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Ŷ = b0 + b1X (regression prediction)

but if no data collected around X ≈ 0...b0?
Re-centering

Ŷ = b0 + b1X ± b1X̄

Ŷ = b0 + b1X̄ + b1(X − X̄)

but b0 = Ȳ − b1X̄, so that

Ŷ = Ȳ + b1(X − X̄).

Notes: The point (X̄, Ȳ ) is on the regression

line. If X is 1 unit more than X̄, then Ŷ is

b1 units more than Ȳ .



Here are the maximum likelihood estimates

of the variance, covariance, and correlation
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The correlation coefficient, ρ, is dimension-

less and satisfies −1 ≤ ρ ≤ 1.



Properties of the residuals and predictions:
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=
n

∑

i=1

(Yi − b0 − b1Xi)
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Less obvious: ei and Xi are uncorrelated.
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continuing
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since b1 = cov(xi, yi)/var(xi)!



What is the big deal? If the two quantities

Xi and Yi are uncorrelated, then their covari-

ance is also 0, and hence, so is b1. Thus the

best linear predictor is

Ŷ = Ȳ + b1(X − X̄) = Ȳ .

Finally, ei and Ŷi are uncorrelated.
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since ē = 0 and ei, xi uncorrelated.


