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Abstract

This article demonstrates the visual power of continuous smoothing and slicing of multivari-
ate maps, through an example relating the rates of screening tests to colon cancer rates. A new
theoretical result provides legitimacy and understanding by demonstrating how the conditional
maps are related to the usual single smoothed choropleth map of colon cancer rates.

1 Introduction

The study of spatial data has an important role in the mission of governmental entities. The
topic has drawn the interest of statisticians (Cressie, 1991) and geographers (MacEachren, 1995),
among others. The main presentation tool is the choropleth map, which displays small geograph-
ical units by means of color shading (Tobler, 1978; Tufte, 1990). Two outstanding collections of
such maps may be found in Pickle et al. (1996) and Brewer and Suchan (2001). Color choice
is critical to successful presentation, and Brewer (1999) has described a theory of successful color
mapping. Choropleth maps are inherently discontinuous. Smoothing methodologies such as kriging
and nonparametric regression can aid visual understanding, but at the cost of some statistical bias.
Whittaker and Scott (1994, 1999) have argued that the needs of many decision makers are aided
by such a big picture, without insisting on complete fidelity to the raw data.

The challenge in federal mapping is a better understanding of how several variables are related
spatially. While we are very successful at mining (1) the spatial distribution of a variable z(x, y)
and (2) the changes in the spatial distribution of a variable over time z(x, y|t), we are less successful
understanding how two or more spatial variables, z1(x, y) and z2(x, y), are related. Commonly, each
of the two variables is grouped into two or three bins (hi/lo or hi/med/lo), resulting in a 2× 2 or
3×3 table. Choosing a color for each cell in the table, a choropleth map may be constructed which
displays the spatial correlation between the variables.

This approach has limitations. The visual impression is not independent of the number of bins.
In a corresponding study of histograms, Scott (1992) illustrates how completely different visual
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impressions result from different choices of bin width and bin origin. For mapping data, bin width
corresponds to aggregation levels (combining small census tracts, for example), while bin origin
corresponds to the choice of cut points for each variable. Scott demonstrated that simply averaging
several histograms constructed from shifted bins eliminates the visual ambiguity. Thus, smoothing
is an important part of the solution in the present context.

Furthermore, there is no unique bivariate color ordering, so that decoding the k× k choropleth
maps requires careful study. Increasing the number of bins exacerbates the problem of choosing a
matrix of colors that can be visually decoded. Even collecting a larger amount of data does not
solve this fundamental problem.

Finally, the ability to decode color-matrix choropleth maps depends heavily on the actual pat-
tern of spatial correlation. If the variables are highly correlated, then the spatial correlation will
clear if spatial distribution of one of the variables is smoothly varying. (Of course, in such a case,
little additional information is learned.)

In the case of density data, the problem of understanding the joint behavior of variables and
displaying the relationship in a smooth fashion can be solved through the use of the conditional
density plot estimated by an advanced nonparametric estimator (Scott, 1992). This approach works
with as many as 3–5 variables. The theoretical basis of this success is reviewed in the next section.
In the following section, we introduce a new extension to that theoretical basis for regression data.
Then we modify the regression approach for mapping data. Finally, an application is presented
and future directions are discussed.

2 Smoothing Conditioning of Density Plots

Suppose the variable, z1 is of primary interest, but that we have a covariate, z2, whose relationship to
z1 we wish to better understand. The marginal density, f(z1), reveals information about clusters
and other features of possible interest concerning the primary variable. The joint probability
density, f(z1,z2), reveals how the variables co-vary. This function can be estimated and displayed
either in a contour or a perspective plot. However, since z1 is the variable of primary interest, a
more informative function to plot is the conditional density function, f(z1|z2), for several values of
z2. This function can easily be computed knowing f(z1,z2) by the formula

f(z1|z2) = f(z1, z2)/
∫

f(z1, z2)dz1 = f(z1, z2)/f(z2) .

Note that the denominator provides a normalization constant so that f(z1|z2) is a proper density,
i.e. integrates to 1. Examining f(z1|z2) graphically properly focuses attention on the primary
variable of interest, while suppressing too much simultaneous information about the secondary
variable z2. Scott (1992) argued that a smooth animation of the conditional density as z2 varies
over an interval is more effective that a frozen plot of f(z1, z2).

Is there anything theoretical to justify this view? Recall the fundamental result in probability
that

∫
f(z1, z2)dz2 = f(z1). In conditional form, this becomes

∫
f(z1|z2)f(z2)dz2 = f(z1) .

This lends itself to a powerful interpretation of data analysis. We begin our focus on the primary
variable, z1, through its density function, f(z1). Examining a sequence of slices, f(z1|z2), if we



aggregate those slices, weighted by the marginal density of z2, then we recover the marginal density
of z1. Thus we can interpret the conditional density as being the change or derivative of the density
of z1 with respect to z2. The sequence of conditional views reveals how z1 is distributed as z2 varies,
and when accumulated, we see the complete view of z1 by itself.

However, Scott noted that when f(z1, z2) is a nonparametric estimator, the quality of f(z1|z2)
deteriorates in regions where z2 is rare. He argued that instead of viewing the normalized conditional
density, f(z1|z2), we should view the unnormalized conditional density slice,

s(z1|z2) = f(z1, z2) .

Thus in regions of low probability, the function s(z1|z2) approaches zero. We learn not only how
z1 varies with z2, but also how frequently the combination occurs in the entire population. Scott
proposed a graphical examination of a animation of the plots s(z1|z2) over an interval of z2, with
extensions to three, four, and five variables. Observe now that the relationship becomes

∫
s(z1|z2)dz2 = f(z1) ,

i.e. the unweighted accumulation of the slices gives the marginal density of the variable of interest.
We have described how smooth slices of regression functions can be useful for the same purpose

(Whittaker and Scott, 1994; Scott and Whittaker, 1996; Whittaker and Scott, 1999; Scott and
Wojciechowski, 2001). Is there a similar theoretical basis for viewing an animation of sliced maps?
This question is addressed in the next two sections.

3 Smoothing Conditioning of Regression Plots

Let us consider a single predictor variable, x, and primary response variable, z1. You might think
of a simplified one-dimensional map on a line (rather than a plane). The average of the variable z1

is to be plotted “spatially,” that is, we wish to plot z̄1(x). One difference between the regression
and mapping settings is that multiple z1 values may be obtained from a single choice of x, whereas
in the mapping setting typically only a single value may be measured.

If we know the joint distribution, f(x, z1), then we can compute the quantity to be mapped by
the formula

z̄1(x) =
∫

z1f(z1|x)dz1 ,

where the conditional density, f(z1|x), is obtained as in the previous section. As in the density
setting, a “map” or plot of z̄1(x) gives us a picture of the (spatial) regression curve.

Next, let us introduce a second response variable, z2, of secondary interest. We are interested in
the “spatial” distribution of z̄1 at fixed levels of z2. Assuming we have the joint density, f(x, z1, z2),
of all three variables, we may compute

z̄1(x, z2) =
∫

z1f(z1|x, z2)dz1 ,

where f(z1|x, z2) = f(x, z1, z2)/f(x, z2). We propose to examine a smooth animation of the function
z̄1(x, z2) over an interval of z2 values.

Is there a theoretical justification for viewing z̄1(x, z2) as the change or weighted derivative of
the “map” z̄1(x) with respect to the new variable z2? It turns out that the unweighted integral of



z̄1(x, z2) over z2 does not return z̄1(x). Thus we seek to introduce a weight function, w(x, z2), so
that the weighted view of all the maps does return z̄1(x); that is,

∫
z̄1(x, z2)w(x, z2)dz2 = z̄1(x) .

Our result is that
w(x, z2) = f(z2|x) ,

providing nearly as strong a theoretical basis for the slicing of regression surfaces as the slicing of
density surfaces. The outline of the proof is short, so we provide it now.

∫

z2

z̄1(x, z2)w(x, z2)dz2 =
∫

z2

[∫

z1
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]
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=
∫
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∫

z1
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w(x, z2)dz1dz2

=
∫
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∫

z1

z1
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f(x)
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=
∫

z1

z1
f(x, z1)

f(x)

[∫

z2

f(z2|x, z1)
f(z2|x)

w(x, z2)dz2

]
dz1

=
∫

z1

z1f(z1|x)
[∫
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f(z2|x, z1)dz2

]
dz1

=
∫

z1

z1f(z1|x) [1] dz1 = z̄1(x) ,

choosing w(x, z2) = f(z2|x), and noting that the integral of any (conditional) density equals 1.

4 Extension to Mapping Data

The discussion in the previous section applied to a random design regression problem. The alter-
native regression model assumes that the x-variable is not random, but selected. For example, in
nonparametric regression a common assumption is that the samples are of the form (xi, yi), where
xi = i/n. Nevertheless, the same algorithms may be applied in either setting. The mapping data
are of this second form, where the xi represent the centroid of a mapping unit.

The entire discussion in the previous section may be extended to the case of two spatial variables.
In this case, the estimate of interest is z̄1(x, y, z2) and the appropriate weight function turns out
to be w(x, y, z2) = f(y, z2|x). Thus an animation of the “maps” z̄1(x, y, z2) over a range of values
of the variable z2 may be thought of as a weighted derivative of the one-variable map z̄1(x, y) with
respect to the new mapping covariate, z2.

The particular algorithm we have chosen to use to estimate f(x, y, z1, z2) is the averaged shifted
histogram (ASH: Scott, 1992), which is a computationally efficient approximation of the well-known
but computationally slow kernel estimator. Further discussion of these ideas may be found in Scott
and Whittaker (1996) and Scott and Wojciechowski (2001).

5 Applications to SEER Data

We briefly examine the spatial distribution of colon cancer rates as a function of the percentage
of adults having a FOBT (fecal blood test) during a two year period; see Pickle and Su (2002)



Figure 1: Colon cancer rates versus FOBT rates. One choropleth and 3 ASH estimates.

and SEER (1998). In the Figure above, we display a 3× 3 choropleth map, as well as three slices
out of an ASH conditional regression map. Clearly, more fine detail is available in the conditional
regression maps. Other examples have been truncated due to space limitations here, but will be
shown.

6 Discussion and Future Directions

We have provided a new justification for continuous conditional maps as the weighted “derivative”
of the unconditional map with respect to a covariate. Weighted integration of the collection of
conditional maps results in the original map of the variable of interest. We plan to distribute
arcview code of this approach for independent testing and evaluation. We also hope these ideas are
implemented by our DG partners. For special situations, an extension to two covariates should be
feasible. We hope to find a partner with such data during the coming period.
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