Visualizing Correlations in β

Dr. Scott, Stat 410

October 13, 2005

For our model
$$Y = X\beta + \epsilon$$

For our moder
$$I = A\beta + \epsilon$$

$$\min_{\beta} SS(\beta) = \epsilon^t \epsilon = (Y - X\beta)^T (Y - X\beta)$$
$$= Y^t Y - 2\beta^t X^t Y + \beta^t X^t X\beta$$

The least-squares coefficient solves

$$\underline{0} = \nabla_{\beta} SS = \underline{0} - 2X^{t}Y + 2X^{t}X\beta$$

$$\Rightarrow \hat{\beta} = (X^t X)^{-1} X^t Y$$

 $Hessian = \nabla \nabla^t SS = 2X^t X$

which is pos. def. \Rightarrow minimizer!!

Statistical Accuracy View

$$E\widehat{\beta} = (X^t X)^{-1} X^t E(Y)$$
$$= (X^t X)^{-1} X^t [X\beta + \underline{0}] = \beta$$

$$Cov \hat{\beta} = Cov(AY)$$
 where $A = (X^t X)^{-1} X^t$
 $= A (\sigma_{\epsilon}^2 I_n) A^t$
 $= \sigma_{\epsilon}^2 (X^t X)^{-1} X^t \cdot X(X^t X)^{-1}$
 $= \sigma_{\epsilon}^2 (X^t X)^{-1}$

Cute Example

$$Var(\widehat{\beta}_{k}) = Var \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \widehat{\beta}_{0} \\ \widehat{\beta}_{1} \\ \vdots \\ \widehat{\beta}_{k} \\ \vdots \\ \widehat{\beta}_{p-1} \end{bmatrix}$$

$$= Var(e_{k}^{t}AY)$$

$$= \sigma_{\epsilon}^{2} e_{k}^{t}AA^{t}e_{k}$$

$$= \sigma_{\epsilon}^{2} e_{k}^{t}(X^{t}X)^{-1}e_{k}$$

$$= \sigma_{\epsilon}^{2} (X^{t}X)_{k}^{-1}$$

as we have seen before.

Familiar Example p = 1

$$Y = X\beta + \epsilon$$
 with $X = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$

Thus

$$\widehat{\beta} = \underbrace{(X^t X)^{-1}}_{n-1} \underbrace{X^t Y}_{n\overline{y}} = \overline{y}$$

$$\sigma^2(\widehat{\beta}) = \sigma^2(\overline{y}) = \sigma_{\epsilon}^2(X^t X)^{-1} = \frac{\sigma_{\epsilon}^2}{n}$$

as usual.

Looking at the Criterion

$$\min_{\beta} \epsilon^{t} \epsilon = \sum_{i=1}^{n} (y_{i} - \beta)^{2} \quad \text{(see sketch)}$$

Taylor's series:

$$g(\beta) = g(\widehat{\beta}) + (\beta - \widehat{\beta})g'(\widehat{\beta}) + \frac{1}{2}(\beta - \widehat{\beta})^2 g''(\widehat{\beta}) + \cdots$$

$$g(\beta) = \sum (y_i - \beta)^2 \qquad g(\widehat{\beta}) = \sum (y_i - \overline{y})^2$$

$$g'(\beta) = -2\sum (y_i - \beta)$$

$$= -2n\overline{y} + 2n\beta \qquad g'(\widehat{\beta}) = 0$$

$$g''(\beta) = 2n \qquad \qquad g''(\widehat{\beta}) = 2n$$

Therefore, $g(\beta) = g(\hat{\beta}) + 0 + n(\beta - \hat{\beta})^2 + \cdots$

Note:

$$\sum (y_i - \beta)^2 = \sum (y_i - \widehat{\beta} + \widehat{\beta} - \beta)^2$$

$$= \sum \left[(y_i - \widehat{\beta})^2 + 2(\widehat{\beta} - \beta)(y_i - \widehat{\beta}) + (\widehat{\beta} - \beta)^2 \right]$$

$$= \sum (y_i - \overline{y})^2 + 0 + n(\widehat{\beta} - \beta)^2 \text{ exactly!!}$$

Dual: n = 100 and n = 400 (see sketches)

Tentative conclusion:

steeper criterion \Rightarrow more accurate parameters

Multivariate β

$$g(\beta) = \epsilon^t \epsilon$$

$$Y = X\beta + \epsilon$$

$$\hat{\beta} \sim N(\beta, \sigma_{\epsilon}^2 (X^t X)^{-1})$$

Multivariate Taylor's series:

$$g(\beta) = g(\widehat{\beta}) + (\beta - \widehat{\beta})^t \nabla g(\widehat{\beta}) + \frac{1}{2} (\beta - \widehat{\beta})^t \nabla^2 g(\widehat{\beta}) (\beta - \widehat{\beta}) + \cdots$$

$$g(\beta) = Y^t Y - 2\beta^t X^t Y + \beta^t X^t X \beta$$
$$\nabla g(\beta) = 0 - 2X^t Y + 2X^t X \beta$$

Hessian is ∇ of $\nabla^t g(\beta)$; so

$$\nabla^t g(\beta) = -2Y^t X + 2\beta^t X^t X$$

and

$$\nabla \nabla^t g(\beta) = -0 + 2X^t X.$$

For our least-squares problem:

$$g(\beta) = g(\widehat{\beta}) + 0 + \frac{1}{2}(\beta - \widehat{\beta})^t 2(X^t X)(\beta - \widehat{\beta})$$
$$= Y^t (I - H)Y + (\beta - \widehat{\beta})^t (X^t X)(\beta - \widehat{\beta})$$
(see sketch)

Facts about Positive Definite Matrices

$$A = X^t X$$
 symmetric

Look at the quadratic form

$$y^t A y = y^t X^t \underbrace{X y}_{w} = w^t w \ge 0 \quad \forall y$$

Look at eigenvalues/eigenvectors:

$$A v_k = \lambda_k v_k \qquad k = 1, \dots, p$$

and

$$v_k^t v_k = 1$$
 $v_k^t v_\ell = 0$ $k \neq \ell$.

Assume $\lambda_1 > \lambda_2 > \cdots > \lambda_p$. Consider $v_k^t(A v_k) = v_k^t(\lambda_k v_k) = \lambda_k (v_k^t v_k) = \lambda_k > 0$

so, in fact, all the $\lambda_k > 0$.

Definitions: A symmetric matrix

A is p.d. if all $\lambda_k > 0$

A is p.s.d. if all $\lambda_k \geq 0$

A is n.d. if all $\lambda_k < 0$

A is n.s.d. if all $\lambda_k \leq 0$

A is indefinite if some $\lambda_k >$ 0 & some $\lambda_k <$ 0

Level Sets

$$g(\beta) = g(\widehat{\beta}) + (\beta - \widehat{\beta})^t A (\beta - \widehat{\beta})$$

Find values of β satisfying

$$(\beta - \widehat{\beta})^t A (\beta - \widehat{\beta}) = c$$

(see sketch)

Suppose
$$A = \begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{pmatrix}$$

By inspection, $A e_k = a_k e_k$, so eigenvectors are the coordinate axes. Level sets satisfy

$$y^t A y = \sum_{k=1}^p a_k y_k^2 = \sum_{k=1}^p \frac{y_k^2}{1/a_k} = c$$

which is an ellipse.

(see sketch)

Note:

$$Av_k = \lambda_k v_k \quad \Rightarrow \quad v_k = \lambda_k A^{-1} v_k$$
$$\Rightarrow \quad \frac{1}{\lambda_k} v_k = A^{-1} v_k$$

so the eigenvectors of A and A^{-1} are the same, while the eigenvalues are reciprocal of each other.

Next, find point, y, on the level set in the direction, v_1 ; thus y has the form αv_1 :

$$y^{t} A y = c$$

$$\alpha^{2} v_{1}^{t} \underbrace{A v_{1}}_{\lambda_{1} v_{1}} = c$$

so that

$$\alpha^2 = \frac{c}{\lambda_1}$$

Since λ_1 is the largest eigenvalue, this is the shortest axis of the ellipse. Also, changes in β in that direction give the quickest increase

in the criterion function, BUT most accurate in that direction.

In general, points $y_k = \alpha_k \, v_k$ on the level set satisfy

$$\alpha_k^2 v_k^t A v_k = c \quad \Rightarrow \quad \alpha_k = \sqrt{\frac{c}{\lambda_k}}$$

$$y_k = \pm \sqrt{\frac{c}{\lambda_k}} v_k.$$

In \Re^2 , see sketch of $g(\beta)$ about $g(\widehat{\beta})$...

Recall that $\sigma^2(\widehat{\beta}) = \sigma_{\epsilon}^2 (X^t X)^{-1}$. Thus, $Var(w^t \widehat{\beta}) = w^t \sigma_{\epsilon}^2 (X^t X)^{-1} w$

Look in the direction $w = v_k$:

$$\sigma_{\epsilon}^2 v_k^t (X^t X)^{-1} v_k = \frac{\sigma_{\epsilon}^2}{\lambda_k}$$

therefore

$$std(w^t\beta) = \frac{\sigma_\epsilon}{\sqrt{\lambda_k}}$$

see sketch...

or get same result by recalling

$$\beta - \hat{\beta} \sim N(0, \sigma_{\epsilon}^2(X^tX)^{-1})$$

has level sets

$$(\beta - \widehat{\beta})^t \Sigma^{-1} (\beta - \widehat{\beta}) = c$$

Look in the direction $\beta - \hat{\beta} = \alpha_k v_k$, then

$$\alpha_k^2 v_k^t \left(\sigma_\epsilon^2 (X^t X)^{-1}\right)^{-1} v_k = c$$

$$\frac{\alpha_k^2}{\sigma_\epsilon^2} \underbrace{v_k^t (X^t X) v_k}_{\lambda_k} = c$$

SO

$$\alpha_k^2 = \frac{\sigma_\epsilon^2 c}{\lambda_k} \quad \Rightarrow \quad \alpha_k = \sigma_\epsilon \sqrt{\frac{c}{\lambda_k}}$$

(see sketch).... note the same orientation in the end.

THE END

Well, now for the computer demos...