
C0
4 
PA
PE
R

DR
AF
T

COMPSTAT’2004 Symposium ©c Physica-Verlag/Springer 2004

OUTLIER DETECTION AND CLUSTERING

BY PARTIAL MIXTURE MODELING

David W. Scott

Key words : Minimum distance estimation, robust estimation, exploratory
data analysis..

COMPSTAT 2004 section: Statistical software.

Abstract: Clustering algorithms based upon nonparametric or semipara-
metric density estimation are of more theoretical interest than some of the
distance-based hierarchical or ad hoc algorithmic procedures. However den-
sity estimation is subject to the curse of dimensionality so that care must
be exercised. Clustering algorithms are sometimes described as biased since
solutions may be highly influenced by initial configurations. Clusters may be
associated with modes of a nonparametric density estimator or with compo-
nents of a (normal) mixture estimator. Mode-finding algorithms are related
to but different than gaussian mixture models. In this paper, we describe a
hybrid algorithm which finds modes by fitting incomplete mixture models,
or partial mixture component models. Problems with bias are reduced since
the partial mixture model is fitted many times using carefully chosen random
starting guesses. Many of these partial fits offer unique diagnostic informa-
tion about the structure and features hidden in the data. We describe the
algorithms and present some case studies.

1 Introduction

In this paper, we consider the problem of finding outliers and/or clusters
through the use of the normal mixture model

f(x) =

K
∑

k=1

wk φ(x |µk, Σk) . (1)

Mixture models afford a very general family of densities. If the number
of components, K, is quite large, then almost any density may be well-
approximated by this model. Aitkin and Wilson (1980) first suggested using
the mixture model as a way of handling data with multiple outliers, especially
when some of the outliers group into clumps. They used the EM algorithm
to fit the mixture model. Assuming that the “good” data are in one cluster
and make up at least fifty percent of the total data, then it is easy to see that
we have introduced a number of “nuisance parameters” into the problem (to
model the outliers).

Implementing this idea in practice is challenging. If there are just a few
“clusters” of outliers, then the number of nuisance parameters should not pose
too much difficulty. However, as the dimension increases, the total number
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of parameters grows quite rapidly, especially if a completely general covari-
ance matrix, Σk, is used for each component. The most directly challenging
problem is finding an appropriate choice of the number of components, K,
and initial guesses for the many parameters. An obvious first choice is to use
a clustering algorithm such as k-means (MacQueen, 1967) as an approach
to find an initial partition, and then compute the relative size, means, and
covariances of each group to use as initial guesses for the EM algorithm.

It is abundantly clear that for many of our fits, we will in fact be using the
wrong value of K. Furthermore, even if we happen to be using the appropriate
value for K, there may be a number of different solutions, depending upon
the specific initialization of the parameters. Starting with a large number of
initial configurations is helpful, but as the dimension and sample size increase,
the number of possibilities quickly exceeds our capabilities.

However, the least discussed and least understood problem arises because
so little is generally known about the statistical distributions of the clusters
representing the outliers. It certainly seems more reasonable to know some-
thing about the distribution of the “good” data; however, one is on much less
firm ground trying to claim the same knowledge about the distributions of
the several non-informative clusters. Even in the situation where the “good”
data are in more than one cluster, sometimes little is known about the dis-
tribution in one or more of those “good” clusters.

In this paper, we discuss how an alternative to the EM algorithm can pro-
vide surprisingly useful estimates and diagnostics, even when K is incorrect.
Such technology is especially interesting when K is too small, since in this
situation the number of parameters to be estimated may be a small fraction
of the number in the full, correct model. Furthermore, this technology is of
special interest in the situation where little is known about the correct distri-
bution of many of the clusters. This latter capability is of growing importance
and interest in the analysis of massive datasets typically encountered in data
mining applications.

2 Mixture Fits With Too Few Components

We examine some empirical results to reinforce these ideas. One well-known
trimodal density in two dimensions is the lagged Old Faithful Geyser dura-
tion data, {(xt−1, xt), t = 2, . . . , 298}; see Azzalini and Bowman (1990) and
Weisberg (1985). Successive eruptions were observed and the duration of
each eruption, {xt, t = 1, . . . , 299}, recorded to the nearest second. A quick
count shows that 23, 2, and 53 of the original 299 values occurred exactly at
xt = 2, 3, and 4 minutes, respectively. Examining the original time sequence
suggests that those measurements are clumped; perhaps accurate measure-
ments were not taken after dark. We modified the data as follows: the 105
values that were only recorded to the nearest minute were blurred by adding
uniform noise of 30 seconds in duration. Then all of the data were blurred
by adding uniform noise, U(−.5, .5), seconds, and then converted back into
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minutes.
In Figure 1, maximum likelihood estimates (MLE) of a bivariate normal

and three two-component bivariate normal mixture fits are shown. Each
bivariate normal density is represented by 3 elliptical contours at the 1, 2, and
3-σ levels. Figure 1 provides some examples of different solutions, depending
upon the value of K selected and the starting values for the parameters
chosen. In two dimensions, your eye can tell you what is wrong with these
fits. In higher dimensions, diagnostics indicating a lack of fit leave unclear
if a component should be split into two, or if the assumed shaped of the
component is not correct.

Figure 1: Maximum likelihood bivariate normal mixture fits to the lagged
Old Faithful geyser eruption data with K = 1 and K = 2. The weights in
each frame from L to R are (1.0), (.350, .650), (.645, .355), and (.728, .272).
Each bivariate normal component is represented by 3 contours at the 1, 2,
and 3-σ levels.

3 The L2E Criterion

Minimum distance estimation for parametric modeling of fθ(x) = f(x|θ) is
a well-known alternative to maximum likelihood; see Beran (1984). In prac-
tice, several authors have suggested modeling the data with a nonparametric
estimator (such as the histogram or kernel method), and then numerically
finding the values of the parameters in the parametric model that minimize
the distance between fθ and the curve; see Beran (1977) and Brown and
Hwang (1993), who considered Hellinger and L2 distances, respectively. Us-
ing a nonparametric curve as a target introduces some choices, such as the
smoothing parameter, but also severely limits the dimension of the data and
the number of parameters that can be modeled. (Precise numerical inte-
gration is quite expensive even in two dimensions. Numerical optimization
algorithms require very good accuracy in order to numerically estimate the
gradient vectors.)

Several authors have discovered an alternative criterion for parametric
estimation in the case of L2 or integrated squared error (ISE); see Terrell
(1990), Hjort (1994), Basu et al (1998), Scott (1998, 1999, 2001), for example.



C0
4 
PA
PE
R

DR
AF
T

4 David W. Scott

(This idea follows from the pioneering work of Rudemo (1982) and Bowman
(1984) on cross-validation of smoothing parameters in nonparametric density
estimates.) In particular, Scott (1998,1999) considered estimation of mixture
models by this technique. Given a true density, g(x), and a model, fθ(x), the
goal is to find a fully data-based estimate of the L2 distance between g and
f , which is then minimized with respect to θ. Expanding the L2 criterion

d(f̂θ, g) =

∫

[

f̂θ(x) − g(x)
]2

dx , (2)

we obtain the three integrals

d(f̂θ, g) =

∫

f̂θ(x)2dx − 2

∫

f̂θ(x) g(x) dx +

∫

g(x)2dx . (3)

The third integral is unknown but is constant with respect to θ and there-
fore may be ignored. The first integral is often available as a closed form
expression that may be evaluated for any posited value of θ. Additionally,
we must add an assumption on the model that this integral is always finite,
i.e. fθ ∈ L2. The second integral is simply the average height of the density
estimate, given by −2 E[f̂θ(X)], where X ∼ g(x), and which may be esti-

mated in an unbiased fashion by −2n−1
∑

n

i=1
f̂θ(xi). Combining, the L2E

criterion for parametric estimation is given by

θ̂ = argmin
θ

[

∫

f̂θ(x)2dx −
2

n

n
∑

i=1

f̂θ(xi)

]

. (4)

For the multivariate normal mixture model in Equation 1,

∫

<d

f̂θ(x)2dx =

K
∑

k=1

K
∑

`=1

wk w` φ(0 |µk − µ`, Σk + Σ`). (5)

Since this is a computationally feasible closed-form expression, estimation
of the normal mixture model by the L2E procedure may be performed by
use of any standard nonlinear optimization code; see Scott (1998, 1999). In
particular, we used the nlmin routine in the Splus library for the examples
in this paper.

Next, we return to the Old Faithful geyser example. Using the same
starting values as in Figure 1, we computed the corresponding L2E estimates,
which are displayed in Figure 2. Clearly, both algorithms are attracted to
the same (local) estimates, which combine various clusters into one (since
K < 3). However, there are interesting differences. First we compare the
estimated weights: in Figure 1, the MLE weight of the larger component
in each frame is 1, 0.65, 0.65, and 0.73, respectively, while in Figure 2 the
corresponding L2E weights are 1, 0.74, 0.72, and 0.71. Of more interest, the
L2E covariance matrices are either tighter or smaller. Since the (explicit)
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goal of L2E is to find the most normal fit (locally), observe that a number of
points in the smaller clusters fall outside the 3-σ contours in frames 2 and 3 of
Figure 2. The MLE covariance estimate is not robust and is inflated by those
(slight) outliers. These differences are likely due to the inherent robustness
properties of any minimum distance criterion; see Donoho and Liu (1988).
Increasing the covariance matrix to “cover” a few outliers results in a large
increase in the integrated squared or L2 error, and hence those points are
largely ignored.

Figure 2: Several L2E mixture fits to the lagged Old Faithful geyser eruption
data with K = 1 and K = 2; see text. The weights in each frame are (1.0),
(.258, .742), (.714, .286), and (.711, .289).

4 Partial Mixture Modeling

The two-component L2E estimates above were computed with the constraint
that w1+w2 = 1. Is this constraint necessary? Can the weights w1 and w2 be
treated as unconstrained variables? Certainly, when using EM or maximum
likelihood, increasing the weights increases the likelihood without bound, so
that the constraint is necessary (and active). However, the L2E criterion does

not require that the model f̂θ be a density. The second integral in Equation 3
measures the average height of the density model, but a careful review of the
argument leading to Equation 4 confirms the fact that only g(x) is required

to be a density, not f̂θ(x); see Scott (2001).
With this understanding, when we fit a L2E mixture model with K = 2,

we are only assuming that the true mixture has at least 2 components. That
is, we explicitly use our model for the local components of “good” data (local
in the sense of our initial parameter guesses), but make no explicit assumption
about the (unknown) distribution of the remaining data, no matter how many
or few clusters they clump into. Our algorithm is entirely local. Different
starting values may lead to quite different estimates.

Thus, we re-coded our L2E algorithm treating all of the weights in Equa-
tion 5 as unconstrained variables. In Figure 3, we display some of the “un-
constrainted” L2E mixture estimates, using the same starting values as in
Figure 2. These estimates are qualitatively quite similar to those in Figure
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2, with some interesting differences. Comparing the first frames in Figures 2
and 3, the covariance matrix has narrowed as the weight decreased to .783.
The sums of the (unconstrained) weights in the final three frames of Figure
3 are 0.947. 0.966, and 1.048. In the first two cases, the total probability
modeled is less than unity, suggesting a small fraction of the data are being
treated/labeled as outliers with respect to the fitted normal mixture model.
The fact that the third total probability exceeds unity is consistent with our
previous observation that the best fitting curve in the L2 or ISE sense often
integrates to more than 1, when there is a gap in the middle of the data.

Figure 3: Several L2E partial mixture fits to the lagged Old Faithful geyser
eruption data with K = 1 and K = 2, but without any constraints on
the weights; see text. The weights in each frame are (.783), (.253, .694),
(.683, .283), and (.751, .297).

Since there are potentially many more local solutions, we display four
more L2E solutions in Figure 4. Some of these estimates are quite unexpected
and deserve careful examination. The first frame is a variation of a K = 1
component which captures 2 clusters. However, the K = 2 estimates in the
last 3 frames each capture two individual clusters, while completely ignoring
the third. Comparing the contours in the last three frames of Figure 4, we
see that exactly the same estimates appear in different pairs. Looking at
the weights in Figures 3 and 4, we see that the smaller isolated components
are almost exactly reproduced while entirely ignoring the third cluster. This
feature of L2E is quite novel and we conclude that many of the local L2E
results hold valuable diagnostic information as well as quite useful estimates
of the local structure of the data.

Finally, in Figure 5, we conclude this investigation of the geyser data by
checking a number of K = 1 unconstrained L2E solutions. In this case, the
three individual components are found one at a time, depending upon the
initial parameter values. Notice that the weights are identical to those in
the previous figure. Furthermore, these weights are less than 50%, which is
the usual breakdown point of robust algorithms; see Rousseeuw and Leroy
(1987). However, the L2E algorithm is local and different ideas of breakdown
apply.
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Figure 4: Same as Figure 3 but different starting values; see text. The weights
in each frame are (.683), (.253, .316), (.253, .283), and (.316, .283).

Figure 5: Four more K = 1 partial mixture fits to the geyser data; see text.
The weights in each frame are (.694), (.253), (.316), and (.283).

5 Other Examples

5.1 Star Data

Another well-studied bivariate dataset was discussed by Rousseeuw and Leroy
(1987). The data are measurements of the temperature and light intensity of
47 stars in the direction of Cygnus. For our analysis, the data were blurred
by uniform U(−.005, .005) noise. Four giant stars exert enough influence to
distort the correlation of a least-squares or maximum likelihood estimate;
see the first frame in Figure 7. In the second frame, a K = 2 MLE normal
mixture is displayed. Notice the four giant stars are represented by one of
the two mixture components and has a nearly singular covariance matrix.
The third frame shows a K = 1 partial component mixture fit by L2E, with
ŵ = 0.937. The shape of the two covariance matrices of the “good” data
is somewhat different in these three frames. In particular, the correlation
coefficients are -0.21, 0.61, and 0.73, respectively.

These data were recently re-analyzed by Wang and Raftery (2002) with
nearest-neighbor variance estimator (NNVE), an extension of the NNBR esti-
mator (Byers and Raftery, 1998). They compared their covariance estimates
to the minimum volume ellipsoid (MVE) of Rousseeuw and Leroy (1987) as
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Figure 6: Two-σ contours of MLE (K = 1), MLE mixture (K = 2), and
partial L2E mixture (K = 1) fits to the blurred star data.

well as the (non-robust) MLE. In Figure 7, I have overlaid these 4 covariance
matrices (at the 1-σ contour level) with that of the partial density compo-
nent (PDC) estimate obtained by L2E shown in the third frame of Figure
6. For convenience, I have centered these ellipses on the origin. The NNVE
and NNBR ellipses are virtually identical, while the MVE ellipse is slightly
rotated and narrower. These three are surrounded by the slightly elongated
L2E PDC ellipse. Of course, the MLE has the wrong (non-robust) orienta-
tion. The correlation coefficients for NNVE and NNBR are 0.65 versus 0.73
for MVE and L2E. Observe that L2E does not explicitly require a search for
the good data. The other three algorithms require extensive search and/or
calibration of an auxiliary parameter. L2E is driven by the choice of the
shape of the mixing distribution. One might choose instead to use tν com-
ponents, as suggested by McLachlan and Peel (2001), although the degrees
of freedom must be specified. In either case, L2E provides useful diagnostic
information as a byproduct of the estimation, rather than as a follow-on step
of analysis.

-0.4 -0.2 0.0 0.2 0.4

-0
.6

-0
.2

0.
2

0.
6

Figure 7: Ellipses representing the 2-σ contours of five estimates of the co-
variance matrix of the star data; see text.
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5.2 Australian Athlete Data

For our final example, we consider four variables from the AIS data on Aus-
tralian Athletes (Cook and Weisberg, 1994). These data are available in the
R package with the command data(ais,package=’sn’). Following Wang
and Raftery (2002), we selected the variables body fat (BFAT), body mass
index (BMI), red cell count (RCC), and lean body mass (LBM). (Wang and
Raftery also included ferritin in their analysis.) We blurred the data then
standardized each variable.

We fit a K = 1 L2E starting with the maximum likelihood estimate. The
result was ŵ1 = 0.98. A pairwise scatterdiagram of the 202 points is shown
in Figure 8, together with contours of the fitted 4-dimensional ellipse. A
careful examination of this plots suggests some clusters. In fact, the first 100
measurements are of female athletes and the last 102 measurements are of
male athletes.

BMI

RCC

BFAT BMI

LBM

RCC

Figure 8: Ellipses representing the (1,2,3)-σ contours of a L2E partial mixture
estimate of the Australian athlete data; see text.

Starting with the MLE values for the female athletes, we re-fit a K = 1
L2E. Now ŵ1 = 0.41 (somewhat less than the 49.5% female population).
The contours of the fitted 4-dimensional ellipse are superimposed upon the
scatter matrix in Figure 9. The L2E is clearly modeling a large fraction of
the female athletes.

Finally, we started the L2E with the male values. However, L2E found
a smaller subset of the data lying in a subspace. (L2E is just as susceptible
at MLE at being attracted to singular mixture components, depending upon
initial guesses. That is why blurring was applied in all our examples to
remove trivial singularities due to rounding.) Further experimentation would
be interesting.
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BMI

RCC

BFAT BMI

LBM

RCC

Figure 9: Ellipses representing the (1,2,3)-σ contours of a second L2E partial
mixture estimate of the Australian athlete data; see text.

6 Discussion

We have shown how a minimum distance criterion and a mixture model
with only one or two partial components can provide useful estimates and
diagnostics. In particular, the value of ŵ1 + ŵ2 provides an indication of the
fraction of the data being modeled by a K = 2 mixture. In our experience, the
proportion of solutions that are interesting when K = 2 and the parameters
are initialized by some random process is quite small. Further research on this
question is open. However, many of the K = 1 solutions following random
initialization are quite useful. The systematic use of these ideas for clustering
is explored further in Scott and Szewczyk (2001).

Alternatively, Banfield and Raftery (1993) allow a number of outliers to
be modeled as a spatial Poisson process. It would be interesting to apply
that model with K = 2 to these data, where the noise is not Poisson, and to
compare the parameter estimates.

The identification of outliers without an explicit probability model should
always be viewed as preliminary and exploratory. If a probability model is
known, then the tasks of parameter estimation and outlier identification can
be more rigorously defined. However, even probability models are usually
known only approximately at best, and hence outliers so identified are still
subject to certain biases.

The general topic of outlier detection is discussed in Barnett and Lewis
(1994). Robust estimation is described by Huber (1981). Coupled with a
good exploratory such as XGobi (Swayne et al., 1998), the L2E PDC has
much potential for helping unlock information in complex data.
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