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Y =bg+ 01X (regression prediction)

but if no data collected around X = 0...bg7
Re-centering

bo + b1 X + b1 X
bo + 01X + b1 (X — X)
— b1 X, so that

V=Y +b;(X -X).

Y
Y
but bg =Y

Notes: The point (X,Y) is on the regression
line. If X is 1 unit more than X, then Y is
b1 units more than Y.



Here are the maximum likelihood estimates
of the variance, covariance, and correlation
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The correlation coefficient, p, is dimension-
less and satisfies —1 < p < 1.

cor(x;, y;) =
v



Properties of the residuals and predictions:
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Hence,

YY=>Y, (same average).



Less obvious: e; and X; are uncorrelated.
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continuing
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What is the big deal? If the two quantities
X; and Y, are uncorrelated, then their covari-
ance is also 0, and hence, so is by. Thus the
best linear predictor is

Y=Y+ X-X)=Y.

Finally, e; and Y, are uncorrelated.
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since e = 0 and e;, x; uncorrelated.



