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Abstract

Clustering p-dimensional data by fitting a mixture of K normals has enjoyed renewed interest (for
example, see Splus function “mclust”). However, the number of parameters for the model grows rapidly
with dimension p. For example, even if all the covariance matrices are assumed to be equal, the number
of parameters is (K − 1) +K ∗ p+ p(p+ 1)/2 for the weights, means and covariance matrix. At ACAS in
2001, Scott introduced the partial mixture component algorithm which fits only one component of the
mixture model at a time. This algorithm requires only 1 + p + p ∗ (p + 1)/2 parameters for the weight,
mean vector, and covariance matrix. In this talk, we introduce a new algorithm which attempts to find
the “best” line through individual clusters. This model requires only 2 ∗ p − 1 parameters. That is, the
new algorithm is linear rather than quadratic in p. By repeatedly reinitializing the search algorithm,
all clusters may be identified. Intuitively, the line found is approximately the largest eigenvector of the
local covariance matrix. The GGobi visualization program will be used to illustrate the success of this
algorithm on real and simulated data.

1 Introduction

Exploratory data analysis and its development owe much to problems and support of the Army scientists
and the Army Research Office. One of the mainstays of exploratory analysis of multivariate data is
the principal components technique for dimension reduction. For data xk ∈ <p, the sample covariance
matrix, S, is estimated and its eigenvalues and eigenvectors computed. The eigenvalues are examined
in order to determine the number of dimensions, p′ << p, to retain (through a scree plot, for example).
Finally, the data vectors are projected onto the corresponding p′ eigenvectors. If the data follow a
multivariate normal distribution, even approximately, then investigation of the principal components
(rather than the raw data) is extremely useful as a first step.

Even for large dimensions, p, estimation of S is no problem. However, even with today’s computing
power, finding all of the eigenstructure often leads to software failure. As an extreme example, the
data vector could represent a 1000 × 1000 gray scale image, so that the covariance matrix is a million
by a million. Even a numerically stable approach of avoiding the formation of the covariance matrix
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by computing the singular value decomposition of the data matrix, X, is not computationally feasible.
(Recall that the SVD of X = UDVT and that the eigenvectors of the covariance matrix are contained in
the matrix, V.) Fortunately, there exists specialized software that computes the first p′ singular vectors
(ARPACT; see Maschhoff and Sorensen, 1996). Since we only require the first p′ singular vectors (or
eigenvectors), the remaining p − p′ eigenvectors need not be computed.

However, this happy situation does not address a number of important problems in data reduction. In
particular, multivariate data are much more likely in Army and applied settings to come from a mixture
of normal densities, rather than just a single normal density. Of course, statisticians can use the EM
algorithm (Dempster et al, 1977) to fit a mixture of normals. But with large problems, estimation of
the covariance matrices cannot be avoided. Furthermore, we seem to need to simultaneously estimate
the covariance matrices. The SVD approach will not help us here. Whereas ARPACK can find the p′

singular vectors, each of length n, the EM approach requires the estimation of K covariance matrices,
each of size n × n.

In the following sections, we think about the unthinkable. Can we estimate individual components
in a normal mixture without simultaneously having to estimate the other K − 1 components? Of course,
we are still stuck estimating an n × n matrix. The second question we consider is the possibility of
estimating a few singular vectors without the estimation of S at all. Affirmative answers are shown for
both. Computational challenges still remain, but the framework for the optimization problem is provided.

2 Partial Mixture Estimation

Mixture estimation by EM is well-studied; see Titterington et al. (1985). General alternatives to like-
lihood criteria exist, for example, minimum distance estimation (Beran, 1977). The use of integrated
squared error as an estimation criterion has also been considered by Terrell (1990), Basu et al. (1998),
and Scott (2001). Given a model, fθ(x), and data from the true but unknown density, g(x), we seek to
find θ which minimizes ∫

∞

−∞

[fθ(x) − g(x)]2 dx

or ∫
∞

−∞

fθ(x)2dx − 2

∫
∞

−∞

fθ(x) g(x) dx +

∫
∞

−∞

g(x)2dx.

An unbiased risk estimate is given by

∫
∞

−∞

fθ(x)2dx − 2

n

n∑
i=1

fθ(xi),

where the final term is an unbiased estimate of 2
∫

fθ(x)g(x)dx. The integral,
∫

g(x)2dx, does not
depend upon the unknown parameter, θ, and so may be ignored. If the L2 norm of the model, fθ(x),
exists in closed form, then the criterion may easily be minimized numerically. Scott (2001) called the
estimator the L2E estimator, since integrated squared error is in fact the L2 norm.

Recently, the estimation of normal mixture densities by L2E was described by Scott (1999, 2004).
For example, if the model is the 5-parameter mixture,

fθ(x) = wN(µ1, σ
2

1) + (1 − w)N(µ2, σ
2

2),

then the L2E criterion is easily seen to be

w2

2
√

πσ1

+
(1 − w)2

2
√

πσ2

+ 2w(1 − w)φ(0|µ1 − µ2, σ
2

1 + σ2

2) −
2

n

n∑
i=1

fθ(xi).
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Similar expressions exist in the multivariate normal case.
The L2E technique has a number of interesting (and unique) features. First, it shares the robustness

property of all minimum distance techniques. For example, in Figure 1, a single normal density is fitted
to a 2-component mixture by L2E. Rather than compromising over the two components as in MLE, the
L2E estimator focuses on the larger component, ignoring the smaller component. This practical behavior
is our solution to the problem of finding individual components. Wojciechowski and Scott (1999) report
a number of simulations comparing L2E and other robust estimators of location.
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Figure 1: Histogram of 125 points from the mixture 0.8 N(0, 1) + 0.2 N(5, 1). Also shown are the maximum
likelihood and L2E fits using the incorrect model N(µ, σ2). Finally, the L2E fit of the 3-parameter model
w · N(µ, σ2) is shown.

However, a second and unique feature of L2E is also displayed in this figure. In the derivation of the
L2E criterion, the fact that g(x) is a true (if unknown) density was of critical importance in order to
estimate the integral

∫
fθ(x) g(x) dx in the L2E expression. However, the fact that the estimator, fθ(x),

is a true density is not used. Thus, we propose to use estimators that are not (complete) densities. For
example, the second L2E estimator in Figure 1 uses the 3-parameter normal model, w N(µ, σ2). This
equation is called a partial density component (PDC) model. Notice that the area of this PDC L2E
estimate is in fact less than 1.0, and very close to the true value of 0.8 for the left component. (Of
special interest is the fact that L2E can estimate the right component just as well. Which component
L2E converges to is a function of the initial guess for the parameter vector, θ. Since the value of ŵ is
about 0.20, the usual robust theory about breakdown points never less than 0.50 must be relaxed.)

A similar example, but in two dimensions, is shown in Figure 2, together with the estimated value of
ŵ. The 6 parameters of the MLE fit (with w = 1) were used as initial guesses in the L2E iterations.

The PDC model can have more than one component. The L2E estimate found depends entirely upon
the initial guess for θ. In practice, a large number of guesses for θ are found by sampling, and the most
commonly occurring solutions examined carefully. In Figure 3, we show eight such solutions for the Old
Faithful Geyser dataset, which has been lagged and blurred to avoid rounding errors. Clearly these data
have three components. Depending upon the choice for θ, the fits may find individual components or
combine pairs. Thus we have provided a solution to the vexing problem of mixture estimation when the
number of components is unknown. Useful estimates can be found when the number of components is
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Figure 2: MLE and PDC L2E contours.

underestimated, even severely. (Of course, if the number of components is overestimated, L2E will suffer
the same fate as MLE and overfitting will result.)

3 Skewers and Principal Components

As is well-known, the first principal component gives the univariate projection of the data with largest
variance. In Figure 4, we look at an example of principal components for two variables of the Fisher/Ander-
son Iris data. Notice that the axis for the principal components goes through the origin (of course).

Principal components also solves a related problem, which is not often used for motivation. Consider
finding a set of points, constrained to lie on a line in <p, that are closest to the original data. The
solution is provided by the points on the first principal component, where the line is shifted away from
the origin to go through the sample mean, x̄. In Figure 5, we show the “skewered” version of the data
shown in Figure 4.

Of course, there are 3 species of flowers in the Iris data, so that 3 skewers may be computed. The
first principal component for each species, but centered at the mean for each species, is shown in Figure
6. Of course, it is instructive to visualize all four “skewers” for each of the 3 species; see Figure 7.

As instructive as these figures (and animated versions in ggobi) are, we are estimating the covariances
matrices separately and then computing the eigenvectors of each. Can we find a criterion that is attracted
to a skewer without going through the covariance calculation or estimation? Let us look closely at the
line segments shown in Figure 5. Clearly, for the Iris Setosa species (for which the skewer was estiamted),
the distances between the raw data and their projections onto the skewer are quite small, compared to
the projections of the Iris Versicolor and Iris Virginica species onto the Setosa skewer. A histogram of
these 150 distances is shown in Figure 8. If we compute the Iris Setosa skewer using all 4 variables, we
obtain the distance-to-skewer histogram shown in Figure 9.
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Figure 3: Examples of one- and two-component PDC L2E fits. (top) The weights in each frame are (.78),
(.25, .69), (.68, .28), and (.75, .30). (bottom) The weights in each frame are (.68), (.25, .32), (.25, .28), and
(.32, .28).

What are the essentials of a skewer? Like the first principal component, a skewer has a direction, v.
While the principal component goes through the origin, the skewer goes through a general point, P . (If
the data are labelled, we know that we can take P to be the sample mean of any single group.) For data
in <p, the dimension of the point P is p, while the dimension of the direction vector, v, is p − 1. Thus
the dimension of the skewer in terms of unknown parameters is 2p−1. Thus, the dimension of the search
for a skewer grows linearly with dimension, p, rather than quadratically as for the covariance matrix.
Thus we have traded a computationally infeasible search for high-dimensional covariance matrices and
associated eigenvectors to a linear search for a skewer. However, many random starts will be required in
order to have a reasonable chance at finding some number of skewers.

We have not yet specifically stated what the criterion is for finding the skewer, only how we propose
to parametrize the search for it. The answer lies in the bimodal structure of the histogram in Figure 9,
which should be compared to the bimodal structure in Figure 1. To make our problem easier, imagine
that we are more specific about the point, P , on the skewer. Suppose P is the point on the skewer closest
to the origin. (Note, we do not advocate using this choice numerically, as instability may arise if the
skewer happens to go through the origin, or nearly so.) We now have a vector, u, which goes from the
origin to the new point, P , on the skewer. We can use this vector, u, in order to create an artificial
“sign” on the distance from a data point, xk, to its projection onto the skewer, call it yk. We do so by
taking the inner product of the vector from yk to xk with the vector u. Thus the distance histogram as
shown in Figure 9 will not have only positive values, but the signed distances of the points corresponding
to the skewer will be almost exactly symmetric around the origin. The data points not coming from the
skewer group (i.e. the Versicolor and Virginica data in our example) will still be farther away from 0,
possibly all on one side, but not necessarily in general. By the robustness property of L2E, we propose
to model the distribution of points “in” the cluster by the PDC model, w N(0, σ2). Note that by fixing
the mean at zero, we are asking the skewer to pierce a cluster of the data. The resulting value of w will
indicate the rough size of the cluster the skewer has been attracted to. Note, however, that if the data
contains 6 clusters, then depending upon the orientation of the first eigenvector of each cluster and the
direction to other clusters, it may or may not be possible to isolate each cluster individually. Also, in
high dimensions, the use of the normal model needs to be replaced by something closer to a chi-squared
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Figure 4: Example of principal components for two variables of the Iris data.

distribution. But if there is a gap in the histogram at the true skewer, then the robustness properties of
the L2E PDC algorithm suggest that a precise model for the PDC is not necessary. (However, the less
precise the model, the less precise the estimated values of w and σ will be. Marking points as belonging
to the skewer or not relies strongly on at least reasonable value for w and σ) Finally, note that the PDC
density model only has 2 parameters, w and σ, no matter the dimension of the data. Of course, the
skewer is also part of the estimation, so that the total number of parameters estimated simultaneously
by the L2E PDC skewer algorithm is (2p − 1) + 2 or 2p + 1.

We implemented this algorithm in Splus. For the Iris data (in all 4 dimensions), we found only two
skewers. They are shown in Figures 10 and 11 together with the first principal component of the Iris
Setosa species. Clearly one estimated skewer is very close to that eigenvector. The other skewer is very
close to the first eigenvector for the covariance matrix of all 150 data points (i.e., the overall covariance
matrix with no group labels). While a skewer representing just the Versicolor and Virginica species
(combined) might be expected, our algorithm always moved away from such an initial orientation to the
skewer shown in Figure 11.

4 Extensions

We have limited our discussion to search for one-dimensional skewers. The search for a skewer “plane”
or “hyperplane” is a straightforward extension of the algorithm described here. The only difference is
that the skewer points, yk, lie on a hyperplane rather than a line. The criterion is still the distance from
the raw data point, xk to the point yk on the skewer. Note that our “trick” of constructing a signed
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Iris Setosa First Principal Component
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Figure 5: Skewer of the Iris data shown in Figure 4

distance so that the PDC model would be symmetric around the value 0 is now immediately obvious, as
the hyperplane divides the space into two parts. The vector u can be taken as any vector orthogonal to
the skewer plane and used to take inner products to assign a sign to each distance computed.

5 Discussion

The ARPACK software allows principal components to be applied to enormously large datasets by
avoiding computation of the covariance matrix in order to estimate its eigenvectors. However, if the data
set is in fact a mixture of normals, a new attack is required.

In this paper, we have shown how individual mixtures may be estimated without having to estimate
or identify all clusters using the L2E criterion and PDC model. However, such an approach is still
quadratic in the number of dimensions, p. But by utilizing a very simple 2-parameter PDC model on
the distances from points to their projection onto the skewer, we have demonstrated the existence of a
criterion that is linear in the number of dimensions, p. Many random initializations are suggested in
order to obtain a reasonable coverage of interesting skewer solutions. But such a task is happily easily
accomplished with a farm of parallel computers and requires almost no sophisticated programming tools.

Finally, the Army has a long history of supporting advanced statistical tools and visualization support,
beginning with the PRIM9 work of John Tukey and colleagues. The high-dimensional data faced by
researchers and workers today requires a whole array of new tools and out-of-the-box thinking. I have
tried to illustrate how the use of minimum-distance criteria can free one from the usual set of behaviors
into a new realm where seemingly impossible tasks may in fact be successfully addressed.
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Figure 6: “4-D Skewers” of 3 Iris species in <3 (top left: variables-123; top right: variables-124; bottom left:
variables 134; bottom right: variables-234).
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Figure 8: Histogram of distances from the 2-D Iris data to the Iris Setosa Skewer shown in Figure 7.
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Figure 9: Histogram of distances from the full 4-D Iris data to the 4-D Iris Setosa Skewer.
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Figure 10: 4-D Skewer of Iris Data. The skewer is blue, while the principal component is red.
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Figure 11: A second 4-D Skewer of Iris Data.
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