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Plan

Returning to Houston at the end of this week. Will do a light
zoom today and Thursday in the meantime to get up to speed.

Any logistical questions? Display syllabus.

Follow the URL there to find 1st homework assignment.



Introduction to an important topic in modern multivariate
statistics. The course will survey topics in data analysis and
visualization, multivariate density estimation, nonparametric
regression, and applications. The course will provide a
comprehensive theoretical introduction to various density
estimators, including histograms, frequency polygons, kernel and
series methods, nearest neighbor estimators, penalized-likelihood
methods, and wavelets. Regression topics will focus on kernel
smoothing and local polynomial algorithms. Both asymptotic and
finite sample results will be considered and, in particular, modern
cross-validation algorithms.
Emphasis will be given to multivariate extensions of univariate
density estimators into two, three, four, and five dimensions.
Computationally efficient algorithms will be introduced for these
cases.



Applications covered include: use of density estimation for
interactive exploratory data analysis; spatial data and mapping;
clustering and discrimination; density grand tour; nonparametric
and modal regression; hazard analysis; bootstrap; projection
pursuit; optimal subspace search; and others.
Only an introductory background in probability and statistics is
required, although some basic knowledge of classical multivariate
statistical methods will be helpful. Students with particular
research problems are especially welcomed. The instructor intends
to accommodate students from other disciplines who are interested
in this topic.



Grading (subject to change)

I 1. Homeworks, 50% (but not very much)

I 2. Participation (important in the ‘real’ world), 30%

I 3. Joint research paper and/or work in new book section, 20%

Notes on Grading:

I 1. Interaction during class to dig into material and
relationships to other courses you’ve taken.

I 2. Presentation and discussion of selected homework solutions.

I 3. An exciting new feature is the hope that we can divide the
class into several groups and do original research on a topic
and submit for publication. An alternative might be to write
new material not covered in the textbook.

I Textbook: Scott, D.W. (2015), Multivariate Density
Estimation: Theory, Practice, and Visualization, 2nd Edition,
John Wiley & Sons, Hoboken, NJ.



Fundamental Task for the Semester: Estimate an
Unknown PDF f (x) with Applications

I What is a parametric pdf estimator?

I We usually write f̂ (x) as f̂θ(x)

I What is a nonparametric pdf estimator?

I Which kind is f̂ (x) ∼ N(µ, σ2)?

I MLE’s of θ = (θ1, θ2) are θ̂1 = X̄ and θ̂2 = S2

I Which kind is a histogram (with fixed bin width h)?

I We also write f̂ (x) ∼ f̂h(x).

I If we start histogram bins at the origin, then h is the only
(unknown) parameter.

I Is there an MLE for h? (Homework: Find ĥMLE )
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Fundamental Task for the Semester: Estimate an
Unknown PDF f (x) with Applications

I What is a parametric pdf estimator?

I We usually write f̂ (x) as f̂θ(x)

I What is a nonparametric pdf estimator?

I Which kind is f̂ (x) ∼ N(µ, σ2)?

I MLE’s of θ = (θ1, θ2) are θ̂1 = X̄ and θ̂2 = S2

I Which kind is a histogram (with fixed bin width h)?

I We also write f̂ (x) ∼ f̂h(x).

I If we start histogram bins at the origin, then h is the only
(unknown) parameter.

I Is there an MLE for h? (Homework: Find ĥMLE )
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Fundamental Task for the Semester: Estimate an
Unknown PDF f (x) with Applications

I What is a parametric pdf estimator?

I We usually write f̂ (x) as f̂θ(x)

I What is a nonparametric pdf estimator?

I Which kind is f̂ (x) ∼ N(µ, σ2)?

I MLE’s of θ = (θ1, θ2) are θ̂1 = X̄ and θ̂2 = S2

I Which kind is a histogram (with fixed bin width h)?

I We also write f̂ (x) ∼ f̂h(x).

I If we start histogram bins at the origin, then h is the only
(unknown) parameter.

I Is there an MLE for h? (Homework: Find ĥMLE )



Fundamental Task for the Semester: Estimate an
Unknown PDF f (x) with Applications

I What is a parametric pdf estimator?

I We usually write f̂ (x) as f̂θ(x)

I What is a nonparametric pdf estimator?

I Which kind is f̂ (x) ∼ N(µ, σ2)?

I MLE’s of θ = (θ1, θ2) are θ̂1 = X̄ and θ̂2 = S2

I Which kind is a histogram (with fixed bin width h)?

I We also write f̂ (x) ∼ f̂h(x).

I If we start histogram bins at the origin, then h is the only
(unknown) parameter.

I Is there an MLE for h? (Homework: Find ĥMLE )
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Semester Task (cont’d): Estimate an Unknown PDF f (x)

I During this semester, our focus is on continuous (rather than
discrete) data. (Discrete pretty easy?)

I Hence, we may assume a random sample of size n,
{x1, x2, . . . , xn}, has no duplicate values when solving a
theoretical (or practical) problem.

I When writing code, ties may occur due to finite precision, eg,
diff (sort(x)).

I These data should also be continuous, but may have multiple
values of 0.

I Question: How does R’s hist() function handle 0’s? Can
anyone try ‘live’?



What is Statistics About (at its core)?

I Have you tried to explain what you do to your parents?

I What are the core elements of statistics?



Multivariate Probability Density Estimation (PDE)

I Author: David W Scott

I Publisher: John Wiley & Sons

I Second Edition 2015

I First Edition 1992 (which had color plates in middle)

I Classical PDE is the histogram (see Chapter 3)



Table of Contents (MDE)

1. Geometry of Space (visualization limits?)

2. Optimization Criterion Choices

3. Histograms: Theory and Practice

4. Frequency Polygons

5. Averaged Shifted Histograms

6. Kernel Density Estimators

7. The Curse of Dimensionality and Dimension Reduction

8. Nonparametric Regression

9. Other Applications (classification, CI’s, survival, images, time
series...)

10. Appendices: computer graphics, datasets, notation



Edward Tufte’s Lovely Books



Repro: M. Minard’s Napoleon’s Russian Campaign 1812-13



Tufte’s Examples à la Lying With Statistics, Darrell Huff
Graphics that convey an incorrect visual impression, eg.,



Tufte’s Most Famous (?) Idea: Data-to-Ink Ratio
Graphics with lots of ‘ink’ but little data are suspicious.

it is rarely exp101tea: tne average published graphic is rather thin, 

Data Density and Size of Data Matrix, 
Statistical Graphics in Selected Publications, Circa 1979-1980 

Nature 

Journal of the Royal 
Statistical Society, B 

Science 

Wall Street Journal 

Fortune 

The Times (London) 

Data Density 
(Numbers per square inch) 

median minimum maximum 

48 3 362 

27 4 115 

21 5 44 

19 3 154 

18 5 31 

18 2 122 

Journal of the American 17 4 167 

Statistical Association 

Asahi 13 2 113 

New England Journal 12 3 923 

of Medicine 

The Economist 9 1 51 

Le Monde 8 1 17 

Psychological Bulletin 8 ·1 74 

Journal oj.the American 7 1 39 

Medical Association 

New York Times 7 1 13 

Business Week 6 2 12 

Newsweek 6 1 13 

Annuaire Statistique 6 1 25 

de la France 

Scientific American 5 1 69 

Statistical Abstract of 5 2 23 

the United States 

American Political 2 1 10 

Science Review 

Pravda 0.2 0.1 1 
-

Size of Data Matrix 
median minimum maximum 

177 15 3780 

200 10 1460 

109 26 316 

135 28 788 

96 42 156 

50 14 440 

150 46 1600 

29 15 472 

84 8 3600 

36 3 192 

66 11 312 

46 8 420 

53 14 735 

35 6 580 

32 14 96 

23 2 96 

96 12 540 

46 14 652 

38 8 164 

16 9 

5 4 20 





Let’s Explore Science Magazine (3rd in Tufte’s Table)

I On the good side of the data-to-ink scale are the weekly
publications

I Nature, a British journal since 1869

I Science, published by AAAS since 1880

I Let’s look at a sampling of the statistical techniques and
graphics in the 5/19/2023 issue
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Intermolecular competition study



Experimental FT (solid) vs Theoretical Model (dotted)



Another Experimental vs Theoretical Curve Comparison



Bump Hunting in Power Spectrum



Maximum Power Generation w/ 3 Types



Catalytic Conversion of Syngas to Light Olefins (envelope)



Comparison of 3 Catalyts Performance



Forest Management of World Countries



Random Ideas

I How important is a random sample?

I Data science often skirts over this in favor of ‘large n’ or using
all the available data?

I What is the AI result? Bias?

I Can the output of ChatGPT (Generative Pre-trained
Transformer) be tilted to reduce bias? What do you think?

I What can you do with a random sample?

I visualization that reflects reality: stem-and-leaf, box plot,
histogram...

I testing H0 : X ∼ F
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Why does MLE work?

I MLE gives values of θ that are ‘best’?

I Presumably θ̂ ≈ θ0 must be good.

I What if fθ(x) has the wrong parametric form?

I As n→∞? variance? bias?

I What does that actually mean about the quality of

f̂θ or fθ̂ at various x ′s?

I Consider Gaussian model.
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Normal Model

Memorize this amazingly useful identity:∫
φ(x |µ1, σ21)× φ(x |µ2, σ22) dx = φ(0|µ1 − µ2, σ21 + σ22) .

Multivariate version true: replace µk with µk and σ2k with Σk .

Normal model with known σ = 1.

I For the normal model at a fixed point x :
I The unknown to be estimated is φ(x |µ, 1), call it θx
I The MLE of θx is

θ̂x = φ(x |x̄ , 1) .

I Wow!!! Need to estimate θx = φ(x , µ, 1) at an infinite
number of x values!!! Does infinite imply nonparametric?



How to Evaluate θ̂? Simulations!
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Histogram of Simulated Values at x = 1
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Histogram of Simulated Values at x = 2
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Histogram of Simulated Values at x = 3
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Histogram of Simulated Values at x = 0
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How to Evaluate θ̂? Theoretically. (Watch for x̄ vs
X̄?)

θ̂ = φ(x |X̄ , 1)

Bias(x) = E
[
θ̂ − θ

]
what is random?

=

∫ ∞
−∞

[
φ(x |x̄ , 1)− φ(x , |µ, 1)

]
× φ

(
x̄
∣∣∣µ, 1

n

)
dx̄

= φ

(
0
∣∣∣x − µ, 1 +

1

n

)
− φ(x |µ, 1)

= φ

(
x
∣∣∣µ, 1 +

1

n

)
− φ(x |µ, 1) .

Looks a little strange, but we used the symmetric of (x − µ)2 in
the normal exponent to obtain

φ(x |x̄ , 1) = φ(x̄ |x , 1) and φ(0|x − µ, 1) = φ(x |µ, 1) ;

so can use the cool identity cleverly twice.
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Variance of θ̂
θ̂ − θ = φ(x |X̄ , 1)− φ(x , |µ, 1)

Var(θ̂) = E
[
(θ̂ − θ)2

]
= E

[
φ(x |X̄ , 1)2 − 2φ(x |X̄ , 1)φ(x , |µ, 1) + φ(x , |µ, 1)2

]
=

∫ ∞
−∞

[
1

2
√
π
φ(x̄ |x , 1/2)

]
× φ

(
x̄
∣∣∣µ, 1

n

)
dx̄

− 2

∫ ∞
−∞

[
φ(x̄ |x , 1)φ(x , |µ, 1)

]
× φ

(
x̄
∣∣∣µ, 1

n

)
dx̄

+ φ(x , |µ, 1)2 nothing random here, so integral 1

=
1

2
√
π
φ

(
x |µ, 1

2
+

1

n

)
− 2φ(x |µ, 1)φ

(
x |µ, 1 +

1

n

)
+

1

2
√
π
φ(x , |µ, 1/2) ,

using the identity φ(x |x̄ , 1)2 =
1

2
√
π
φ(x̄ |x , 1/2) .
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Final Thoughts

I While X̄ is unbiased for µ, θ̂x is not unbiased for φ(x)!!!

I We will use R extensively in this course. You are welcome to
play with MatLab, etc.

I We will also find Mathematica very helpful in many situations.
Again, MAPLE?

I JMP is great for quick analyses and graphics. All of these are
available for free at kb.rice.edu

I Do not be shy about asking questions in real time. If you have
a question or didn’t catch something, then 99% confidence
others are in the same boat. ASK! It will slow me down, too.

I This course is great at putting lots of other course material in
a useful perspective, IMO.

I This lecture illustrates the book’s subtitle: Theory, Practice,
and Visualiztion. We used the book’s material heavily already!


