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I may have committed a number of errors in writing these solutions, but they
should be �ne for the most part.Use at your own risk!

Statistics May 2003

Problem 1

a) g(p) is U-estimable i�
∑n

x=0 h(x)

(
n
x

)
px(1−p)n−x = g(p). The left hand

side is a sum of polynomial of degree ≤ n, and hence the right hand side has
to be a polynomial of degree ≤ n.

b) From section a) we know that h(x) has to be such that the sumation
equals p(1 − p)2 = p − 2p2 + p3. Hence it su�ces to choose h(x) such that
the coe�cient a�ecting p in the left hand side is 1, for p2 it's −2 and for p3

it's 1. To do this we need to get through some messy algebra to expand the
left hand side expression.

prova prova

Hint: (1− p)n−x = (1 + (−p))n−x =
∑n−x

k=0

(
n− x

k

)
1k(−p)n−x−k

so
∑n

x=0 h(x)

(
n
x

)
px(1−p)n−x =

∑n
x=0

∑n−x
k=0 h(x)

(
n
x

)(
n− x

k

)
(−1)n−kpn−k
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c) g(x) = sin−1(
√

x) gives g′(x) = 1
2
√

xcos(sin−1(x))
, and thus (g′(x))2 =

1
4xcos2(sin−1(x))

= 1
4x(1−sin2(sin−1(x)))

= 1

4x(1−(
√

x)2)
= 1

4x(1−x)

The delta method gives that
√

n
(
sin−1

(√
x/n

)
− sin−1

(√
p
))
→D N

(
0, 1

4

)
.

Problem 2

a) Note that
∫

fθ(x)dµ(x) = 1 ⇒
∫

h(x)eθ′T dµ(x) = eA(θ), which is convex.
Hence eA(αθ1+(1−α)θ2) ≤ αeA(θ1) + (1− α)eA(θ2) < ∞.

b) First, let's derivate w.r.t. θi.
∫

h(x)eθ′T dµ(x) = eA(θ) ⇒
∫

h(x)eθ′T Ti(x)dµ(x) =
eA(θ) d

dθi
A(θ)⇒ d

dθi
A(θ) =

∫
h(x)eθ′T−A(θ)Ti(x)dµ(x) = E(Ti(X)).

Now let's derivate again w.r.t. θj. d2

dθidθj
A(θ) = d

dθj

∫
h(x)eθ′T−A(θ)Ti(x)dµ(x)=∫

h(x)eθ′T−A(θ)(Tj(x)− d
dθj

A(θ))Ti(x)dµ(x)= E(Ti(X)Tj(X))−E(Ti(X))E(Tj(X)) =

COV (Ti(X), Tj(X)).

c) The likelihood is fp(x) = n!∏
xi!

exp {∑r
i=0 xilogpi}= n!∏

xi!
exp

{
nlogp0 +

∑r
i=0 xilog

pi

p0

}
.

Now let ηi = log pi

p0
⇒ p0 = (1 +

∑r
i=1 eηi), so we get

fη(x) = n!∏
xi!

exp {∑xiηi − nlog(1 +
∑

eηi)}. Hence A(η) = nlog(1+
∑

eηi)⇒
d

dηi
A(η) = neηi

1+
∑

eηi
= npi.

And so on...

Problem 3

a) Easy

b) E(σ̂2) = E
(

n−1
n

S2
)

= 1
n
E((n − 1)S2) = 1

n
σ2(n − 1), so S2 = n

n−1
σ̂2 is

unbiased and a function of the complete & su�cient statistic⇒ UMVUE by
Lehmann-Sche�e

c) f(µ, σ2) ∝ (2τ)ne−τ
∑

(xi−µ)2 αg

Γ(g)
τ g−1e−ατ ∝ ...∝ τn+g−1e−τ(α+

∑
x2

i )e−nτ(µ−X)2 ,
so f(µ|τ, x) is N(X̄, nτ) and f(τ |x) is Gamma(n + g, α +

∑
x2

i ). The Bayes
estimator is the posterior mean, n+g

α+
∑

x2
i
.
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d) Under Squared Error Loss we need to consider the Bias & Variance of
each estimator

For σ̂2. Bias is σ2/n and variance σ42(n−1)
n2 , so MSE = σ4

(
2n−1

n2

)
.

For S2. Bias is 0 and variance is 2σ4

n−1
, so MSE = 2σ4

n−1
.

Since 2n−1
n2 < 2

n−1
= 2n

n2−n
, S2 is inadmissible under Squared Error Loss.

Problem 4

a) Neymann-Pearson lemma.

b) Let θ1 < θ2. The Likelihood Ratio takes the form θx
2 (1−θ2)n−x

θx
1 (1−θ1)n−x , which is

increasing with x. Hence a MP test will reject for large values of x.

φ(x) =


1 , x > c
β , x = c
0 , x < c

, where P1/2(X > c) + βP1/2(X = c)=α.

Playing with di�erent values we get c = 3 and β = 0.14.

c) By Karlin-Rubin the test in section b) is UMP.

d) Denote φ1(X) the test de�ned in section b), which is the essentially unique
UMP in the region θ ∈ (1

2
, 1]. Hence the test φ1(X) is the only possible UMP,

since no other test beats its in the region θ ∈ (1
2
, 1]. We'll show there's no

UMP by seeing that φ1(X) is no UMP.

Further the power γ1(θ) of this test increases with θ (one of the corollaries
of Karlin-Rubin gives this), and hence γ1(θ) < α for θ < 1/2. But the test
φ2(X) = a has greater power and it's level α, and hence there's no UMP.

Problem 5

a) ⇒) Let Y = |X|. E(Y ) =
∫

Y pdP =
∫
{Y≤y} Y pdP +

∫
{Y >y} Y pdP≥∫

{Y≤y} Y pdP + ypP (Y ≥ y)⇒ ypP (Y ≥ y) ≤ E(Y ) −
∫
{Y≤y} Y pdP→y→∞ 0,

as desired.

⇐) E(|X|p−ε) =
∫
(p − ε)|x|p−ε−1P (|X| > x)dx =

∫M
0 (p − ε)|x|p−ε−1P (|X| >

x)dx +
∫∞
M (p− ε)|x|−(1+ε)|x|pP (|X| > x)dx< {|x|pP (|X| > x) < N for large
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enough N}<
∫M
0 (p− ε)|x|p−ε−1P (|X| > x)dx + N

∫∞
M (p− ε)|x|−(1+ε)dx < ∞,

since the left term is the integral of a bounded function in a bounded interval,
and the right term is �nite since |x| is raised to the negative of a number
greater than one.

b) β̂n = X̄/3. By Central Limit Theorem,
√

n(X̄ − 3β) → N(0, 3β2) and by
Delta Method

√
n(X̄/3−β) → N(0, σ2), where σ2 = 3β2

(
d
dβ

(β/3)
)2

= β2/3.

c) P
(
−zα/2 <

√
n(X̄−3β)√

β̂n/3
< zα/2

)
→ 1− α by Slutsky and we obtain

P
(
X̄/3− zα/2

√
β̂n/3n < β < X̄/3 + zα/2

√
β̂n/3n

)
→ 1− α.

Problem 6

a) MGF of Gamma is MX(t) = (1 − βt)α and hence MX1+X2(t) = (1 −
βt)α1+α2⇒ X1 + X2 ∼ Gamma(α1 + α2, β)

b) Let
{

Y1 = X1/X2 ⇒ X1 = Y1Y2

Y2 = X2 ⇒ X2 = Y2
. The Jacobian is |J | = Y2 and hence

fY1Y2(y1, y2) = fX1X2(y1y2, y2)y2andfY1(y1) = Γ(α1+α2−1)
Γ(α1)Γ(α2)β

y
α1−1
1

(1+y1)α1+α2−1 IR+(y1)

Problem 7

a) Usual de�nition.

b) Proof of Basu's theorem.

c) Fix σ2 ∈ R+. Since S2

σ2 (n− 1) ∼ χ2
n−1, S2is ancillary for µ. Also we know

that X̄ is complete & su�cient for µ (check that the exponential family is
full rank). Then, by Basu's theorem since X̄ complete & su�cient for µ and
S2 ancillary for σ2 we have that X̄ and S2 are independent.

Now, σ2 was arbitrary so the result holds for all σ2.
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Problem 8

a) The Poisson belongs to the 1 parameter exponential family, so it has the
MLR property. By Karlin Rubin the UMP test will reject for large values of
the su�cient statistic, which is

∑
Xi. We know that

∑
Xi ∼ Poisson(nλ).

Let k be the max {x : Pλ0(
∑

Xi < x) ≤ α}. Then the following test is UMP

φ(X) =


1 ,

∑
Xi < k

β ,
∑

Xi = k
0 ,

∑
Xi > k

, where β =
α−Pλ0

(
∑

Xi<k)

Pλ0
(
∑

Xi=x)

b) A conservative P-value would be Pλ0(
∑

Xi <
∑

xi), where
∑

xi is the
observed value of the su� stat. A P-value is a test statistic with rejection
region [0, α].

Statistics January 2004

Problem 1

a) MGF is MX(t) = (1 − βt)α, so MX1+X2(t) = (1 − βt)α1+α2⇒ X1 + X2 ∼
Gamma(α1 + α2, β)

b) Let
{

W1 = X1

X1+X2
⇒ X1 = W1W2

W2 = X1 + X2 ⇒ X2 = W2(1−W1)
, so the Jacobian is |J | = w2

and fw1w2(w1, w2) = fx1x2(w1w2, w2(1 − w1))w2. By integrating wrt w2 we
�nd that fw1(w1) = Γ(α1+α2)

Γ(α1)Γ(α2)
wα1−1

1 (1− w1)
α2−1I(0,1)(w1).

c) P (R = r) = P ( 1
Z

= r) = 2−1/r for r = 1, 1
2
, 1

3
...

Problem 2

a) Use Cauchy-Schwartz inequality together with some regularity conditions.

b) fθ(x) ∝ θx(1− θ)n−x so d
dθ

logfθ(x) = 0 ⇒ θ̂ = x/n. Then E
(

x
θ
− n−x

1−θ

)2
=

n
θ(1−θ)

and hence Vθ(T (X)) ≥ θ(1−θ)
n

and Vθ(X̄) = V (X)
n2 = θ(1−θ)

n
attains the

Cramer-Rao LB.
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Problem 3

a) X̄ = 1
n

∑
Xi is a linear combination of independent & normal rv's and

hence it's normally distributed with mean µ and variance 1/n. Equivalently
X̄−µ
1/
√

n
∼ N(0, 1), and the rejection region is given by �nding z1, z2 such that

PH0(z1 < Z < z2) = 1− α, e.g. z1 = −zα/2 and z2 = zα/2.

b) γ(µ) = 1−PH0(−zα/2 < Z < zα/2). For general µ, X̄ ∼ N(µ, 1/n) ⇒ Z =√
n(X̄ − 10) ∼ N(

√
n(µ− 10), 1), and hence we can use the quantiles of this

latter normal distribution to get the desired result.

c) Not UMP because the UMP for µ > 10 rejects for large values of X (by
Karlin-Rubin) and for µ < 10 rejects for small values of X, i.e. the UMP
test for µ > 10 is di�erent than the UMP test for µ < 10 and since they're
both unique there can be no UMP test.

d) LR test rejects for large values of e
− 1

2

∑
(xi−X̄)2

e
− 1

2

∑
(xi−10)2

or equivalently for large∑
(xi−10)2−∑(xi−X̄)2. With some algebra we can see that this is equivalent

to rejecting for large |Z|. Rejecting for |Z| > zα/2gives a level α test.

Problem 4

Times series, not necessary.

Problem 5

a) Factorization theorem.

b) By Rao-Blackwell any unbiased estimator can be improved by �nding
its exectation conditional on the su� stat, and so it follows that the best
unbiased estimator has to be a function of the su� . Note that the UMVU
may not be unique if we don't have completeness.

Now, noting that the likelihood will be of the form log (g(T (x), θ)+log(h(x)),
we can drop the second term since it doesn't depend on θ and maximize
log (g(T (x), θ)) which will depend on the data only through T (x), the su�-
cient stat.
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The Bayes estimator is of the form E(θ|X) =
∫

θf(θ|X)dθ and f(θ|X) =
g(T (x),θ)h(x)π(θ)∫
g(T (x),θ)h(x)π(θ)dθ

= g(T (x),θ)π(θ)∫
g(T (x),θ)π(θ)dθ

which depends on the data only through
T (x).

c) limn→∞Eθ(δn(x)) = θ, for all θ ∈ Θ.

d) (i) Likelihood is fµ(x) = (2π)−n/2e−
1
2

∑
(xi−µi)

2 , and taking log and then
derivative and setting equal to zero gives xi = µi. Hence (µ̂1...µ̂n) = (x1...xn)
and by the invariance property of MLEs we get θ̂n = 1

n

∑
µ̂2

i = 1
n

∑
x2

i .

(ii) We can �nd E(X2
j ) = µ2

j +1 by using the 2nd derivative of the character-
istic function of Xj. Hence E(θ̂n) = 1+ 1

n

∑
µ2

j and thus θ∗n is unbiased. Now,
we know that (x1...xn) is a su�cient statistic and it can be seen that the ex-
ponential family is full rank, so the su�cient statistic is also complete. Hence
Lehman-Sche�e applies and θ∗n is UMVU. Also, V (θ∗n) = V (θ̂n − 1) = V (θ̂n)
and Bias(θ∗n) < Bias(θ̂n), so θ̂n is inadmissible under squared error loss.

(iii) If we can show that θ∗n →P θ, then θ̂n → θ + 1 by the Continuous
Mapping Principle. I'm not sure how to do it.

Problem 6

Easy but long!

Problem 7

a) The original model is yi ∼ N(β0 + β1xi, σ
2ρi) independent, so E(yi/ρi) =

β0/ρi + β1xiρi + E(εi/ρi)⇒ E(δi) = E(εi/ρi) = 0. Hence δi are independent
with zero means and variance σ2/ρi.

b) The usual least squares estimators give β̂1 =
∑

(vi−v̄)(zi−z̄)∑
(vi−v̄)2

where v̄ and z̄

are the sample means, and β̂0 = z̄− β̂1v̄. With some algebra we can see that
they're not unbiased.

c) and d) Long!
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Problem 8

Biostatistics.
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