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Abstract

The problem of finding the number and location of clusters is technically difficult
because the problem is reasonably ill-posed. Hierarchical clustering methods produce
dendrograms which may be pruned to select one of many different possible clusterings.
Dendrograms may also be derived from novel approaches such as the mode tree (Min-
notte and Scott, 1993), which records and plots the locations of all of the modes of
a multivariate kernel density estimator for all bandwidths. Alternative clustering ap-
proaches such as k-means and mixture modeling give answers that may depend strongly
on initial guesses. The purpose of this paper is to introduce an algorithm that fits an
individual component of the mixture model, and to illustrate the use of the resultant
estimated probability density component as a mechanism for locating clusters and gen-
erating a mode tree. However, the new stochastic mode tree does not simply find all
modes within the kernel family {f(ac|h)7 0 < h < oo}, but rather performs local density
estimation across the data domain. The resulting figure greatly reduces the number of
plausible clustering configurations. An interactive algorithm for pruning noisy features
is derived and illustrated with real data. The results may be used to locate clusters or
to provide initial parameter values for fitting mixture models in any dimension.

1. Introduction

The search for structure in an unknown set of data {x; € ®¢, 7 =1,... ,n} is one of the
most challenging problems in statistics. Graphical approaches can reveal important details
about individual variables or pairs of variables, such as skewness, correlation, and clumping
(Swayne, Cook, and Buja 1998). However, no graphical exploration can be expected to
uncover all structure in higher dimensions. Without any prior information on a parametric
density form, a nonparametric approach such as the multivariate kernel estimator

A 1

) = ;K (H'(x—x)) , (1)

may be contemplated (Scott 1992). Once the matrix of smoothing parameters H is cali-
brated, the kernel estimate can be probed for the presence of simple forms of structure. The
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most important features on the density surface are modes. Indeed, modes may naturally be
associated with clusters (Hartigan 1975; Good and Gaskins 1980; Sager and Thisted 1982).

In general, cluster analysis provides a sophisticated toolbox for the discovery of structure
in data, but clustering algorithms do not always rely upon probability models. Hierarchical
clustering algorithms bypass the density function to form clusters iteratively. Starting with
each data point as an individual cluster, the “closest” pair is combined into a new cluster
recursively. A history of the process may be presented graphically in a binary tree known
as the dendrogram; for example, see Figure 1 for a dendrogram of the male blue crab data
(Ripley 1996). While almost entirely assumption- and model-free, the tree is not unique,
depending heavily upon the choice of metric, definition of distance between two sets of points
(clusters), and any initial transformation of the data. Finally, the dendrogram embodies
many possible clusterings, and the task of choosing where to cut the tree remains. Without
some model assumptions, this last task must remain largely ad hoc.
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Figure 1: Single linkage dendrogram of sphered /blurred male blue Leptograpsus crab data.

An appealing flexible class of probability models is the mixture of Normals (MON),

769 = 3 wn d(xl, ) (2)

k=1

where ¢(-|p, ¥) denotes a multivariate normal density with mean g and covariance ¥. When
fitted to data by the EM algorithm (Dempster, Laird, and Rubin 1977), this model provides
a powerful and easily interpretable summary of the structure in the data by associating
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clusters with components. Cluster centers are given by the means, g, cluster shapes by the
covariance matrices, X, and cluster sizes by the weights, w. Observe the close relationship
between MON and the kernel method in Equation (1), which is a highly constrained MON
(with all the data “rounded” to one of the K values, p;, and all ¥ = H?).

In practice, a precise choice of K is not possible for high-dimensional data. In theory, any
multivariate density may be represented by an infinite mixture of normals, but the represen-
tation is by no means unique in the Ly sense (since the basis functions are not orthogonal).
One cluster might be well-represented by a single multivariate normal, while another cluster
may require dozens of normal components to capture skewness (and yet still be unimodal).
The non-uniqueness grows exponentially with d and is yet another manifestation of the curse
of dimensionality.

Furthermore, the stability of the estimates of the parameters of the mixture decreases
as K increases (although the overall density estimate may be quite stable). Care must be
exercised in the EM algorithm to avoid the introduction of Dirac spikes into the final estimate.
An engineering solution is to take K" much larger than necessary, carefully control the progress
of the EM algorithm, so as to be relatively confident in the overall quality of f but with
no expectation of interpretability of the estimated parameters. For example, one model
of NIST speech data features K = 2048 mixtures in d = 39 dimensions (Reynolds 1995).
Post-analysis (Scott and Szewczyk 2000) showed that K could be reduced by more than half
with no change in the performance of f for discrimination. Of course, the parameters when
K = 1024 are hardly more interpretable!

Banfield and Raftery (1993) have carefully constructed a hierarchy of mixture models by
allowing ¥; to be an identity matrix, /;, an arbitrary diagonal matrix, proportional to each
other, or fully unconstrained. The authors use BIC (Kass and Raftery 1995) to determine
K. Such an approach generally results in a small K, but in practice has trouble with large
dimensions (d > 10). The paradox is that as d increases, ¥j should be less constrained, but
practical issues require the ¥, to be more constrained.

The relationship between the number of modes in a mixture density and K is a com-
plicated issue; see Titterington, Smith, and Makov (1985). Obviously, the mixture density
(2) may have many fewer than K modes. However, Scott and Szewczyk (1997) showed that
the mixture (2) may have more than K modes when d > 1, but any extra modes tend to
be very small. Boswell (1983) successfully probed the kernel surface in d = 100 dimensions.
Numerical optimization can locate almost all sample modes in the kernel estimate. However,
finding all the modes is expensive and no test exists that assures every mode has been found.

With kernel estimates, the use of the same smoothing parameter everywhere in R? leads
to heavy oversmoothing in some regions and heavy undersmoothing in other regions. Indeed,
Terrell and Scott (1992) show how H should vary locally (i.e., covariance shape vary as well
as size). Thus in practice, any fixed kernel estimate may be expected to suppress modes in
rough areas (oversmoothing) and to display false modes near peaks or tails in smooth areas
(undersmoothing). Minnotte and Scott (1993) found a simple algorithm that avoids this
local adaptivity problem. They suggest finding the locations of all modes as a function of
the smoothing parameter. When d = 1 and K = ¢, the resulting figure, which they called
a mode tree, looks remarkably like a dendrogram; see Figure 2. (Note that there are only
36 unique body diameter values among the 50 cases.) The special properties of the Normal

3



kernel guarantee that the mode tree is a binary tree (Silverman 1981). When h ~ 0 each
unique data point is its own mode. As h increases, pairs of modes collapse into each other
until eventually a single final mode exists near z = z = 13.35mm.
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Figure 2: Mode tree of the body diameter (mm) of 50 male blue Leptograpsus crabs.

When d > 1, with H = h- 1, the authors show that the mode tree may still be formed. A
smooth mode tree exists in R4*! but is difficult to display when d > 2. A simple algorithm
converts the mode tree into a dendrogram (where the horizontal axis has no particular
relationship to the original variables), with the “dissimilarity” measured by the bandwidth,
h. For example, the mode tree using all 5 variables of the 50 male blue crabs is displayed in
Figure 3. The result is somewhat similar to the single linkage clustering in Figure 1.

While no single kernel estimate with fixed bandwidth can be expected to show all of the
real modes and only the real modes, the family of kernel estimates is likely to contain all of
the modes. “Real” modes tend to persist (vertically) in the mode tree, while “false” modes
cluster around real modes and seldom persist very long before splitting. Of course, singleton
outliers (z = 20mm, e.g.) are exceptions, and the use of the logarithmic vertical scale greatly
magnifies the finer details. Minnotte (1997) demonstrated one way to “test” the veracity
of a mode at each split; see also Hartigan and Hartigan (1985), Sun (1997), Marron and
Chaudhuri (1998), Scott (1998a), and Walthers (1999). The mode tree approach captures
the essence of a successful density-based clustering strategy but is still limited in the testing
arena beyond one dimension.

The purpose of this paper is to extend recent results on single-component mixture fitting
by a minimum-distance criterion to a stochastic mode tree that allows probing of high-
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Figure 3: Mode tree of the sphered/blurred male blue Leptograpsus crab data.

dimensional data at multiple resolutions, without actually constructing a complicated locally
adaptive estimator (Scott 1999). Given the present limitation that a fully parameterized
locally adaptive estimator is nearly impossible to calibrate with today’s technology for d > 3,
the approach outlined here is of fundamental interest.

2. The Mode Tree

The mode tree is a natural attempt to link probability modeling with hierarchical clus-
tering. The construction of the mode tree from the bottom up is easy to describe. When
h =~ 0, the kernel estimate will have a mode at each unique data point. As the bandwidth
h is sequentially increased (1 — 2% at each step), the change in the location of each mode
is estimated. The resultant list of modes is examined for ties (that is, two modes have col-
lapsed) and that information is recorded in the binary tree. The process continues until the
final pair of modes collapses into a single mode.

In practice, care must be exercised. If too large a change in the bandwidth A is used, then
several modes may appear to collapse at one step, and the exact linkages may be recorded
in error. This may be avoided by decreasing the change in A until two and only two modes
collapse. But the surprisingly subtle aspect in this step can be the difficulty of a successful
search for the new mode location as the bandwidth is increased. Because one of the modes
that merges first becomes a saddle point, and then “jumps” to the appropriate adjacent mode,
Newton’s method is likely to take too great an initial step and converge to the “wrong” mode.



Thus the search should maintain a local hill-climbing behavior. Yet, strict local hill-climbing
algorithms are well-known to be very slow to converge. In independent work, Wong and
Posner (1993) proposed a functional iteration algorithm to update modal locations. While
this algorithm appears parameter free, a careful examination of its performance with data in
two dimensions shows that the algorithm does not always converge to the correct adjacent
mode (as determined by not wishing to cross gradient contours). Typically such an error does
not have dire consequences, as these modes would have eventually joined to form a cluster
and are simply being combined in the wrong order further down the tree. In practice, we
may hope that such subtle errors do not occur very often.

For many iterations, the small change in bandwidth hardly changes the location of any
modes. Much of the computational effort, however, is spent dealing with such (essentially
stationary) modes. To determine which modes are not changing, one could calculate the
Hessian at each mode. (All of the Hessian’s eigenvalues must be negative, of course, at a
local maximum.) Then one could simply observe which modes have any eigenvalues that
are approaching zero (indicating that the mode is about to go “saddle” and jump to some
nearby mode). Computation could then be focused only on those nearly “critical” modes.
However, the amount of additional computation might be justified in difficult cases.

For large datasets, it would be more convenient to construct the mode tree from the
top down, since detail near the bottom of the mode tree is not important. However, as the
bandwidth is decreased, finding the location of the newly emerging mode can be difficult.
Typically, when a mode “splits,” one of the new modes remains at the current location.
The other mode “jumps” somewhere in the vicinity, but finding it among the dozens of
other modes nearby may or may not succeed, especially when d >> 1. Furthermore, if the
increment on the bandwidth A is too great, then several new modes may have appeared,
and there is no way to know or prove that all new modes have been found. Thus, while the
bottom-up approach may be slow, its behavior is much more understandable and controllable.

Once a “correct” mode tree is computed, the decision about which modes are “real” and
which are just noise begins. Minnotte (1997) proposed a local bootstrap procedure to test
the mode-pairing at each branch of the mode tree. Minnotte’s idea is related to Silverman’s
(1981) bootstrap test, but while Silverman counted the total number of modes in each boot-
strap sample, Minnotte computes and compares the size of the “excess mass” in the region
of the two modes that are about to be combined. This idea works well in one dimension,
but its extension to two or more dimensions will be challenging and computationally ex-
pensive. A related approach that does not require bootstrapping was given by Miller and
Sawitzki (1991). Marron and Chaudhuri (1998) highlight regions in the mode tree where the
derivative of the kernel estimate is significantly positive or negative to identify likely modal
regions.

We believe the mode tree is a useful framework in which to attack the clustering problem.
However, the mode tree suffers from the fact that all possible modes (and hence clusters)
are displayed without a figure of merit. Marchette and Wegman (1997) proposed a clever
enhancement of the mode tree by replacing the kernel estimator with a locally adaptive
MON they call a filtered kernel estimator. Their algorithm usually, but not always, elevates
real modes closer to the top of the mode tree.

In the next section, we propose a new variety of mode tree which is not based on all
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possible modes of a kernel estimate, but only those that satisfy a local optimization problem.

3. Partial Mixture Fitting and the PDC

Using probability density functions which are not densities is common practice. For ex-
ample, Bayesians employ improper priors, which integrate to infinity. Negative probabilities
are observed in orthogonal series and higher-order kernel methods. Here, the idea is to fit
a nonnegative “density” which integrates to a number (usually) less than 1. Specifically,
consider the partial probability density model,

A

fla) =w-g(p, 0%,

where w is considered a free parameter on the interval (0,1]. This model comprises one
component of the full mixture model in Equation (2) and will be denoted by PDC for partial
density component.

Consider fitting a partial probability model to the mixture density shown in Figure 4a
where K = 3 and

m=croy”  wo=(b1d) w= (328 o

First, observe that no meaningful partial probability model can be fit by maximum likelihood,
because the weight w will always take the value 1 when the likelihood is maximized. This
follows since the logarithm of the density separates the weight w from the other parameters.
Such is not the case, however, if a minimum distance criterion is employed. In this paper,
integrated squared error (ISE) or the squared Ly-norm is used:

ISE = /_Oo (2)— f(@)] de (4)

o0

Integrated squared error is a commonly used goodness-of-fit measure in nonparametric den-
sity estimation.

When [ is a normal mixture, a simple closed-form expression exists for the theoretical
ISE, which is of interest as the solution to a consistent data-based approach as n — oco. First
expand Equation (4) to

18E(r,0vw) = [ 70 = 20(e) fa) + fa )] do. )

Recall the identity
[ el o) el o) de = (001 o, 0% + 03).

Then for a normal PDC, the first integral in Equation (5) equals w?®(0|0,20?%) or w?/(2 a+/7).
The third integral equals

K K

| f@rde = By = 33 weweblole — et + 7).

k=1 ¢=1
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Figure 4: (a) Mixture of 3 normals. (b) Two partial normal fits according to integrated
squared error (dashed lines). Parameter values are given in the text.

A similar result exists for the second integral. Combining gives

2 K

25)7\/%_Q'wgwm(ﬂlu—uk,02+0i)+ﬁ’(f)- (6)

Since the last term, R(f), does not depend on any of the parameters of the PDC, R(f) may
be ignored when finding the best set of parameters.

ISE(p, 0, w) =

With the parameters in Equation (3), minimization of Equation (6) over (i, o, w) leads
to one of two partial densities: (.707,2.066,1.061) or (2.99,.348,.326); see Figure 4b. The
second PDC matches the third component values of (3,.333,.314). The first PDC is a “best”
fit to the entire density, but the parameters differ from the theoretical moments of the mixture
(1 = .882 and o = 1.663). Also note that for the unconstrained best L fit, w* turns out to
be greater than 1. There is no local PDC solution that fits either of the left two bumps alone.
As Scott (1999) has noted, PDC’s are not attracted to mixture components with mass below
a certain threshold, unless a component is sufficiently isolated. Thus fitted PDC’s may or
may not correspond to individual components in the underlying mixture density.

Can the PDC be modified to find all three modes in the mixture? An affirmative answer
lies in recognizing that the minimization of ISE does not preclude optimizing over a subset of
the three PDC parameters, (i, o, w). Since greatest interest lies with a cluster’s location, the
parameter p is always optimized. By fixing either ¢ or w or both, can all three components
be resolved? In Figure 5, partial PDC fits were computed by minimizing criterion (6), first
with o fixed and optimizing over (p,w), and then with w fixed and optimizing over (i, o),
for the same 1,000 random initial values. (The sampling ranges for the initial values of
(pj,o5,w;i), 3 =1,...,1000, were (—4,3), (.05,2), and (.05, 1), respectively. The sampling
distributions were not uniform for o and w, but biased towards smaller values.)

In Figure 5a, which displays the 1000 points, (7}, 0;), all three components are clearly
indicated when ¢ < 0.2. When 0.4 < o < 1, the left two components are not separated.
Only one mean location is found when o > 1.05. Observe that the estimates of the mean
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Figure 5: PDC parameter estimates for 1,000 random starting points. In the top three
frames, the minimization is with respect to p and w only, with o fixed. In the bottom three
frames, the minimization is with respect to p and o only, with w fixed.

locations vary smoothly with o, except at several critical values where the “branch” of the
curve ends. The same structure is apparent with the corresponding (y},w}) points shown
in Figure 5b, which is easily explained by noting the high correlation between (o;,w?) in
Figure 5c¢ for each “branch.”

A similar but less compelling story is apparent in Figures 5(d—f), where the optimization
is over p and o with w fixed at its initial random value. In frame 5d, only one mean location
is found when o7 > 0.61. The expected branch near 0 appears when o7 < .30, but disappears
when ¥ < .18. The final mode at x = —1 appears when ¢} < 0.17. The pair (0}, w;) are
still highly correlated in 5f, but the view of (i}, w;) in 5e is much less clear as the mode at
0 barely appears at all, and the “combined” mode at —.26 persists after the modes at 0 and
-1 have appeared. Empirically, we prefer (u}, 05, w¥) to (u5, 0%, w;).

Since greatest interest lies with the location parameter, u, the simulation was repeated
with initial values of the three parameters chosen at random, but optimization limited to u
alone. In Figure 6a, the tree-like structure of (1}, 0;) is apparent as before. The 1000 random
standard deviation and weight inputs are shown in Figure 6c. A 3-D view of (u},0;,w;)
confirms that Figures 6a and b5a are the same, modulo different random starting values.
Apparently, the initial value of w does not affect the value of p*. A closer look at Equation
(6) reveals that when o is fixed, w and g are uncoupled in the second term. Hence, the best
value of p is independent of w. In particular, any fixed or random value may be used for w
during the optimization. Given p*, Equation (6) takes the simple form ¢;w? — 2¢w, and w*
is easily seen to equal ¢;/¢;, yielding Figure 5b again. Numerical optimization over p alone
(i.e., without w) significantly reduces the computational effort.

While each may be useful in practice, after reviewing many figures such as 5 and 6, we
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Figure 6: PDC parameter estimates for 1,000 random starting points. The minimization is
with respect to p only. (a) (p*,0). (b) (u*,w). (¢) (o, w).

find that optimizing over p and w with o fixed is preferable. In particular, we find the plot
of (u*, w*) is more interpretable than (p*, o). In practice, these diagrams must be estimated
from data, and they will be noisier. A data-based version of PDC is the next topic.

4. Stochastic Mode Tree

The ISE criterion for the PDC may be estimated with data {z,... ,2,} from a general
density f(z) by noting that the second integral in Equation (5) is simply minus two times
the expectation Ef(X) at a random point X. A simple unbiased estimator may be obtained
by averaging f() over the sample data. As before, the third integral in Equation (5) may
be omitted as it is constant with respect to the parameters. Thus we obtain the following
data-based criterion for numerical optimization:

LQE(Maavw) = 20_\/— n qu $2|:u7 : (7)

The notation LyE for parametric estimation was introduced by Scott (1998b) to denote the
Ly estimation error criterion. Note that when o is fixed in Equation (7), then w and p are
uncoupled just as in the theoretical version in Equation (6). Thus g* may be computed with
w fixed at any value, and then w* computed as ¢3/¢;, using the sample version of ¢,.

A sample of size n = 1275 was generated from the mixture density described in Equa-
tion (3). Various combinations of the parameters were estimated using random starts. In
Figure 7, the stochastic mode tree (SMT) for this simulated dataset is displayed. While the
3 main modes are clearly evident, so are a number of small features not in the true density
but only in the sample.

Figure 8 displays both the mode tree based on the kernel estimator as well as the stochas-
tic mode tree. Note how the stochastic mode tree suppresses a number of “potential” modes
in these data. Specifically, the SMT acts as a partial inferential tool (filter) for gauging the
weight of each mode or cluster of a particular size. For example, the leftmost data point at
r = —3.28 exists as a potential cluster in both figures, but its significance is obviously nil in
the SMT version. Conversely, the cluster at x = —1 is more prominent in the SMT.
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5. Special Cases

In this section, we briefly examine the consequences of using a partial normal component
to fit non-Gaussian mixtures. In the multivariate case, the use of ¥ = h - I; is examined
when the local Hessian is not spherical.

A sample of size 1000 was generated from the beta mixture 2B(4,8) 4+ 2B(10,3); see
Figure 9. Fitting partial normal components (not the true density) gives good location
estimates for the smaller values of ¢; and w;, i.e., for the more local PDC fits.
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Figure 9: (a) Beta mixture and sample histogram with n = 1000. (b) Stochastic mode tree
of (413, w?) from Normal partial density fits, with arrows indicating the true modal locations.

In the multivariate case, consider a partial density component model that is Gaussian
with covariance matrix proportional to the identity matrix. Here it is demonstrated that
this model can find the correct location of Gaussian components for which the covariance
matrix is not proportional to the identity. For an equal-weight three-component bivariate
normal mixture, a sample of size 1200 was generated and is shown in Figure 10a. (The mean
vectors from left to right are <_§), (8), and (_512) The correlation for the first is .75 and 0
for the others. The variances are all 1 except for O'Z =4 in the last.) The estimated partial
normal components shown in Figure 10(b,c) give good location estimates. Note that the
optimal weight estimates are less interpretable when the parametric form is not correct. In

particular, fitting w - MN(u, 02 - I3) to data with very large o often results in w* > 1.

6. Examples

Ripley (1996) uses five measurements on crabs to illustrate various discrimination al-
gorithms, comparing blue and orange crabs as well as male and female sexes. One of the
techniques employed is linear discriminant analysis, which is optimal if the data are normal,
MN(ur,Y). Here, attention is focused on the group of male blue crabs (n = 50). The
stochastic mode tree was computed on the blurred and sphered data; see Figure 11. The
figure suggests there may be 2—4 clusters in these data. The inference of more than one
cluster is supported by examining an averaged shifted histogram (ASH,Scott (1992)) of the
first two principal components (explaining 93.8% of the variance) of the raw data. In general,
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the number of clusters will not decrease as other variables are added. (An explanation for
the observed “gap” in Figure 11a for w* € (0,.113) may be found in Section 7.)
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Figure 11: (a) Projection of the stochastic mode tree of 5-D male blue crab data onto the
petal width variable. The horizontal dotted line is at w* = 0.113. (b) ASH estimate of the
first two principal components of the raw male blue crab data.

Figure 12 displays a portion of the stochastic mode tree along the petal length variable
for the well-known 4-D Fisher iris data, which were also blurred. Also shown is a bivariate
ASH of that variable and another. The three species are indicated, but other modes are
apparent. We return to this and other examples in the next section.

7. Inferential Possibilities
When o is so small that a data point z; is “distant” from its nearest neighbor, then one

PDC solution is g* = z;; hence, from equation (7),

w? 2w
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Figure 12: (a) Portion of the stochastic mode tree of iris data along the petal length. (b)
ASH estimate of the petal length and width for the Setosa, Versicolor, and Virginica species.

It follows that w* = \/2/n, a constant irrespective of the particular (small) value of o. Thus,
if one wished to exclude isolated clumps of points with fewer than 3 or 4 members, a simple

threshold rule can be developed for excluding any PDC solution with w* < 3v/2/n. For
x € R?, a similar argument shows that

w* =242 /n (8)

for isolated points. This formula is quite accurate in practice. For example, if d = 5 and
n = 50, then w* = 0.113; cf. the vertical gap in Figure 11a. Note that w* = 0 is also a
stationary point for this problem. The gap for the Iris data is given by w* = 24/2/150 = 0.027,
which is (barely) visible in Figure 12a.

A more sophisticated line of reasoning explaining “noise” in the SMT may be developed.
Suppose a PDC solution, (p*, 0), exists and o is small. Consider the original LyE criterion:

[ fapas =2 [ fo) sy do. (9)
Taking a Taylor’s series about the point z = p* for a Normal PDC, Equation (9) becomes

w?
2\/mo

or, since ¢ is small and p* and 0% are the moments of the normal PDC,

— 2w [ $elu,o?) [107) + (0 = 00 5o = i PG 4| e
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Retaining only the leading terms, the optimal value of the weight approximately satisfies
w* = 20T f (1) + P f ().
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Again, this argument may be extended to the multivariate case. For x € R?, let f be a
normal PDC with ¥ = ¢? I;. Then a similar argument leads to

w = (2oy/m)" f(1) + O(™?).

Intuitively, a “false” mode in the SMT gives rise to points (¢*, w*) which approximately
satisfy the leading term w* = 20+/7f(p*). For true modes, on the other hand, the linear
approximation will not be sufficient. To examine this hypothesis, we re-examined the SM'T
results in Figure 8. Using the true density, we computed f(y}), then a predicted optimal
weight for each solution by w; = 20/7 f(pu}). Using XGobi (Swayne, Cook, and Buja 1998),
we plotted (w7, ;), and brushed all the points falling on the 45-degree line near the origin. In
Figure 13, the highlighted points as well as the correspondingly highlighted stochastic mode
tree are displayed. Clearly, this approach successfully eliminates most of the background
clutter while retaining all and only the 3 components.

wst.pred
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Figure 13: (a) The highlighted (red) points satisfy the local Taylor’s Series prediction for w*
given o, using the true density for f(u¢*). (b) The corresponding stochastic mode tree for
the 1275 points with color linked to the left frame.

In practice, an estimate of the density is required to find w. Either a kernel estimator,
a mixture estimator, or a nearest-neighbor estimator may be used for this task. While we
eventually hope to use a mixture estimate for this task, we chose a k-th nearest-neighbor
estimator with fairly small £. While such an estimate is noisier than a kernel estimate, it is
better able to cope with different sized bumps in high dimensions with only a little tweaking.

For the (blurred) iris data, we chose k = 8 and used XGobi to brush points in the
(w?,1;) plot near the origin on the 45-degree line; see Figure 14a. When the corresponding
points in the stochastic mode tree are plotted in Figure 14b, the three species are clearly
highlighted, together, perhaps, with a hybrid species of Versicolor and Virginica (Thompson
(2000), pp. 250-256). (Compare to Figure 12b.)
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Figure 14: (a) For the blurred 4-D Iris data, highlighted (red) points approximately satisfy
the local Taylor’s Series prediction for w* given o, using an 8-NN density estimate for f(u*).
(b) Corresponding brushed stochastic mode tree projected onto petal length.

For the simulated 3-component bivariate example, we computed f using an 8-th nearest-
neighbor estimate, rather than the true density. The brushed (w},w;) plot and the high-
lighted stochastic mode tree are displayed in Figure 15.

Finally, we re-examined the blurred male blue crab data. We computed f using an 4-th
nearest-neighbor estimate. The brushed (w?, ;) plot and the highlighted stochastic mode
tree are displayed in Figure 16. Note that all the points at w* = 0 fall at the origin in the
left frame. Three groups seem to be supported by this result.

Results from other well-known univariate datasets are not shown here, but are available
from our web site.

8. Conclusions

Modes are an excellent summary of data. A kernel estimator can have many modes,
but as the smoothing parameters change, so do the number and location of the modes. De-
termining which of these modes are “real” is not an easy task. The ordinary mode tree
displays all possible modal locations without criticism. In one or two dimensions, some tests
and procedures are available. In more dimensions, mixture models are of particular inter-
est, but begin to experience practical problems as numerical fitting produces more singular
components.

The stochastic mode tree “probes” the (multivariate) data density surface for normal
patches and modes that are located and scaled to provide best local fits for a given (random)
scale. Alternatively, choosing a polynomial model (e.g. centered Beta) for the partial density
component may make sense from a Taylor’s series’ point of view. Plotting w* against p*
reveals actual modal structure more clearly. Questions of whether an individual mode exists
may be tested by fitting mixtures with components located at the indicated positions (i.e.
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don’t optimize over the locations); see Scott and Szewczyk (1999). Another possible method
is to examine mode trees from bootstrap samples; see Minnotte, Marchette, and Wegman
(1998) for details. The interactive techniques described in Section 7 give very promising
results as well.

The algorithm as stated is rotationally invariant, not because the data are, but because
the covariance model of the PDC is spherical. A local estimate of the shape of the density
there may be obtained by computing the negative of the Hessian matrix at each sample
mode. An improved PDC might use that matrix for the covariance, and iterate several
times. Finally, the estimates could be used to initialize a MON fit that does not optimize
over the mean locations.

The techniques described here are exploratory, as is cluster analysis generally, so the
approach in Section 7 is quite reasonable. We also have attempted fitting 2-component
PDC’s, with random starts. This line of inquiry is promising but much more work is required
to understand how to extract the meaningful interpretations from the collection of solutions.
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