsilon)^n < \infty$, we have $m_n \to_{a.s.} 0$. In general nm_n doesn't converge almost surely to X, although by Skorohod's theorem we know that $\exists Y_n =^D nm_n, Y =^D X$ such that $Y_n \to Y$.

Problem 2

a) Delta method.

b) Let's find first the asymptotic distribution of $logG_n = \frac{1}{n} \sum logX_i$. It can be seen that $E(logX_i) = -\frac{1}{2}$ and $V(logX_i) = \frac{1}{4}$, so by the Central Limit Theorem $\sqrt{n} \left(logG_n + \frac{1}{2} \right) \rightarrow^D N(0, 1/4)$, and since $g(x) = e^x \Rightarrow g'(x) = e^x$ the delta method gives that $\sqrt{n} \left(G_n - e^{-1/2} \right) \rightarrow^D N(0, e/4)$

Now, for H_n let's first find the asymptotic distribution of $H_n^{-1} = \frac{1}{n} \sum \frac{1}{X_k}$. Since E(1/X) = 2, $V(1/X) = \infty$ the CLT doesn't apply to H_n^{-1} .

Problem 3

a) BCI and BCII b) (i) $X_n = \begin{cases} n^2 & wp1/n^2 \\ 0 & wp1 - 1/n^2 \end{cases}$ independent. (ii) $X_n = \begin{cases} n-1 & wp1/n \\ 0 & wp1-1/n \end{cases}$ doesn't converge in L_1 nor a.s., but it does in probability.

(iii)
$$X_n = \begin{cases} n & wp1 - 1/n^2 \\ -n(n^2 - 1) & wp1/n^2 \end{cases}$$
, by BCI $X_n \to_{a.s.} -\infty$, but $E(X_n) = 0$.
(iv) $X_n = \begin{cases} n & wp1 - 1/n^2 \\ -n^4 & wp1/n^2 \end{cases}$. By BCI $X_n \to_{a.s.} 0$ but $E(X_n) \to -\infty$.

Problem 4

1) (a) $\{0\}$ is transient and $\{1\}, \{2\}$ are recurrent.

(b) We can find the stationary distribution of the Markov Chain defined by $\{1, 2\}$,

$$P = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$
 and $\pi = \pi P$ gives $\pi_1 = 1/3$ and $\pi_2 = 2/3$. Hence $E(N|X_0 = 2) = 3/2$.

(c) Let Y be the number of transitions until we leave 0. $P(Y = y) = \frac{2}{3} \left(\frac{1}{3}\right)^{y-1}$ for y = 1, 2, 3... i.e. $Y \sim Geom(2/3)$. Hence E(Y) = 3/2.

2) Not necessary

Problem 5

a) State MCT and DCT b) (i) $\int_{1}^{\infty} I_{[n,n+1]}(x) dx = \int_{n}^{n+1} dx = 1 \ \forall n$ (ii) Since $\left|\frac{sin(nx)}{e^{nx}x^{2}}\right| \leq \frac{1}{e^{x}x^{2}}$ whic is integrable, DCT gives $\int_{1}^{\infty} \frac{sin(nx)}{e^{nx}} \frac{1}{x^{2}} dx \rightarrow \int_{1}^{\infty} \frac{1}{x^{2}} lim \frac{sin(nx)}{e^{nx}} dx = 0$ (iii) $\int_{1}^{\infty} x/n dx = \frac{1}{n} \int_{1}^{\infty} x dx = \infty \ \forall n$ (iv) For $n \ \text{odd}, -\int_{1}^{\infty} x/n^{2} dx = -\frac{1}{n^{2}}\infty = -\infty \ \forall n$, and for $n \ \text{even } \int_{1}^{\infty} x/n^{2} dx = \frac{1}{n^{2}}\infty = \infty \ \forall n$, so the limit doesn't exist. (v) The function inside the integral is positive and decreasing with n, with its limit being 0 so for $n \ge 2$

 $\left|\frac{(1+nx^2)}{(1+x^2)^n}\right| < \frac{1+2x^2}{(1+x^2)^2} \text{ which is integrable since the degree of the denominator is } 4 \text{ and for the numerator it's } 2. \text{ Hence DCT applies to give } \int_1^\infty \frac{(1+nx^2)}{(1+x^2)^n} dx \rightarrow \int_1^\infty \lim \frac{(1+nx^2)}{(1+x^2)^n} dx = 0.$

Problem 6

a) Y_n is a function of $X_1...X_n \Rightarrow \sigma(X_1...X_n)$ measurable. Some algebra shows that $E(S_{n+1}^4|\sigma(X_1...X_n)) = S_n^4 + 6S_n^2 + 1$, $E(S_{n+1}^2|\sigma(X_1...X_n)) = S_n^2 + 1$. Thus $E(Y_{n+1}|\sigma(X_1...X_n)) = E(S_{n+1}^4 - 6(n+1)S_{n+1}^2 + 3(n+1)^2 + 2(n+1)|\sigma(X_1...X_n)) = ... = S_n^4 - 6nS_n^2 + 3n^2 + 2n = Y_n$.

Hence $\{Y_n\}$ is a martingale.

b) The optional stopping theorem gives that Y_o , Y_{ν} is a martingale so in particular $E(Y_{\nu}) = E(Y_o) = 0$. Since $E(Y_{\nu}) = E(S_{\nu}^4 - 6\nu S_{\nu}^2 + 3\nu^2 + 2\nu) = \dots = -5a^4 + 2a^2 + 3E(\nu^2)$, we get that

 $E(\nu^2) = \frac{5a^4 - 2a^2}{3}$ and $V(\nu) = \frac{2}{3}a^2(a^2 - 1)$.