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Abstract

Modern data analysis requires a number of tools to undercover hidden structure.
For initial exploration of data, animated scatter diagrams and nonparametric den-
sity estimation in many forms and varieties are the techniques of choice. This article
focuses on the application of histograms and nonparametric kernel methods to ex-
plore data. The details of theory, computation, visualization, and presentation are
all described.
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1 Introduction

Statistical practice requires an array of techniques and a willingness to go
beyond simple univariate methodologies. Many experimental scientists today
are still unaware of the power of multivariate statistical algorithms, preferring
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the intuition of holding all variables fixed, save one. Likewise, many statis-
ticians prefer the familiarity of parametric statistical techniques and forgo
exploratory methodologies. In this chapter, the use of density estimation for
data exploration is described in practice with some theoretical justification.
Visualization is an important component of data exploration, and examples
of density surfaces beyond two dimensions will be described.

We generally consider the analysis of a d-variate random sample (x1, . . . ,xn)
from an unknown density function, f(x), where x ∈ <d. It is worth remind-
ing ourselves that (theoretically) for the analysis of a random sample, perfect
knowledge of the density functions f(x) or f(x, y) means that anything we
may need to know can be computed. In practice, the computation may be
quite complicated if the dimension of the data is high, but the greatest chal-
lenge comes from not knowing a parametric form for the density f(x). Fisher
(1932) referred to this step in data analysis as the problem of specification.
Nonparametric methodology provides a consistent approach for approximating
in a large class of unknown densities, at a cost of less efficient estimation when
the correct parametric form is known. Of course, if an incorrect parametric
form is specified, then bias will persist.

2 Classical Density Estimators

The statistical analysis of continuous data is a surprisingly recent develop-
ment. While data collection such as a population census can be traced back
thousands of years, the idea of grouping and tabulating data into bins to form
a modern frequency curve seems to have only arisen in the seventeenth cen-
tury. For example, John Graunt (1662) created a crude histogram of the age
of death during the English plague years using the bills of mortality, which
listed the cause and age of death week by week. In Figure 1, we analyze the
closing price, {xt}, of the Dow Jones Industrial (DJI) average from 2/3/1930
to 2/27/2004. A plot and histogram of the 18,598 daily change ratios, xt+1/xt,
are shown. While the eye is drawn to the days when the ratio represents more
than a 5% change, the histogram emphasizes how rare such events are. The
eye is generally a poor judge of the frequency or density of points in a scatter
diagram or time series plot.

By the nineteenth century, the histogram was in common use, as was its con-
tinuous cousin the frequency polygon. (The frequency polygon interpolates the
midpoints of a histogram in a piecewise linear fashion.) The first publication
to advocate a systematic rule for the construction of a histogram was due to
Sturges (1926). Sturges was motivated by the notion of an ideal histogram
in the case of normal data. Observe that the simplest example of a discrete
density that is approximately normal is a binomial distribution with p = 1/2.
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Fig. 1. Plot and histogram of daily change ratio, xt+1/xt, of the DJI.

Imagine a histogram of some binomial data with k bins, labeled 0, 1, . . . , k−1
and p = 1/2. Now the binomial density is f(i) =

(

k−1
i

)

2−(k−1). Sturges argued

that the binomial coefficient,
(

k−1
i

)

, could be taken as the idealized bin count
of normal data as the number of bins, k, grows, since the binomial density
looks normal as k increases. Let νk denote the bin count of the k-th bin. Then
the total bin count is

n =
k−1
∑

i=0

νk =
k−1
∑

i=0

(

k − 1

i

)

=
k−1
∑

i=0

(1 + 1)k−1 = 2k−1 ;

hence, given n data points, the appropriate number of bins, k, may be solved as
k = 1+log2(n). Let the bin width of a histogram be denoted by h, then Sturges’
rule for the bin width of a histogram of a random sample {x1, x2, . . . , xn} may
be expressed as

h =
x(n) − x(1)

1 + log2(n)
, (1)

where x(i) is the i-th order statistic of the sample. Formula (1) is still in
common use in most statistical software packages. However, we shall see that
this rule-of-thumb is far from optimal in a stochastic setting.

A histogram is a nonparametric estimator because it can successfully approx-
imate almost any density as n → ∞. The only alternative to the histogram
before 1900 was a parametric model, f(x|θ), and θ was usually estimated by
the method of moments. Pearson (1902) introduced a hybrid density estimator
from the family of solutions to the differential equation

d log f(x)

dx
=

x − a

bx2 + cx + d
. (2)
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The parameters (a, b, c, d) are estimated by the method of moments. (One pa-
rameter serves as a normalization constant, leaving three degrees-of-freedom).
The particular “type” or solution of Equation (2) depends upon the roots
of the denominator and special values of the parameters. A number of com-
mon distributions satisfy this differential equation, including the normal and
t densities. In fact, Gosset made use of this fact to derive the t-distribution
(Student, 1908).

The Pearson family of densities is not actually nonparametric since many
densities are not in the family. However, the Pearson family is still used in
many simulations today and is in the modern spirit of letting the data “speak”
rather than imposing a fully parametric assumption.

In the following sections, the properties of the modern histogram and fre-
quency polygon are examined.

2.1 Properties of Histograms

In the univariate setting, the frequency histogram plots raw data counts and
hence is not actually a density function. We limit our discussion to continuous
data and a true density histogram, which is defined over a general mesh on
the real line. Let the k-th bin correspond to the interval Bk = [tk, tk+1). Let
the number of samples falling into bin Bk be denoted by νk. Then the density
histogram is defined as

f̂(x) =
νk

n(tk+1 − tk)
for x ∈ Bk . (3)

In practice, an equally-spaced mesh is often chosen, with tk+1 − tk = h for all
k and with bin origin t0 = 0. In this case, the histogram estimator is simply

f̂(x) =
νk

nh
for x ∈ Bk . (4)

In the latter case, the histogram has only one unknown parameter, namely, the
bin width h. Yet as we shall see, the histogram can asymptotically approximate
any continuous density and hence earns the label “nonparametric.” Some early
writers suggested that nonparametric estimators were infinite-dimensional. In
fact, the number of parameters has little bearing on whether an estimator is
parametric or nonparametric. Rather, the important distinction is the local
behavior of the estimator.
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2.1.1 Maximum Likelihood and Histograms

How can maximum likelihood be applied to the density histogram? Let us
begin with a general binned estimator of the form

f̂(x) = fk for x ∈ Bk = [tk, tk+1) .

Then the log-likelihood of the histogram is

n
∑

i=1

log f̂(xi) =
∑

k

νk log fk subject to
∑

k

(tk+1 − tk)fk = 1 ,

where we define fk = 0 for bins where νk = 0. The Lagrangian is

L(f , λ) =
∑

k

νk log fk + λ

[

1 −
∑

k

(tk+1 − tk)fk

]

.

The stationary point for f` leads to the equation

∂L(f , λ)

∂f`
=

ν`

f`
− λ(t`+1 − t`) = 0 .

The constraint leads to λ = n; hence, f̂` = ν`/n(t`+1 − t`) as in Equation (3).
Thus the histogram is in fact a maximum likelihood estimator (MLE) within
the class of simple functions (that is, given a pre-determined mesh).

If we extend the MLE to the estimation of h, or indeed of the entire mesh {tk},
then we find that the likelihood is unbounded as h → 0 or as tk+1 − tk → 0.
Thus Duin (1976) introduced the leave-one-out likelihood. In the context of
estimation of h in Equation (4), the log-likelihood becomes

h∗ = arg max
h

n
∑

i=1

f̂−i(xi|h) , (5)

where the leave-one-out density estimate is defined by

f̂−i(xi) =
νk − 1

(n − 1)h
assuming xi ∈ Bk .

While good results have been reported in practice, the procedure cannot be
consistent for densities with heavy tails. Consider the spacing between the
first two order statistics, x(1) and x(2). If h < x(2) − x(1) and the bin count
in the first bin is 1, then the likelihood in Equation (5) will be zero, since
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f̂−(1)(x(1)) = 0. Since a necessary condition for a histogram to be consistent
will be shown to be that h → 0 as n → ∞, the spacings between all adjacent
order statistics must vanish as well; however, such is not the case for many
densities.

Thus most theoretical work on histograms (and other nonparametric estima-
tors) has focused on distance-based criteria rather than the likelihood criterion.
There are four common distance criteria between an estimator f̂(x) and the
true but unknown density g(x) (switching notation from f(x)) including:

∫ |f̂(x) − g(x)| dx integrated absolute error
∫

f̂(x) log[f̂(x)/g(x)] dx Kullback-Liebler distance
∫

[f̂(x)1/2 − g(x)1/2]2dx Hellinger distance
∫

[f̂(x) − g(x)]2dx integrated squared error

The first three are dimensionless, a characteristic which provides many po-
tential benefits in practice. The second is basically the likelihood criterion.
The fourth is the most amenable to theoretical investigation and calibration
in practice. Integrated squared error (ISE) is also the L2 distance between the
estimator and true densities.

2.1.2 L2 Theory of Histograms

We spend a little time outlining the derivation of the ISE for a histogram,
since every estimator shares this problem. The derivation is quite straight-
forward for the histogram, and we will not provide these details for other
estimators. We limit our discussion to equally-spaced histograms. Rosenblatt
(1956) showed in a general fashion that no nonparametric estimator can be
unbiased, and that the rate of convergence of any measure of error cannot
achieve the parametric rate of O(n−1). Since the histogram estimate, f̂(x),
for a fixed x cannot be unbiased, then mean square error (MSE) is a natural
criterion pointwise. Globally, MSE can be integrated over x to give the inte-
grated mean square error (IMSE). By Fubini’s theorem, IMSE is the same as
mean integrated square error (MISE)

IMSE =
∫

MSE(x)dx

=
∫

E[f̂(x) − g(x)]2dx = E
∫

[f̂(x) − g(x)]2dx

=MISE .
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Finally, since MSE = Var+Bias2, the IMSE is the sum of the mean integrated
variance (IV) and the mean integrated squared bias (ISB).

The bin count, νk, is a Binomial random variable, B(n, pk), with probability
given by the actual bin probability, pk =

∫ tk+1

tk g(x) dx. Hence, for x ∈ Bk, the
pointwise variance of the histogram estimate given in Equation (4) equals

Var f̂(x) =
Var(νk)

(nh)2
=

pk(1 − pk)

nh2
.

Since the variance is identical for any x ∈ Bk, the integral of the variance over
Bk multiplies this expression by the bin width, h. Therefore,

IV =
∑

k

∫

Bk

Var(f̂(x))dx =
∑

k

pk(1 − pk)

nh2
× h =

1

nh
−
∑

k

p2
k

nh
, (6)

since
∑

k pk =
∫

g(x) dx = 1. Next, by the mean value theorem, pk =
∫

Bk
g(x)dx

= h · g(ξk) for some ξk ∈ Bk; thus, the final sum equals n−1∑

k g(ξk)
2h, or

approximately n−1
∫

g(x)2dx. Thus the variance of a histogram pointwise or
globally may be controlled by collecting more data (larger n) or having suffi-
cient data in each bin (wider h).

The bias is only a little more difficult to analyze. Clearly,

Bias f̂(x) = E f̂(x) − g(x) =
pk

h
− g(x) for x ∈ Bk .

Again using the fact that pk = h · g(ξk), Bias f̂(x) = g(ξk)−g(x) = O(hg′(x)),
assuming the unknown density has a smooth continuous derivative, since a
Taylor’s series of g(ξk) equals g(x) + (ξk − x)g′(x) + o(h) and |ξk − x| < h as
both ξk and x are in the same bin whose width is h.

Thus the squared bias of f̂(x) is of order h2g′(x)2, and the integrated squared
bias is of order h2

∫

g′(x)2dx. In contrast to the manner by which the variance
is controlled, the bias is controlled by limiting the size of the bin width, h. In
fact, we require that h → 0 as n → ∞. From Equation (6), nh → ∞ is also
necessary.

Combining, we have that the global error of a fixed-bin-width histogram is

IMSE = IV + ISB =
1

nh
+

1

12
h2
∫

g′(x)2dx + O(
1

n
+ h4) , (7)

where the factor 1
12

results from a more careful analysis of the difference be-
tween g(ξk) and g(x) for all x in Bk; see Scott (1979).
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The IMSE in Equation (7) is minimized asymptotically by the choice

h∗ =

[

6

nR(g′)

]1/3

and IMSE∗ = (9/16)1/3R(g′)1/3n−2/3, (8)

where the “roughness” of g(x) is summarized by R(g′) ≡ ∫

g′(x)2dx. Indeed,
the rate of convergence of the IMSE falls short of the parametric rate, O(n−1).

2.1.3 Practical Histogram Rules

We support the idea that histograms constructed with bin widths far from
h∗ are still of potential value for exploratory purposes. Larger bandwidths
allow for a clearer picture of the overall structure. Smaller bandwidths allow
for fine structure, which may or may not be real (only a larger sample size
will clarify the true structure). Smaller bandwidths may also be useful when
the true density is a mixture of components, say, for example, a normal mix-
ture w N(0, 1) + (1 − w) N(µ, σ2). Obviously there is a different bandwidth
appropriate for each component, and h∗ represents a compromise between
those bandwidths. Using a smaller bandwidth may allow excellent estimation
of the narrower component, at the price of making the other component un-
dersmoothed. Unless one uses the more general mesh in Equation (3), such
compromises are inevitable. Data-based algorithms for the general mesh are
considerably more difficult than for a single parameter and may in fact perform
poorly in practice.

Expressions such as those for the optimal parameters in Equation (8) may
seem of limited utility in practice, since the unknown density g(x) is required.
However, a number of useful rules follow almost immediately. For example,
for the normal density, N(µ, σ2), the roughness equals R(g′) = (4

√
πσ3)−1.

Therefore,

h∗ =

[

24
√

πσ3

n

]1/3

≈ 3.5 σ n−1/3 . (9)

Compare this formula to Sturges’ rule in Equation (1). Since the logarithm is
a very slowly increasing function, Sturges’ bin width is too slow to decrease
as the sample size increases, at least with respect to IMSE.

Formulae such as Scott’s rule (9), with σ replaced by an estimate σ̂, are vari-
ations of so-called normal reference rules. Almost any other density can be
shown to be more complex, resulting in an optimal bin width that is nar-
rower. In fact, we can make this idea quite explicit. Specifically, a calculus
of variations argument can be formulated to find the smoothest (“easiest”)
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density that has a given variance, σ2. Terrell and Scott (1985) showed that
this density is given by

g1(x) =
15

16
√

7σ

(

1 − x2

7σ2

)2

−
√

7σ < x <
√

7σ

and zero elsewhere. Thus, for all densities with variance σ2, R(g′) ≥ R(g′
1).

Since R(g′
1) = 15

√
7/343σ3, the optimal bandwidth for density g1 is

h∗
1 = hOS =

[

686σ3

5
√

7n

]1/3

≈ 3.73σn−1/3 ,

where OS ≡ oversmoothed. The normal reference bandwidth is only 6% nar-
rower, confirming that the normal density is very close to the “oversmoothed”
or “smoothest” density, which is in fact Tukey’s biweight function. Since any
other density is rougher than g1, the optimal bandwidth satisfies the inequal-
ity h∗ ≤ hOS. Since σ can be estimated quite reliably from the data, we have
bounded the search region for h∗ to the interval (0, hOS). This is a very useful
result in practice.

In fact, we can use cross-validation to obtain an estimate of h∗ itself. Rudemo
(1982) and Bowman (1984) showed that the integrated squared error can be
estimated for each choice of h by replacing the second term in the expanded
version of the integrated squared error:

ISE =
∫

[f̂(x|h) − g(x)]2dx (10)

=
∫

f̂(x|h)2dx − 2
∫

f̂(x|h)g(x)dx +
∫

g(x)2dx

with the unbiased estimator

−2

n

n
∑

i=1

f̂−i(xi|h) ∼ −2E[f̂(X|h)] = −2
∫

f̂(x|h)g(x)dx .

The final integral in (11),
∫

g(x)2dx, is unknown but is constant with respect
to h and may be ignored. Thus the least-squares or unbiased cross-validation
(UCV) criterion which estimates ISE − ∫

g(x)2dx is

∫

f̂(x|h)2dx − 2

n

n
∑

i=1

f̂−i(xi|h) . (11)

This approach requires the additional assumption that the true density is
square integrable for all choices of the smoothing parameter.

9



0.90 0.95 1.00 1.05 1.10

0
5

10
20

30

0.97 0.99 1.01 1.03

0
10

30
50

Fig. 2. Histograms of xt+1/xt of the DJI chosen by Sturges’ rule and by eyeball.

There have been a number of further algorithms proposed that focus on im-
proved point estimates of the roughness functional, R(g′). However, such
approaches are still limited to a single bandwidth. Rudemo (1982) showed
how unbiased cross-validation may easily be extended to the variable mesh
case. Wegman (1975) demonstrated the strong consistency of a variant of the
variable-mesh histogram based upon maintaining a minimum number of sam-
ples in each bin. The idea was ultimately the motivation for the random bin
width estimators of Hearne and Wegman (1994). Kogure (1987) and Kanazawa
(1992) also examine variable mesh histograms. Variable smoothing is discussed
further in Section 3.4.

As an example, consider again the ratio of DJI closing prices, {xt+1/xt}, since
1930. The oversmoothed bin width is 3.73σ̂n−1/3 = 0.00137, which was used to
construct the histogram in Figure 1. Sturges’ rule suggests 1 + log2(18598) =
15.2 bins. The left frame in Figure 2 uses 16 bins over the sample range. To
see if there is structure that might be revealed if h < hOS, we show a detail
in the right frame of Figure 2 with h = 0.001, which is about 27% narrower
than hOS. The minimizer of the UCV criterion (11) occurs at h = 0.00092.
Note that strictly speaking, this example does not represent a random sample
since the data are a correlated time series; however, the rules of thumb still
seem useful in this case. Observe that Sturges’ rule grossly oversmooths the
data in any case.

2.1.4 Frequency Polygons

The use of the piecewise linear frequency polygon (FP) in place of the under-
lying histogram would seem mainly a graphical advantage. However, Fisher
(1932, p. 37) suggested that the advantage was “illusory” and that a frequency
polygon might easily be confused with the smooth true density. “The utmost
care should always be taken to distinguish” the true curve and the estimated
curve, and “in illustrating the latter no attempt should be made to slur over
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this distinction.”

However, Scott (1985a) showed that the smoothness of the frequency polygon
reduced not only the bias but also the variance compared to a histogram. A
similar analysis of the estimation errors leads to the expression

MISE =
2

3nh
+

49

2880
h4R(g′′) + O(

1

n
+ h6) ,

where R(g′′) =
∫

g′′(x)2dx. Thus the best choice of the bin width for the
underlying histogram is not that given in Equation (7), but rather

h∗ = c0cgn
−1/5 and MISE∗ = c1cgn

−4/5 ,

where c0 = 1.578, c1 = 0.528, and cg = R(g′′)−1/5. For N(µ, σ2) data, h∗ =
2.15σn−1/5, which, for large n, will be much wider than the corresponding
histogram formula, h∗ = 3.5σn−1/3. For example, when n = 105 with normal
data, the optimal FP bin width is 185% wider than that of the histogram; the
MISE of the FP is reduced by 81%. The wider bins allow the FP to achieve
lower variance. The piecewise linear FP more closely approximates the under-
lying smooth density than the piecewise constant histogram. (In fact, piecewise
quadratic estimates can achieve even closer approximation. However, such es-
timates often take on negative values and do not offer sufficient improvement
in practice to recommend their use.).

In Figure 3, we display the common logarithm of the Canadian lynx data to-
gether with a histogram using h = 0.4, which is slightly less than the normal
reference rule bandwidth h = 0.47. (The UCV bandwidth is 0.461.) In Figure
4, we display two shifted versions of the histogram in Figure 3. The theoret-
ical analyses of the MISE for both the histogram and FP indicate that the
effect of choosing the bin origin t0 is relegated to the remainder (low-order)
terms. However, the graphical impact is not negligible. The bimodal feature
varies greatly among these three histograms. For the FP, the wider bins of its
underlying histogram suggest that the choice of t0 matters more with the FP
than with the histogram. We revisit this below in Section 3.1.

2.1.5 Multivariate Frequency Curves

The power of nonparametric curve estimation is in the representation of mul-
tivariate relationships. In particular, density estimates in dimensions 3, 4, and
even 5 offer great potential for discovery. Examples and visualization tech-
niques are described below in Section 5.

Beyond 4 dimensions, the effects of the so-called curse of dimensionality must
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Fig. 3. Canadian lynx data (log10 xt) and its histogram (h = 0.4 and t0 = 2).
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Fig. 4. Two shifted lynx histograms (t0 = 2.1 and t0 = 2.2) with h = 0.4.

be considered. The bias-variance tradeoff is subject to failure since the optimal
bin widths must be large, and are generally too wide to avoid substantial bias.
Imagine a large sample of 106 data uniformly distributed on the unit hypercube
in <10. If each axis is divided into 5 equal bins, then the hypercube has 510

or almost ten million bins. Even such a crude binning leaves 90% of the bins
empty. If each axis were divided into only 3 bins, then each bin would still
have only 17 points on average. Thus these estimators must be quite biased,
even with a truly enormous sample size.

However, the extension of the MISE analyses to the multivariate case is
straightforward and serves to better quantify the effects of the curse of di-
mensionality. For a multivariate histogram with cubical bins of volume hd, the
IV is O(1/nhd) while the ISB remains of O(h2). Thus

Histogram: h∗
d = O(n−1/(d+2)) and MISE∗

d = O(n−2/(d+2)) .

The IV and ISB for the multivariate frequency polygon are O(1/nhd) and
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O(h4), respectively. Thus the situation is significantly improved (Scott, 1985a):

FP: h∗
d = O(n−1/(d+4)) and MISE∗

d = O(n−4/(d+4)) .

Perhaps the most encouraging observation is that the MISE convergence rate
of order n−2/5 is achieved not only by histograms in d = 3 dimensions but
also by frequency polygons in d = 6 dimensions. Since a number of scientists
have successfully used histograms in 3 (and even 4) dimensions, we believe
that it is reasonable to expect useful nonparametric estimation in at least six
dimensions with frequency polygons and other smoother estimators. That is
more than sufficient for graphical exploratory purposes in dimensions d ≤ 5.
Complete nonparametric estimation of a density function in more than six
dimensions is rarely required.

3 Kernel Estimators

3.1 Averaged Shifted Histograms

The Canadian lynx example in Figures 3 and 4 indicates that both the bin
width and the bin origin play critical roles for data presentation. One approach
would be to use unbiased cross-validation to search for the best pair (h, t0).
However, Scott (1985b) suggested that t0 should be viewed as a nuisance
parameter which can be eliminated by averaging several shifted histograms.
The details of averaging m shifted histograms are easiest if each is shifted by
an amount δ = h/m from the previous mesh. The averaged shifted histogram
(ASH) will be constant over intervals of width δ, so we redefine the bin counts,
{νk}, to correspond to the mesh B′

k = [t0+kδ, t0+(k+1)δ). Then Scott (1985b)
shows that

f̂ASH(x) =
1

nh

m−1
∑

i=1−m

(

1 − |i|
m

)

νk+i for x ∈ B′
k . (12)

In Figure 5, all shifted histograms have h = 0.4. The first two frames show
individual histograms with t0 = 2.0 and t0 = 2.2. The ASH with m = 2 is
shown in the third frame, and so on. Eliminating t0 shows that the data are
clearly bimodal, with a hint of a small bump on the left. The limiting ASH
is continuous, which provides visual advantages. Connecting the midpoints of
the ASH like a frequency polygon (called the FP-ASH) has some theoretical
value, although for m ≥ 32 in Figure 5, the discontinuous nature of the ASH
is not visible.
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Fig. 5. Original averaged shifted histograms of lynx data.

Uniform weights on the shifted histograms are not the only choice. Choose a
smooth symmetric probability density, K(x), defined on [−1, 1] that satisfies
K(±1) = 0. Define the weight function

wm(i) =
m · K(i/m)

∑m−1
j=1−m K(j/m)

for i = 1 − m, . . . , m − 1 . (13)

Then the generalized ASH in Equation (12) is

f̂ASH(x) =
1

nh

m−1
∑

i=1−m

wm(i) νk+i for x ∈ B′
k . (14)

The weight function for the original ASH in Equation (12) is the triangle
kernel, K(x) = 1 − |x|, for |x| < 1 and zero elsewhere. Kernels in the shifted
Beta family, K`(x) ∝ (1−x2)`

+ are popular in practice. Tukey’s biweight kernel
corresponds to ` = 2 while the normal kernel is well-approximated for large
`. Some examples of ASH estimates with ` = 5 are shown in Figure 6. Notice
that the use of a differentiable kernel makes the ASH visually smoother and
the small bump on the left now appears clearer. The ASH of the DJI ratio
reveals a small bimodal feature suggesting the DJI tries to avoid closing at
the same level two days in a row.

3.2 Kernel Estimators

As the number of shifts m → ∞ in Equation (13), the ASH approximates the
so-called kernel estimator

f̂K(x) =
1

nh

n
∑

i=1

K
(

x − xi

h

)

=
1

n

n
∑

i−1

Kh(x − xi) , (15)
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Fig. 6. Averaged shifted histograms of the lynx and DJI data using a smoother
weight sequence wm(i) ∝ (1 − (i/m)2)5+.

where the kernel, K, corresponds to K in Equation (13) and the scaled kernel
function, Kh(x), is defined as Kh(x) = h−1K(h−1x). Thus a kernel estimator
is an equal mixture of n kernels, centered at the n data points. For large n,
the ASH requires much less work, since determining the bin counts is a linear
operation, and the smoothing is a discrete convolution on the bin counts. (The
kernel estimator may be viewed as a continuous convolution on all n points.) If
one wanted to use the normal kernel, then much of the computational efficiency
of the ASH would be lost. However, the Fast Fourier Transform can be used
in that case; see Silverman (1982) for details. Using the FFT limits the ability
to use boundary kernels or to estimate over a subset of the domain.

Choosing a good value for the bandwidth, h, is the most difficult task. The
normal reference rule using a normal kernel is h = 1.06 σ n−1/5 for univariate
data. More sophisticated plug-in rules have been described by Sheather and
Jones (1991). However, we continue to recommend least-squares or unbiased
cross-validation algorithms, which are well-studied for kernel estimators; see
Rudemo (1982), Bowman (1984), and Sain, Baggerly, and Scott (1994). For
the lynx data transformed by log10, the unbiased cross-validation function in
Equation (11) with the normal kernel suggests using the bandwidth h = 0.154;
see Figure 7. The corresponding Gaussian kernel estimate is shown in the
right frame of this figure. This estimator is slightly less rough than the ASH
estimate shown in Figure 6, which was chosen by eyeball to highlight the
small bump/mode near x = 1.9. However, at that narrow bandwidth, an
extra bump seems to be present near x = 2.8. Using a single bandwidth for
the entire domain implies such compromises. Locally adaptive smoothing is a
possibility and is discussed in Section 3.4.

The unbiased cross-validation of the DJI time series also suggests a wider
bandwidth than used for the ASH in Figure 6. The slightly bimodal feature
at x = 1 disappears. However, care should be exercised when using cross-
validation on time series data, since serial correlation is present. Specialized
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Fig. 7. Unbiased cross-validation and data-based optimal Gaussian kernel estimator.

algorithms exist in this situation; see Hart (1984).

The choice of kernel is largely a matter of convenience. The family of scaled
Beta densities provides collection of useful polynomial kernels of the form
K(x) ∝ (1 − x2)`

+ on the interval (−1, 1). As ` → ∞, this kernel converges to
the normal kernel. The normal kernel has one advantage in practice; namely, as
the smoothing parameter h increases, the number of modes is monotone non-
increasing (Silverman, 1981). This property led Minnotte and Scott (1993) to
propose the “mode tree,” which plots the location of modes of a normal kernel
estimator as a function of h. Minnotte (1997) proposed a local bootstrap test
for the veracity of individual modes by examining the size of modes at critical
points in the mode tree. Chaudhuri and Marron (1999) have introduced a
graphical tool called SiZer to test the features in a kernel density.

3.3 Multivariate Kernel Options

The extension of the kernel estimator to vector-valued data, x ∈ <d, is
straightforward for a normal kernel, K ∼ N(0, Σ):

f̂(x) =
1

n(2π)d/2|Σ|1/2

n
∑

i=1

exp[−1

2
(x − xi)

′Σ−1(x − xi)] . (16)

It is convenient to separate the “size” of Σ from the “orientation” of Σ. To
that end, write Σ = h2A, where |A| = 1. Thus, the size of Σ is |h2A| = h2d.
The gaussian kernel estimate becomes

f̂(x) =
1

n(2π)d/2hd

n
∑

i=1

exp

[

−1

2

(

x − xi

h

)′

A−1
(

x − xi

h

)

]

. (17)
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Since A is a symmetric, positive-definite matrix, the symmetric, positive-
definite square-root matrix, A−1/2 exists. Hence, Equation (17) becomes

f̂(x) =
1

n(2π)d/2hd

n
∑

i=1

exp

[

−1

2

(A−1/2(x − xi))
′

h

(A−1/2(x − xi))

h

]

. (18)

This equation proves it is equivalent to rotate the data by the transformation
A−1/2 and then apply the N(0, Id) kernel. This transformation is almost into
the principal components, except that the final scaling is not applied to make
the variances all equal. In this transformed space, the kernel estimate is

f̂(x)=
1

n(2π)d/2hd

n
∑

i=1

exp

[

−1

2

(

x − xi

h

)′ (x − xi

h

)

]

=
1

n

n
∑

i=1

Kh(x − xi) ,

where Kh(x) = h−dK(x/h) =
∏d

k=1 φ(x(k)|0, h).

We recommend working with transformed data and using either the normal
kernel or, more generally, a product kernel, possibly with different smoothing
parameter, hk, in the k-th direction:

f̂(x) =
1

n

n
∑

i=1

[

d
∏

k=1

Khk
(x(k) − x

(k)
i )

]

. (19)

The ashn software (see Section 5) computes an approximation of the multi-
variate product kernel estimate with kernels selected from the rescaled Beta
family.

The multivariate rule-of-thumb for the bandwidth h is surprisingly simple.
Assuming a normal product kernel and a true density that is also normal with
Σ = Id, then to close approximation

h∗ = n−1/(d+4) or h∗
k = σ̂kn

−1/(d+4)

for the general normal product estimator (19). For other choices of kernel,
Scott (1992) provides a table of constants by which to multiple h∗

k.

Full cross-validation may be used to estimate h or (h1, . . . , hd) from the data;
see Sain, Baggerly, and Scott (1994). Estimating the shape of the kernel pa-
rameters in the matrix A is generally not advisable, as there are too many
parameters in high dimensions. We demonstrate below in Section 3.4 that
useful estimates of A may be obtained in two dimensions. Wand and Jones
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(1994) describe multivariate plug-in bandwidth rules, which can be more sta-
ble. However, it is important to note that kernel methods cannot handle rank-
deficient data. Such degenerate cases can often be detected by computing the
principal components and throwing away dimensions where the eigenvalues
are essentially zero.

3.4 Locally Adaptive Estimators

As any practitioner will note, more smoothing is needed to counter the ex-
cessive variation in the tails of a distribution where data are scarce while less
smoothing is needed near the mode of a distribution to prevent important
features from being diminished in the resulting estimate. Several situations
have been discussed (e.g. multimodal and multivariate distributions) where
the bias-variance trade-off that drives most global bandwidth choices can lead
to estimates that lack visual appeal and make feature recognition difficult.

These situations have often motivated the notion of a variable bandwidth
function that allows different amounts of smoothing depending on the various
characteristics of the data and the density being estimated. Two simplified
forms of such estimators have been studied extensively. The first, the balloon

estimator, varies the bandwidth with the estimation point. The second varies
the bandwidth with each estimation point and is referred to as the sample

point estimator. Jones (1990) gives an excellent comparison of such estimators
in the univariate case while Terrell and Scott (1992) and Sain (2002) examined
each of the two different formulations in the multivariate setting.

3.4.1 Balloon Estimators

The basic form of the balloon estimator is a generalization of Equation (18):

f̂B(x) =
1

n|H(x)|1/2

n
∑

i=1

K(H(x)−1/2(x − xi)) =
1

n

n
∑

i=1

KH(x)(x − xi)

where H(x) is a positive-definite smoothing matrix associated with the esti-
mation point x. Note that H corresponds to hA. At a particular estimation
point x, the balloon estimator and the fixed bandwidth are exactly the same.
Both place kernels of the same size and orientation at each of the data points
and the estimate is constructed by averaging the values of the kernels at x.

Taking K to be a uniform density on the unit sphere with H(x) = hk(x)Id and
letting hk(x) the distance from x to the k-th nearest data point, one has the
k-nearest neighbor estimator of Loftsgaarden and Quesenberry (1965). Much
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has been written about this early balloon estimator that tries to incorporate
larger bandwidths in the tails. (Where data are scarce, the distances upon
which the bandwidth function is based should be larger.) The estimator is
not guaranteed to integrate to one (hence, the estimator is not a density)
and the discontinuous nature of the bandwidth function manifests directly
into discontinuities in the resulting estimate. Furthermore, the estimator has
severe bias problems, particularly in the tails (Mack and Rosenblatt, 1979, and
Hall, 1983) although it seems to perform well in higher dimensions (Terrell and
Scott, 1992).

In general, the identical construction of the balloon estimator and the fixed
bandwidth estimator results in identical pointwise error properties. However,
there are certain regions of the underlying density, typically in the tails, where
the size and orientation of the kernels can be chosen to yield a higher-order
bias (Terrell and Scott, 1992) or even eliminate it completely (Sain, 2001;
Hazelton, 1998; Sain and Scott, 2002; Devroye and Lugosi, 2000; Sain, 2003).

3.4.2 Sample Point Estimators

The multivariate sample-point estimator is defined to be

f̂S(x) =
1

n

n
∑

i=1

1

|H(xi)|1/2
K(H(xi)

−1/2(x − xi)) (20)

=
1

n

n
∑

i=1

KH(xi)(x − xi) ,

where H(xi) is a positive-definite smoothing matrix associated with the ith
data point, xi. In contrast to the balloon estimator, this estimator still places
a kernel at each data point and the estimator is still constructed by averaging
the kernel values at x. However, the size and orientation of each kernel is
different and is constant over the entire range of the density to be estimated.

Early efforts with such estimators proposed H(xi) ∝ f(xi)
−αId. Breiman et

al. (1977) suggested using nearest-neighbor distances which is equivalent to
using α = 1/d. Abramson (1982) suggested using α = 1/2 regardless of the
dimension. Pointwise, it can be shown that this parameterization of the band-
width function can yield a higher-order behavior of the bias (Silverman, 1986;
Hall and Marron, 1988; Jones, 1990) and empirical results show promise for
smaller sample sizes. However, this higher-order behavior does not hold glob-
ally due to bias contributions from the tails (Hall, 1992; McKay, 1993; Terrell
and Scott, 1992; Hall et al., 1994; and Sain and Scott, 1996) and any gains
can be lost as the sample size increases.

Sain and Scott (1996) and Sain (2002) suggest using a binned version of the
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sample-point estimator in (20). Such an estimator has the form

f̂Sb(x) =
1

n

m
∑

j=1

nj

|H(tj)|1/2
K(H(tj)

−1/2(x − tj)) =
1

n

m
∑

j=1

njKH(tj)(x − tj)

where nj is the number of data points in the jth bin centered at tj and H(tj)
is a positive-definite bandwidth matrix associated with the jth bin. Using such
an estimator, the MISE can easily be examined by recognizing that only the
nj are random and follow at multinomial distribution with cell probabilities
given by pj =

∫

Bj
f(x)dx where Bj denotes the jth bin. The MISE for a binned

estimator with normal kernels is then given by

MISE =
1

n(2
√

π)d

∑

j

pj(1 − pj) + np2
j

|Hj|1/2
+

n − 1

n

∑

i6=j

pipjφHi+Hj
(ti − tj)

−2

n
pj

∫

φHj
(x − tj)f(x)dx + R(f)

where Hj = H(tj). Sain and Scott (1996) used this formulation to examine
univariate sample-point estimators and showed that while the MISE did not
appear to converge at a faster rate, significant gains over fixed bandwidth
estimators could be theoretically obtained for a wide variety of densities. Sain
(2002) showed similar results in the multivariate setting.

3.4.3 Parameterization of Sample-Point Estimators

Designing practical algorithms that actually achieve some of the gains pre-
dicted in theory has been a difficult task and much of the promise depends on
how the bandwidth function is parameterized. It seems to be widely held that
the sample-point estimator shows more promise, perhaps since the estimator
is a bona fide density by construction. However, n positive-definite smoothing
matrices must be estimated for the sample-point estimator and it is clear that
some sort of dimension reduction must be utilized.

The binning approach outlined in the previous section is one possible approach
to reduce the number of smoothing matrices that must be estimated. In addi-
tion, further reduction could be had by restricting the form of the smoothing
matrices. For example, one could let the kernels be radially symmetric and just
vary the size of the kernels, effectively letting H(xi) = h(xi)Id. This leaves
just one parameter to be estimated for each bin. A step up is to allow differ-
ent amounts of smoothing for each dimension using the product kernel form.
This would reduce the bandwidth function to H(xi) = diag(h1(xi), . . . , hd(xi))
where diag indicates a diagonal matrix. Each kernel would be elliptical with
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Fig. 8. Ellipses showing relative sizes and shapes of sample point kernels using
the binned estimator and a bivariate standard normal density. Left column shows
kernels for radially symmetric kernels, middle column shows kernels for diagonal
bandwidth matrices, while the right column shows the unrestricted kernels. Top
frames show kernels inside the unit circle while the bottom frames shows kernels in
the first quadrant and outside the unit circle.

the axis of each ellipse aligned with the coordinate axis and d parameters
would be estimated for each bin.

In two dimensions, there are three free parameters in the full smoothing ma-
trix. While the product kernel formulation allows for some dimension re-
duction, many other formulations are possible. For example, Banfield and
Raftery (1993) reparameterize covariance matrix for normal components of
a mixture as Σk = λkDkAkD

′
k. In this formulation, λk controls the volume

while the matrix Ak controls the shape and is a diagonal matrix of the form
Ak = diag(1, α2, . . . , αk) for 1 ≥ α2 ≥ · · · ≥ αk. The matrix Dk is an orthogo-
nal matrix that controls the orientation. The three free parameters for d = 2
are then λk, α2, and any one of elements of Dk (the other elements of Dk can
be obtained from the constraints imposed by orthogonality, i.e. DkD

′
k = Id).

Any combination of these terms could be held constant or allowed to vary
yielding a great many different parameterizations that could be effective for
densities of different shapes.

A comparison of the size and shape of optimal kernels for the three basic forms
is given in Figure 8 for a bivariate standard normal density n = 1000 and
the binned sample-point estimator. A fixed mesh is laid down over the range
of the density, bin probabilities are calculated, and the MISE is minimized.
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Fig. 9. Example using sepal and petal length for the iris data. Left frame shows
ellipses representing the cross-validation estimated kernels with the middle frame
the resulting density. The ellipse in the upper left corner of the left frame represents
the fixed bandwidth kernel and the resulting estimate is in the right frame.

Bins in the corners with very low bin probabilities were excluded from the
optimization.

Kernels near the mode (inside the unit circle) are nearly circular and are very
similar, regardless of the parameterization. As the bins move further out into
the tails, the size of the kernels get larger and the product kernels and fully pa-
rameterized kernels become more and more elliptical. As expected, the kernels
for the product kernel estimator are circular on the diagonals and elliptical
on the coordinate axis reflecting the nature of that particular restriction. As
in Sain (2002), the MISE for the sample-point estimator with fully param-
eterized smoothing matrices is the smallest, followed by the product kernel
formulation.

3.4.4 Estimating Bandwidth Matrices

Estimating variable bandwidth matrices from data continues to be a diffi-
cult problem. Sain (2002) outlines a cross-validation algorithm based on the
binned estimator that involves finding the collection of bandwidth matrices
that minimize

UCV = R(f̂) − 2

n

n
∑

i=1

f̂−i(xi) = R(f̂) − 2

n

n
∑

i=1





1

n − 1

m
∑

j=1

n∗
ijKHj

(xi − tj)





where n∗
ij = nj − 1 if xi ∈ Bj or nj, otherwise; here nj is the number of data

points in the jth bin, Bj. In practice, a parameterization for the bandwidth
matrices is chosen, a mesh is laid down over the data, the bin counts computed,
and the UCV criterion minimized.

An example is shown in Figure 9 for Fishers’ iris data (sepal length and petal
length). A simple parameterization is chosen using radially symmetric smooth-
ing matrices and the left frame shows ellipses representing the estimated ker-
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nels. For reference, the ellipse in the upper left-hand corner of the left frame
is the cross-validated fixed bandwidth kernel. As expected, kernels in the tails
and valleys between the modes are larger than near the modes. The variable
bandwidth estimate is shown in the middle frame while the fixed bandwidth
estimator is shown in the right frame. At first glance, the fixed-bandwidth
estimate appears undersmoothed, possibly resulting from UCV’s well-known
tendency to pick bandwidths smaller than necessary (an improved estimate
could possibly be found using, for example, the multivariate plug-in approach
of Wand and Jones, 1994). However, the estimated bandwidth is clearly fo-
cusing on the mode in lower left of the frame (note the similarity between the
fixed bandwidth and the variable bandwidths corresponding to this mode).
This mode represents one of the species of iris present in the data and has
a much smaller scale than the other modes in the data corresponding to the
other two species. In contrast, the variable bandwidth estimate, despite be-
ing based on just a few bins, is clearly able to adapt to the changes in scale
between the modes associated with the three species and does a much better
job of simultaneously smoothing the different features in the density.

Sain (2002) further experimented with such methods and demonstrated the
potential of even this simple formulation of a multivariate sample-point esti-
mator, in particular for picking out important structure and minimizing the
number of false modes. However, Sain (2002) also showed that UCV was not
as effective when a fully parameterized bandwidth matrix is used. Hazelton
(2003) has explored the product kernel formulation using not a piecewise con-
stant bandwidth structure as in the binning case but a linearly interpolated
bandwidth function with some promising results.

3.5 Other Estimators

Kernel estimators and orthogonal series density estimators were developed
independently (Rosenblatt, 1956; Watson, 1969). It is well-known that an or-
thogonal series estimator can be re-expressed as a kernel estimator. However,
cross-validation algorithms are somewhat different (Wahba, 1981) and spline
estimators are also available. More recently, wavelet bases have become avail-
able and fall into this category (Donoho et al., 1996). Wahba pioneered splines
for density estimators; however, her representation places knots at each sample
point. Kooperberg and Stone (1991) describe an alternative spline formulation
on a log-scale. A new spline tool called P-splines has recently emerged that
like the ASH model greatly reduces computation; see Eilers and Marx (1996)
and Ruppert, Carroll, and Wand (2003).

We remarked earlier that maximum likelihood had a role to play in the defini-
tion of histograms, but was limited in any role for defining smoothing parame-
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ters. This situation has changed in recent years with the development of local
likelihood methods for density estimation as well as regression estimation.
This promising family of estimators is surveyed in Loader (1999).

4 Mixture Density Estimation

An alternative to the kernel estimator is the so-called mixture model, where
the underlying density is assumed to have the form

g(x) =
k
∑

i=1

pigi(x; θi). (21)

The {pi, i = 1, . . . , k} are referred to as mixing proportions or weights and are
constrained so that pi > 0 and

∑k
i=1 pi = 1. The components of the mixture,

{gi, i = 1, . . . , k}, are themselves densities and are parameterized by θi which
may be vector valued. Often, the gi are taken to be multivariate normal, in
which case θi = {µi, Σi}.

Mixture models are often motivated by heterogeneity or the presence of dis-
tinct subpopulations in observed data. For example, one of the earliest ap-
plications of a mixture model (Pearson, 1894; see also McLachlan and Peel,
2000) used a two-component mixture to model the distribution of the ratio
between measurements of forehead and body length on crabs. This simple
mixture was effective at modeling the skewness in the distribution and it was
hypothesized that the two-component structure was related to the possibility
of this particular population of crabs evolving into two new subspecies.

The notion that each component of a mixture is representative of a particular
subpopulation in the data has led to the extensive use of mixtures in the
context of clustering and discriminant analysis. See, for example, the reviews
by Fraley and Raftery (2002) and McLachlan and Peel (2000). It was also
the motivation for the development of the multivariate outlier test of Wang
et al. (1997) and Sain et al. (1999), who were interested in distinguishing
nuclear tests from a background population consisting of different types of
earthquakes, mining blasts, and other causes.

Often, a mixture model fit to data will have more components than can be
identified with the distinct groups present in the data. This is due to the
flexibility of mixture models to represent features in the density that are not
well-modeled by a single component. Marron and Wand (1992), for example,
give a wide variety of univariate densities (skewed, multimodel, e.g.) that are
constructed from normal mixtures. It is precisely this flexibility that makes
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mixture models attractive for general density estimation and exploratory anal-
ysis.

When the number of components in a mixture is pre-specified based on some a
priori knowledge about the nature of the subpopulations in the data, mixtures
can be considered a type of parametric model. However, if this restriction on
the number of components is removed, mixtures behave in nonparametric fash-
ion. The number of components acts something like a smoothing parameter.
Smaller numbers of components will behave more like parametric models and
can lead to specification bias. Greater flexibility can be obtained by letting
the number of components grow, although too many components can lead to
overfitting and excessive variation. A parametric model is at one end of this
spectrum, and a kernel estimator is at the other end. For example, a kernel
estimator with a normal kernel can be simply considered a mixture model
with weights taken to be 1/n and component means fixed at the data points.

4.1 Fitting Mixture Models

While mixture models have a long history, fitting mixture models was prob-
lematic until the advent of the expectation-maximization (EM) algorithm of
Dempster, Laird, and Rubin (1977). Framing mixture models as a missing data
problem has made parameter estimation much easier, and maximum likelihood
via the EM algorithm has dominated the literature on fitting mixture mod-
els. However, Scott (2001) has also had considerable success using the L2E
method, which performs well even if the assumed number of components, k,
is too small.

The missing data framework assumes that each random vector Xi generating
from the density (21) is accompanied by a categorical random variable Zi

where Zi indicates the component from which Xi comes. In other words, Zi is a
single-trial multinomial with cell probabilities given by the mixing proportions
{pi}. Then, the density of Xi given Zi is gi in (21). It is precisely the realized
values of the Zi that are typically considered missing when fitting mixture
models, although it is possible to also consider missing components in the Xi

as well.

For a fixed number of components, the EM algorithm is iterative in nature and
has two steps in each iteration. The algorithm starts with initial parameter
estimates. Often, computing these initial parameter estimates involves some
sort of clustering of the data, such as a simple hierarchical approach.

The first step at each iteration is the expectation step which involves prediction
and effectively replaces the missing values with their conditional expectation
given the data and the current parameter estimates. The next step, the max-
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imization step, involves recomputing the estimates using both complete data
and the predictions from the expectation step.

For normal mixtures missing only the realized component labels zi, this in-
volves computing in the expectation step

wij =
p̂0

jfj(xi; µ̂
0
j , Σ̂

0
j )

∑k
j=1 p̂0

jfj(xi; µ̂
0
j , Σ̂

0
j )

(22)

for i = 1, . . . , n and j = 1, . . . , k and where p̂0
j , µ̂0

j , and Σ̂0
j are the cur-

rent parameter estimates. The maximization step then updates the sufficient
statistics

Tj1 =
n
∑

i=1

wij ; Tj2 =
n
∑

i=1

wijxi ; Tj3 =
n
∑

i=1

wijxix
′
i

for j = 1, . . . , k to yield the new parameter estimates

p̂1
j = Tj1/n ; µ̂1

j = Tj2/Tj1 ; Σ̂1
j = (Tj3 − Tj2T

′
j2/Tj1)/Tj1

for j = 1, . . . , k. The process cycles between these two steps until some sort
of convergence is obtained. The theory concerning the EM algorithm suggests
that the likelihood is increased at each iteration. Hence, at convergence, a
local maximum in the likelihood has been found.

A great deal of effort has been put forth to determine a data-based choice
of the number of components in mixture models and many of these are sum-
marized in McLachlan and Peel (2000). Traditional likelihood ratio tests have
been examined but a breakdown in the regularity conditions have made im-
plementation difficult. Bootstrapping and Bayesian approaches have also been
studied. Other criterion such as Akaike’s information criterion (AIC) have been
put forth and studied in some detail. In many situations, however, it has been
found that AIC tends to choose too many components. There is some criticism
of the theoretical justification for AIC, since it violates the same regularity
conditions as the likelihood ratio test. An alternative information criterion is
the Bayesian information criterion (BIC) given by

BIC = −2` + d log n

where ` is the maximized log-likelihood, d is the number of parameters in the
model, and n is the sample size. While there are some regularity conditions
for BIC that do not hold for mixture models, there is much empirical evidence
that supports its use. For example, Roeder and Wasserman (1997) show that
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Fig. 10. Example using climate data. The best BIC model uses six components
and these components are represented by ellipses in the left frame. The right frame
shows a contour plot of the resulting density estimate.

when a normal mixture model is used as a nonparametric density estimate,
the density estimate that uses the BIC choice of the number of components is
consistent.

Other sophisticated procedures for choosing the number of components in
mixture models have also been explored. For example, Priebe and Marchette
(1991; 1993) and Priebe (1994) discuss what the authors’ refer to as “adap-
tive mixtures” that incorporate the ideas behind both kernel estimators and
mixture models and that use a data-based method for adding new terms to a
mixture. The adaptive mixture approach can at times overfit data and Solka
et al. (1998) combine adaptive mixtures with a pruning step to yield more
parsimonious models. These methods have also been shown, both theoreti-
cally and through simulation and example, to be effective at determining the
underlying structure in the data.

4.2 An Example

Figures 10 and 11 show an example of an application of a mixture model using
bivariate data consisting of twenty-year averages of temperature and precipi-
tation measured globally on a 5◦ grid (Covey et al., 2003; Wigely, 2003). An
initial scatterplot of the measurements shows clearly the presence of multi-
ple groupings in the data. It is hypothesized that this multimodality can be
attributed to climatic effects as well as latitude and land masses across the
globe.

A sequence of multivariate normal mixture models was fit to the data using
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Fig. 11. An image plot displaying the results of the clustering based on the mixture
estimate. The effects of land masses and latitude are clearly present in the clusters.

various numbers of components. BIC suggested a six component model. The
ellipses in the left frame of Figure 10 indicate location and orientation of
the individual components while the right frame shows the contours of the
resulting density overlaid on the data.

It seems clear from the contour plot that some components are present to
model non-normal behavior in the density. However, Figure 11 shows the result
of classifying each observation as coming from one of the six components. This
is done by examining the posterior probabilities as given by the wij in (22) at
the end of the EM iterations. The groupings in the data do appear to follow
latitude lines as well as the land masses across the globe.

5 Visualization of Densities

The power of nonparametric curve estimation is in the representation of mul-
tivariate relationships. While univariate density estimates are certainly useful,
the visualization of densities in two, three, and four dimensions offers greater
potential in an exploratory context for feature discovery. Visualization tech-
niques are described here.

We examine the zip code data described by Le Cun et al. (1990). Handwritten
digits scanned from USPS mail were normalized into 16×16 grayscale images.
Training and testing data (available at the U.C. Irvine data repository) were
combined into one data set, and the digits 1, 3, 7, and 8 were extracted for
analysis here (1269, 824, 792, and 708 cases, respectively). We selected these
digits to have examples of straight lines (1 and 7) as well as curved digits
(3 and 8). In Figure 12, some examples of the digits together with summary
statistics are displayed. Typical error rates observed classifying these data are
high, in the 2.5% range.
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Fig. 12. (Left) Mean, standard deviation, and examples of zip code digits 1, 3, 7,
and 8. (Right) LDA subspace of zip code digits 1 (×), 3 (•), 7 (+), and 8 (O).
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Fig. 13. ASH’s for each of the 4 digits for the 1st, 2nd, and 3rd LDA variable (L-R).

To analyze and visualize these data, we computed the Fisher linear discrimi-
nant analysis (LDA) subspace. We sphered the data using a pooled covariance
estimate, and computed the LDA subspace as the three-dimensional span of
the four group means. The right frame of Figure 12 displays a frame from
xgobi (Swayne, Cook, and Buja, 1991) and shows that the four groups are
reasonably well-defined and separated in the LDA variable space.

If we examine averaged shifted histograms of each digit for each of the three
LDA variables separately, we observe that the first LDA variable separates
out digit 1 from the others; see the left frame Figure 13. In the middle frame,
the second LDA variable separates digit 7 from digits 3 and 8. Finally, in the
right frame, the third LDA variable almost completely separates digits 3 and
8 from each other (but not from the others).

We can obtain a less fragmented view of the feature space by looking at pairs
of the LDA variables. In Figures 14 and 15, averaged shifted histograms for
each digit were computed separately and are plotted. Contours for each ASH
were drawn at 10 equally-spaced levels. The left frame in Figure 14 reinforces
the notion that the first two LDA variables isolate digits 1 and 7. Digits 3
and 8 are separated by the first and third LDA variables in the right frame of
Figure 14; recall that digit 7 can be isolated using the second LDA variables.
Interestingly, in Figure 15, all four digits are reasonably separated by the
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Fig. 14. Bivariate ASH’s of the 4 digits using LDA variables (v1, v2) (left) and (v1, v3)
(right) .
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Fig. 15. ASH’s for LDA variables (v2, v3).

second and third LDA variables alone. We also show a perspective plot of
these ASH densities. (The perspective plot in Figure 14 does not display the
full 100 × 100 mesh at this reduced size for clarity and to avoid overplotting
the lines.)

Visualization of univariate and bivariate densities has become a fairly routine
task in most modern statistical software packages. The figures in this chapter
were generated using the Splus package on a Sun under the Solaris operating
system. The ASH software is available for download at the ftp software link at
author’s homepage www.stat.rice.edu/∼scottdw. The ASH software contains
separate routines for the univariate and bivariate cases. Visualization of the
ash1 and ash2 estimates was accomplished using the built-in Splus functions
contour and persp.

A separate function, ashn, is also included in the ASH package. The ashn

function not only computes the ASH for dimensions 3 ≤ d ≤ 6, but it also
provides the capability to visualize arbitrary three-dimensional contours of a
level set of any four-dimensional surface. In particular, if fmax is the maximum
value of an ASH estimate, f̂(x, y, z), and α takes values in the interval (0, 1),
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then the α-th contour or level set is the surface

Cα = {(x, y, z) : f̂(x, y, z) = α fmax} .

The mode of the density corresponds to the choice α = 1. The ashn function
can compute the fraction of data within any specified α-contour.

Some simple examples of Cα contours may be given for normal data. If the
covariance matrix Σ = Id, then contours are spheres centered at µ:

Cα = {(x, y, z) : e−0.5((x−µ1)2+(y−µ2)2+(z−µ3)2) = α}

or Cα = {(x, y, z) : (x − µ1)
2 + (y − µ2)

2 + (z − µ3)
2 = −2 log α}. For a

general covariance matrix, the levels sets are the ellipses Cα = {(x, y, z) :
(x − µ)′Σ−1(x − µ) = −2 log α}.

With a nonparametric density, the contours do not follow a simple parametric
form and must be estimated from a matrix of values, usually on a regular
three-dimensional mesh. This mesh is linearly interpolated, resulting in a large
number of triangular mesh elements that are appropriately sorted and plotted
in perspective. Since the triangular elements are contiguous, the resulting plot
depicts a smooth contour surface. This algorithm is called marching cubes
(Lorensen and Cline, 1987).

In Figure 16, a trivariate ASH is depicted for the data corresponding to digits
3, 7, and 8. (The digit 1 is well-separated and those data are omitted here.)
The triweight kernel was selected with m = 7 shifts for each dimension. The
contours shown correspond to the values α = 0.02, 0.1, 0.2, 0.35, 0.5, 0.7, and
0.9. The ashn function also permits an ASH to be computed for each of the
digits separated and plotted in one frame. For these data, the result is very
similar to the surfaces shown in Figure 16.

This figure can be improved further by using stereo to provide depth of field,
or through animation and rotation. The ashn software has an option to output
this static figure in the so-called QUAD format used by the geomview visual-
ization package from the previous NSF Geometry Center in Minneapolis. This
software is still available from www.geomview.org and runs on SGI, Sun, and
Linux platforms (Geomview, 1998).

5.1 Higher Dimensions

Scott (1992) describes extensions of the three-dimensional visualization idea
to four dimensions or more. Here we consider just four-dimensional data,
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Fig. 16. Trivariate ASH of LDA variables (v1, v2, v3) and digits 3, 7, and 8. The
digit labels were not used in this plot. The digit 7 is in the left cluster; the digit 8
in the top cluster; and the digit 3 in the lower right cluster.

(x, y, z, t). The α-th contour is defined as above as

Cα = {(x, y, z, t) : f̂(x, y, z, t) = α fmax} .

Since only a 3-dimensional field may be visualized, we propose to depict slices

of the four-dimensional density. Choose a sequence of values of the fourth
variable, t1 < t2 < · · · < tm, and visualize the sequence of slices

Cα(k) = {(x, y, z) : f̂(x, y, z, t = tk) = α fmax} for k = 1, . . . , m .

With practice, observing an animated view of this sequence of contours re-
veals the four-dimensional structure of the five-dimensional density surface.
An important detail is that fmax is not recomputed for each slice, but re-
mains the constant value of maximum of the entire estimate f̂(x, y, z, t). A
possible alternative is viewing the conditional density, f̂(x, y, z|t = tk); how-
ever, the renormalization destroys the perception of being in the low-density
or tails of the distribution.

To make this idea more concrete, let us revisit the trivariate ASH depicted
in Figure 16. This ASH was computed on a 75 × 75 × 75 mesh. We propose
as an alternative visualization of this ASH estimate f̂(x, y, z) to examine the
sequence of slices

Cα(k) = {(x, y, z) : f̂(x, y, z = zk)} for k = 1, . . . , 75 .
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Fig. 17. A sequence of slices of the three-dimensional ASH of the digits 3, 7, and 8
depicted in Figure 16. The z-bin number is shown in each frame from the original
75 bins.

In Figure 17, we display a subset of this sequence of slices of the trivariate ASH
estimate. For bins numbered less than 20, the digit 3 is solely represented. For
bins between 22 and 38, the digit 7 is represented in the lower half of each
frame. Finally, for bins between 42 and 62, the digit 8 is solely represented.

We postpone an actual example of this slicing technique for 4-dimensional
data, since space is limited. Examples may be found in the color plates of
Scott (1992). The extension to five-dimensional data is straightforward. The
ashn package can visualize slices such as the contours

Cα(k, `) = {(x, y, z) : f̂(x, y, z, t = tk, s = s`) = α f̂max} .

Scott (1986) presented such a visualization of a five-dimensional dataset us-
ing an array of ASH slices on the competition data exposition at the Joint
Statistical Meetings in 1986.

5.2 Curse of Dimensionality

As noted by many authors, kernel methods suffer from increased bias as the
dimension increases. We believe the direct estimation of the full density by
kernel methods is feasible in as many as six dimensions.

However, this does not mean that kernel methods are not useful in dimen-
sions beyond six. Indeed, for purposes such as statistical discrimination, kernel
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methods are powerful tools in dozens of dimensions. The reasons are some-
what subtle. Scott (1992) argued that if the smoothing parameter is very
small, then comparing two kernel estimates at the same point x is essentially
determined by the closest point in the training sample. It is well-known that
the nearest-neighbor classification rule asymptotically achieves half of the op-
timal Bayesian misclassification rate. At the other extreme, if the smoothing
parameter is very large, then comparing two kernel estimates at the same
point x is essentially determined by which sample mean is closer for the two
training samples. This is exactly what Fisher’s LDA rule does in the LDA
variable space. Thus, at the extremes, kernel density discriminate analysis
mimics two well-known and successful algorithms. Thus there exist a number
of choices for the smoothing parameter between the extremes that produce
superior discriminate rules.

What is the explanation for the good performance for discrimination and the
poor performance for density estimation? Friedman (1997) argued that the
optimal smoothing parameter for kernel discrimination was much larger than
for optimal density estimation. In retrospect, this result is not surprising. But
it emphasizes how suboptimal density estimation can be useful for exploratory
purposes and in special applications of nonparametric estimation.

6 Discussion

There are a number of useful references for the reader interested in pursu-
ing these ideas and others not touched upon in this chapter. Early reviews of
nonparametric estimators include Wegman (1972a, b) and Tarter and Kron-
mal (1976). General overviews of kernel methods and other nonparametric
estimators include Tapia and Thompson (1978), Silverman (1986), Härdle
(1990), Scott (1992), Wand and Jones (1995), Fan and Gijbels (1996), Si-
monoff (1996), Bowman and Azzalini (1997), Eubank (1999), Schimek(2000),
and Devroye and Lugosi (2001).

Scott (1992) and Wegman and Luo (2002) discuss a number of issues with
the visualization of multivariate densities. Classic books of general interest in
visualization include Wegman and DePriest (1986), Cleveland (1993), Wolff
and Yaeger (1993), and Wainer (1997).

Applications of nonparametric density estimation are nearly as varied as the
field of statistics itself. Research challenges that remain include handling mas-
sive datasets and flexible modeling of high-dimensional data. Mixture and
semiparametric models hold much promise in this direction.
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