#LyX 1.3 created this file. For more info see http://www.lyx.org/ \lyxformat 221 \textclass article \language english \inputencoding auto \fontscheme default \graphics default \paperfontsize 12 \spacing single \papersize Default \paperpackage a4 \use_geometry 0 \use_amsmath 0 \use_natbib 0 \use_numerical_citations 0 \paperorientation portrait \secnumdepth 3 \tocdepth 3 \paragraph_separation skip \defskip medskip \quotes_language english \quotes_times 2 \papercolumns 1 \papersides 1 \paperpagestyle default \layout Title Statistics A exam solutions (2003-2004) \layout Author David Rossell i Ribera \layout Standard I may have committed a number of errors in writing these solutions, but they should be fine for the most part.Use at your own risk! \layout Section* Statistics May 2003 \layout Section* Problem 1 \layout Standard a) \begin_inset Formula $g(p)$ \end_inset is U-estimable iff \begin_inset Formula $\sum_{x=0}^{n}h(x)\left(\begin{array}{c} n\\ x\end{array}\right)p^{x}(1-p)^{n-x}=g(p)$ \end_inset . The left hand side is a sum of polynomial of degree \begin_inset Formula $\leq n$ \end_inset , and hence the right hand side has to be a polynomial of degree \begin_inset Formula $\leq n$ \end_inset . \layout Standard b) From section a) we know that \begin_inset Formula $h(x)$ \end_inset has to be such that the sumation equals \begin_inset Formula $p(1-p)^{2}=p-2p^{2}+p^{3}$ \end_inset . Hence it suffices to choose \begin_inset Formula $h(x)$ \end_inset such that the coefficient affecting \begin_inset Formula $p$ \end_inset in the left hand side is \begin_inset Formula $1$ \end_inset , for \begin_inset Formula $p^{2}$ \end_inset it's \begin_inset Formula $-2$ \end_inset and for \begin_inset Formula $p^{3}$ \end_inset it's \begin_inset Formula $1$ \end_inset . To do this we need to get through some messy algebra to expand the left hand side expression. \layout Standard prova prova \layout Standard Hint: \begin_inset Formula $(1-p)^{n-x}=(1+(-p))^{n-x}=\sum_{k=0}^{n-x}\left(\begin{array}{c} n-x\\ k\end{array}\right)1^{k}(-p)^{n-x-k}$ \end_inset \layout Standard so \begin_inset Formula $\sum_{x=0}^{n}h(x)\left(\begin{array}{c} n\\ x\end{array}\right)p^{x}(1-p)^{n-x}=$ \end_inset \begin_inset Formula $\sum_{x=0}^{n}\sum_{k=0}^{n-x}h(x)\left(\begin{array}{c} n\\ x\end{array}\right)\left(\begin{array}{c} n-x\\ k\end{array}\right)(-1)^{n-k}p^{n-k}$ \end_inset \layout Standard c) \begin_inset Formula $g(x)=sin^{-1}(\sqrt{x})$ \end_inset gives \begin_inset Formula $g'(x)=\frac{1}{2\sqrt{x}cos(sin^{-1}(x))}$ \end_inset , and thus \begin_inset Formula $\left(g'(x)\right)^{2}=\frac{1}{4xcos^{2}(sin^{-1}(x))}$ \end_inset \begin_inset Formula $=\frac{1}{4x\left(1-sin^{2}(sin^{-1}(x))\right)}=\frac{1}{4x\left(1-(\sqrt{x})^{2}\right)}$ \end_inset \begin_inset Formula $=\frac{1}{4x(1-x)}$ \end_inset \layout Standard The delta method gives that \begin_inset Formula $\sqrt{n}\left(sin^{-1}\left(\sqrt{x/n}\right)-sin^{-1}\left(\sqrt{p}\right)\right)\rightarrow^{D}N\left(0,\frac{1}{4}\right)$ \end_inset . \layout Section* Problem 2 \layout Standard a) Note that \begin_inset Formula $\int f_{\theta}(x)d\mu(x)=1\Rightarrow\int h(x)e^{\theta'T}d\mu(x)=e^{A(\theta)}$ \end_inset , which is convex. Hence \begin_inset Formula $e^{A(\alpha\theta_{1}+(1-\alpha)\theta_{2})}\leq\alpha e^{A(\theta_{1})}+(1-\alpha)e^{A(\theta_{2})}<\infty$ \end_inset . \layout Standard b) First, let's derivate w.r.t. \begin_inset Formula $\theta_{i}$ \end_inset . \begin_inset Formula $\int h(x)e^{\theta'T}d\mu(x)=e^{A(\theta)}\Rightarrow\int h(x)e^{\theta'T}T_{i}(x)d\mu(x)=e^{A(\theta)}\frac{d}{d\theta_{i}}A(\theta)$ \end_inset \begin_inset Formula $\Rightarrow\frac{d}{d\theta_{i}}A(\theta)=\int h(x)e^{\theta'T-A(\theta)}T_{i}(x)d\mu(x)=E(T_{i}(X))$ \end_inset . \layout Standard Now let's derivate again w.r.t. \begin_inset Formula $\theta_{j}$ \end_inset . \begin_inset Formula $\frac{d^{2}}{d\theta_{i}d\theta_{j}}A(\theta)=\frac{d}{d\theta_{j}}\int h(x)e^{\theta'T-A(\theta)}T_{i}(x)d\mu(x)$ \end_inset \begin_inset Formula $=\int h(x)e^{\theta'T-A(\theta)}(T_{j}(x)-\frac{d}{d\theta_{j}}A(\theta))T_{i}(x)d\mu(x)$ \end_inset \begin_inset Formula $=E(T_{i}(X)T_{j}(X))-E(T_{i}(X))E(T_{j}(X))=COV(T_{i}(X),T_{j}(X))$ \end_inset . \layout Standard c) The likelihood is \begin_inset Formula $f_{p}(x)=\frac{n!}{\prod x_{i}!}exp\left\{ \sum_{i=0}^{r}x_{i}logp_{i}\right\} $ \end_inset \begin_inset Formula $=\frac{n!}{\prod x_{i}!}exp\left\{ nlogp_{0}+\sum_{i=0}^{r}x_{i}log\frac{p_{i}}{p_{0}}\right\} $ \end_inset . Now let \begin_inset Formula $\eta_{i}=log\frac{p_{i}}{p_{0}}\Rightarrow p_{0}=(1+\sum_{i=1}^{r}e^{\eta_{i}})$ \end_inset , so we get \layout Standard \begin_inset Formula $f_{\eta}(x)=\frac{n!}{\prod x_{i}!}exp\left\{ \sum x_{i}\eta_{i}-nlog(1+\sum e^{\eta_{i}})\right\} $ \end_inset . Hence \begin_inset Formula $A(\eta)=nlog(1+\sum e^{\eta_{i}})$ \end_inset \begin_inset Formula $\Rightarrow\frac{d}{d\eta_{i}}A(\eta)=\frac{ne^{\eta_{i}}}{1+\sum e^{\eta_{i}}}=np_{i}$ \end_inset . \layout Standard And so on... \layout Section* Problem 3 \layout Standard a) Easy \layout Standard b) \begin_inset Formula $E($ \end_inset \begin_inset Formula $\hat{\sigma}^{2})=E\left(\frac{n-1}{n}S^{2}\right)=\frac{1}{n}E((n-1)S^{2})=\frac{1}{n}\sigma^{2}(n-1)$ \end_inset , so \begin_inset Formula $S^{2}=\frac{n}{n-1}\hat{\sigma}^{2}$ \end_inset is unbiased and a function of the complete & sufficient statistic \begin_inset Formula $\Rightarrow$ \end_inset UMVUE by Lehmann-Scheffe \layout Standard c) \begin_inset Formula $f(\mu,\sigma^{2})\propto(2\tau)^{n}e^{-\tau\sum(x_{i}-\mu)^{2}}\frac{\alpha^{g}}{\Gamma(g)}\tau^{g-1}e^{-\alpha\tau}\propto...$ \end_inset \begin_inset Formula $\propto\tau^{n+g-1}e^{-\tau(\alpha+\sum x_{i}^{2})}e^{-n\tau(\mu-\overline{X})^{2}}$ \end_inset , so \begin_inset Formula $f(\mu|\tau,x)$ \end_inset is \begin_inset Formula $N(\bar{X},n\tau)$ \end_inset and \begin_inset Formula $f(\tau|x)$ \end_inset is \begin_inset Formula $Gamma(n+g,\alpha+\sum x_{i}^{2})$ \end_inset . The Bayes estimator is the posterior mean, \begin_inset Formula $\frac{n+g}{\alpha+\sum x_{i}^{2}}$ \end_inset . \layout Standard d) Under Squared Error Loss we need to consider the Bias & Variance of each estimator \layout Standard For \begin_inset Formula $\hat{\sigma}^{2}$ \end_inset . Bias is \begin_inset Formula $\sigma^{2}/n$ \end_inset and variance \begin_inset Formula $\frac{\sigma^{4}2(n-1)}{n^{2}}$ \end_inset , so \begin_inset Formula $MSE=\sigma^{4}\left(\frac{2n-1}{n^{2}}\right)$ \end_inset . \layout Standard For \begin_inset Formula $S^{2}$ \end_inset . Bias is \begin_inset Formula $0$ \end_inset and variance is \begin_inset Formula $\frac{2\sigma^{4}}{n-1}$ \end_inset , so \begin_inset Formula $MSE=\frac{2\sigma^{4}}{n-1}$ \end_inset . \layout Standard Since \begin_inset Formula $\frac{2n-1}{n^{2}}<\frac{2}{n-1}=\frac{2n}{n^{2}-n}$ \end_inset , \begin_inset Formula $S^{2}$ \end_inset is inadmissible under Squared Error Loss. \layout Section* Problem 4 \layout Standard a) Neymann-Pearson lemma. \layout Standard b) Let \begin_inset Formula $\theta_{1}<\theta_{2}$ \end_inset . The Likelihood Ratio takes the form \begin_inset Formula $\frac{\theta_{2}^{x}(1-\theta_{2})^{n-x}}{\theta_{1}^{x}(1-\theta_{1})^{n-x}}$ \end_inset , which is increasing with \begin_inset Formula $x$ \end_inset . Hence a MP test will reject for large values of \begin_inset Formula $x$ \end_inset . \layout Standard \begin_inset Formula $\phi(x)=\left\{ \begin{array}{cc} 1 & ,x>c\\ \beta & ,x=c\\ 0 & ,xc)+\beta P_{1/2}(X=c)$ \end_inset = \begin_inset Formula $\alpha$ \end_inset . \layout Standard Playing with different values we get \begin_inset Formula $c=3$ \end_inset and \begin_inset Formula $\beta=0.14$ \end_inset . \layout Standard c) By Karlin-Rubin the test in section b) is UMP. \layout Standard d) Denote \begin_inset Formula $\phi_{1}(X)$ \end_inset the test defined in section b), which is the essentially unique UMP in the region \begin_inset Formula $\theta\in(\frac{1}{2},1]$ \end_inset . Hence the test \begin_inset Formula $\phi_{1}(X)$ \end_inset is the only possible UMP, since no other test beats its in the region \begin_inset Formula $\theta\in(\frac{1}{2},1]$ \end_inset . We'll show there's no UMP by seeing that \begin_inset Formula $\phi_{1}(X)$ \end_inset is no UMP. \layout Standard Further the power \begin_inset Formula $\gamma_{1}(\theta)$ \end_inset of this test increases with \begin_inset Formula $\theta$ \end_inset (one of the corollaries of Karlin-Rubin gives this), and hence \begin_inset Formula $\gamma_{1}(\theta)<\alpha$ \end_inset for \begin_inset Formula $\theta<1/2$ \end_inset . But the test \begin_inset Formula $\phi_{2}(X)=a$ \end_inset has greater power and it's level \begin_inset Formula $\alpha$ \end_inset , and hence there's no UMP. \layout Section* Problem 5 \layout Standard a) \begin_inset Formula $\Rightarrow)$ \end_inset Let \begin_inset Formula $Y=|X|$ \end_inset . \begin_inset Formula $E(Y)=\int Y^{p}dP=\int_{\{ Y\leq y\}}Y^{p}dP+\int_{\{ Y>y\}}Y^{p}dP$ \end_inset \begin_inset Formula $\geq\int_{\{ Y\leq y\}}Y^{p}dP+y^{p}P(Y\geq y)$ \end_inset \begin_inset Formula $\Rightarrow y^{p}P(Y\geq y)\leq E(Y)-\int_{\{ Y\leq y\}}Y^{p}dP$ \end_inset \begin_inset Formula $\rightarrow_{y\rightarrow\infty}0$ \end_inset , as desired. \layout Standard \begin_inset Formula $\Leftarrow)$ \end_inset \begin_inset Formula $E(|X|^{p-\epsilon})=\int(p-\epsilon)|x|^{p-\epsilon-1}P(|X|>x)dx=$ \end_inset \begin_inset Formula $\int_{0}^{M}(p-\epsilon)|x|^{p-\epsilon-1}P(|X|>x)dx+\int_{M}^{\infty}(p-\epsilon)|x|^{-(1+\epsilon)}|x|^{p}P(|X|>x)dx$ \end_inset \begin_inset Formula $<\{|x|^{p}P(|X|>x)x)dx+N\int_{M}^{\infty}(p-\epsilon)|x|^{-(1+\epsilon)}dx<\infty$ \end_inset , since the left term is the integral of a bounded function in a bounded interval, and the right term is finite since \begin_inset Formula $|x|$ \end_inset is raised to the negative of a number greater than one. \layout Standard b) \begin_inset Formula $\hat{\beta}_{n}=\bar{X}/3$ \end_inset . By Central Limit Theorem, \begin_inset Formula $\sqrt{n}(\bar{X}-3\beta)\rightarrow N(0,3\beta^{2})$ \end_inset and by Delta Method \begin_inset Formula $\sqrt{n}(\bar{X}/3-\beta)\rightarrow N(0,\sigma^{2})$ \end_inset , where \begin_inset Formula $\sigma^{2}=3\beta^{2}\left(\frac{d}{d\beta}(\beta/3)\right)^{2}=\beta^{2}/3$ \end_inset . \layout Standard c) \begin_inset Formula $P\left(-z_{\alpha/2}<\frac{\sqrt{n}(\bar{X}-3\beta)}{\sqrt{\hat{\beta}_{n}/3}}k\end{array}\right.$ \end_inset , where \begin_inset Formula $\beta=\frac{\alpha-P_{\lambda_{0}}(\sum X_{i}10$ \end_inset rejects for large values of \begin_inset Formula $X$ \end_inset (by Karlin-Rubin) and for \begin_inset Formula $\mu<10$ \end_inset rejects for small values of \begin_inset Formula $X$ \end_inset , i.e. the UMP test for \begin_inset Formula $\mu>10$ \end_inset is different than the UMP test for \begin_inset Formula $\mu<10$ \end_inset and since they're both unique there can be no UMP test. \layout Standard d) LR test rejects for large values of \begin_inset Formula $\frac{e^{-\frac{1}{2}\sum(x_{i}-\bar{X})^{2}}}{e^{-\frac{1}{2}\sum(x_{i}-10)^{2}}}$ \end_inset or equivalently for large \begin_inset Formula $\sum(x_{i}-10)^{2}-\sum(x_{i}-\bar{X})^{2}$ \end_inset . With some algebra we can see that this is equivalent to rejecting for large \begin_inset Formula $|Z|$ \end_inset . Rejecting for \begin_inset Formula $|Z|>z_{\alpha/2}$ \end_inset gives a level \begin_inset Formula $\alpha$ \end_inset test. \layout Section* Problem 4 \layout Standard Times series, not necessary. \layout Section* Problem 5 \layout Standard a) Factorization theorem. \layout Standard b) By Rao-Blackwell any unbiased estimator can be improved by finding its exectation conditional on the suff stat, and so it follows that the best unbiased estimator has to be a function of the suff . Note that the UMVU may not be unique if we don't have completeness. \layout Standard Now, noting that the likelihood will be of the form \begin_inset Formula $log\left(g(T(x),\theta\right)+log(h(x))$ \end_inset , we can drop the second term since it doesn't depend on \begin_inset Formula $\theta$ \end_inset and maximize \begin_inset Formula $log\left(g(T(x),\theta)\right)$ \end_inset which will depend on the data only through \begin_inset Formula $T(x)$ \end_inset , the sufficient stat. \layout Standard The Bayes estimator is of the form \begin_inset Formula $E(\theta|X)=\int\theta f(\theta|X)d\theta$ \end_inset and \begin_inset Formula $f(\theta|X)=\frac{g(T(x),\theta)h(x)\pi(\theta)}{\int g(T(x),\theta)h(x)\pi(\theta)d\theta}$ \end_inset \begin_inset Formula $=\frac{g(T(x),\theta)\pi(\theta)}{\int g(T(x),\theta)\pi(\theta)d\theta}$ \end_inset which depends on the data only through \begin_inset Formula $T(x)$ \end_inset . \layout Standard c) \begin_inset Formula $lim_{n\rightarrow\infty}E_{\theta}(\delta_{n}(x))=\theta$ \end_inset , for all \begin_inset Formula $\theta\in\Theta$ \end_inset . \layout Standard d) (i) Likelihood is \begin_inset Formula $f_{\mu}(x)=(2\pi)^{-n/2}e^{-\frac{1}{2}\sum(x_{i}-\mu_{i})^{2}}$ \end_inset , and taking log and then derivative and setting equal to zero gives \begin_inset Formula $x_{i}=\mu_{i}$ \end_inset . Hence \begin_inset Formula $(\hat{\mu}_{1}...\hat{\mu}_{n})=(x_{1}...x_{n})$ \end_inset and by the invariance property of MLEs we get \begin_inset Formula $\hat{\theta}_{n}=\frac{1}{n}\sum\hat{\mu}_{i}^{2}=\frac{1}{n}\sum x_{i}^{2}$ \end_inset . \layout Standard (ii) We can find \begin_inset Formula $E(X_{j}^{2})=\mu_{j}^{2}+1$ \end_inset by using the 2nd derivative of the characteristic function of \begin_inset Formula $X_{j}$ \end_inset . Hence \begin_inset Formula $E(\hat{\theta}_{n})=1+\frac{1}{n}\sum\mu_{j}^{2}$ \end_inset and thus \begin_inset Formula $\theta_{n}^{*}$ \end_inset is unbiased. Now, we know that \begin_inset Formula $(x_{1}...x_{n})$ \end_inset is a sufficient statistic and it can be seen that the exponential family is full rank, so the sufficient statistic is also complete. Hence Lehman-Scheffe applies and \begin_inset Formula $\theta_{n}^{*}$ \end_inset is UMVU. Also, \begin_inset Formula $V(\theta_{n}^{*})=V(\hat{\theta}_{n}-1)=V(\hat{\theta}_{n})$ \end_inset and \begin_inset Formula $Bias(\theta_{n}^{*})