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 On optimal and data-based histograms

 BY DAVID W. SCOTT

 Department of Mathematical Sciences, Rice University, Houston, Texas

 SUMMARY

 In this paper the formula for the optimal histogram bin width is derived which asymptotic-

 ally minimizes the integrated mean squared error. Monte Carlo methods are used to verify
 the usefulness of this formula for small samples. A data-based procedure for choosing the bin

 width parameter is proposed, which assumes a Gaussian reference standard and requires only

 the sample size and an estimate of the standard deviation. The sensitivity of the procedure is

 investigated using several probability models which violate the Gaussian assumption.

 Some key words: Frequency distribution; Histogram; Nonparametric density estimation; Optimal bin
 width.

 1. INTRODUCTION

 The histogram is the classical nonparametric density estimator, probably dating from the

 mortality studies of John Graunt in 1662 (Westergaard, 1968, p. 22). Today the histogram

 remains an important statistical tool for displaying and summarizing data. In addition it

 provides a consistent estimate of the true underlying probability density function. Present

 guidelines for constructing histograms do not directly address the issues of estimation bias

 and variance. Rather, they draw heavily on the investigator's intuition and past experience.

 In this paper we propose new guidelines that reduce the subjectivity involved in histogram

 construction by considering a mean squared error criterion.

 2. BACKGROUND

 We consider only histograms defined on an equally spaced mesh {t.i; - o < i < c)} with bin
 width hn = tn(i+l) - tn, where n denotes the sample size and emphasizes the dependence of
 the mesh and bin width on the sample size. For a fixed point x, the mean squared error of a

 histogram estimate, f(x), of the true density value, f(x), is defined by

 MSE (X) = E{f (x)-f(x)}2.

 For a random sample of size n from f, Cencov (1962) proved that MSE (x) asymptotically

 converges to zero at a rate proportional to n-213, that is, MSE (X) = O(n-2/3). This rate is fairly
 close to the Cramer-Rao lower bound of O(n-1). The integrated mean squared error repre-

 sents a global error measure of a histogram estimate and is defined by

 IMSE = JE{f( ( f(x)}2 dx.

 Since it is the shape of the density that is of most interest, the IMSE is more relevant than the

 mean squared error of the density height. The IMSE of a histogram also converges to zero

 as O(n-2/3)
 To achieve these rates of convergence requires proper choice of the two parameters of the

 histogram, the bin width hn and the relative position of the mesh. The latter is determined by
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 any particular mesh point, say tnO. Statistical texts suggest various methods for choosing
 these two parameters. First the bin width is determined indirectly by choosing an appropriate

 number of bins over the sample range. Most authors advise that 5-20 bins are usually
 adequate for real data sets (Haber & Runyon, 1969, p. 33; Guttman & Wilks, 1965, p. 59).

 Larson (1975, p. 15) suggests using 1+ 22 log1o n bins as a first choice, similar to a formula
 proposed by Sturges in 1926. The final choice for hn is a convenient whole number or fraction,

 often related to the accuracy with which the data are measured. Next, tno is picked so that
 the data do not fall on the bin boundaries. If we assume that the data are measured to

 infinite accuracy, then the choice of t.0 becomes less important as the sample size increases.
 Since we are focusing on consistency, we shall assume t.0= 0 in the sequel. However, the
 choice of hn is quite important. If hn is too small, then the histogram will be too rough; on
 the other hand, if hn is too large, then the histogram will be too smooth, equivalent statistic-
 ally to large variance and large bias, respectively. The proper choice for hn should balance
 the bias and variance by minimizing, for example, the integrated mean squared error.

 In the past 20 years new nonparametric density estimators have been proposed and

 investigated (Tapia & Thompson, 1978; Wegman, 1972). The most extensively treated of

 these new estimators is the kernel probability density estimator developed by Rosenblatt

 (1956) and Parzen (1962). The kernel estimator is also consistent but with IMSE = 0(n-415),
 an improvement over the histogram. In spite of these advances, the histogram will almost
 surely retain important roles in data representation and density estimation, since it is simple
 to compute and easily understood. Fortunately, by using techniques employed in kernel
 density estimation consistency proofs, it is now possible to derive the optimal choice for the

 bin width hn of a histogram.

 3. DERIVATION OF THE OPTIMAL HISTOGRAM BIN WIDTH

 Suppose that x1, ..., xn is a random sample from a continuous probability density function
 f with two continuous and bounded derivatives. We shall need to identify the bin interval
 that contains a fixed point x as n varies. Let In(x) be that interval and let tn(x) denote the
 left-hand endpoint of In(x). Define the bin probability

 pn(X) = {tn(X)+hnf(y)dy
 Jt(x)

 For y in In(x) we have, using Taylor's expansion, f(y) = f(x) +f '(x) (y - x) + O(hM). Therefore

 pn(X) = t {f (x) +f '(x) (y -x) + O(h)} dy
 tn(x)

 = hn f(x) + f '(x) [h2 - 2h3{x-tn(x)}] + O(hn).

 Let vn(x) be the number of values falling in In(x). Then vn(x) has a binomial distribution
 B{n,pn(x)}. The histogram estimate is given by the random variable

 J(X) = Vn(X)/(nhn)
 with expectation

 E{/(x)} = Pn(X)lhn

 - f(x) + h f '(X) -f '(X) {X - tn(X)} + O(hn)
 Therefore the bias is

 2h f '(x)-f '(x) {x - tn()} + O(h2n)
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 On optimal and data-based histograms 607

 Now the variance of the histogram estimate at x is given by

 var {f(x)} = p.(x) {1 -Pn(X)}/(nh2)

 = {hn f(X) + O(h2)} {1- 0(h2)}/(nhf)

 = f(x)/(nhn) + 0(1/n).
 Combining, we have that

 MSE (X) = f(x)/(nhA) + h f '(x)2 +f '(X)2{x tn(x)}2-h f '(x)2{x-tn(x)} 0(1/n +3h). (1)

 Integration of equation (1) over the real line implies that

 IMSE = 1/(nh) + h f f(X)2dx+f {f(X)2{X t_(X)}2dx

 -hn {f (X)2{x_tn(x)}jdx+0(1/n+h3). (2)

 Recall that {tni} denotes the mesh. Then the third term in equation (2) may be written as

 x J+hn f (X)2(X- t )2dx = i J f '(tni + y)2 y2dy (3)
 i=-00 Si i=-00

 by a change of variables. Now f '(tni + y) = f '(tni) + 0(hn), so that (3) becomes

 clX ( thn *)2 + 0(h )}y2dy = L lh n) = 1h2f f I(X)2dx + O(h3),
 i=-00 o _o

 by standard numerical integration approximations. A similar analysis for the fourth term

 in (2) yields

 -h{ f '(X)2 dx + O(hM).

 Therefore

 IMSE= 1/(nhn) 2h{_ f '(x)2dx+O(1/n+h3). (4)

 Minimizing the first two -terms in (4), we obtain

 h* = {6/ f'(x)2dx n-1/3 (5)

 which, asymptotically, is the optimal choice for hn.
 We can estimate how the IMSE changes for poor choices of the bin width by using (4).

 For any density and any positive constant c, the IMSE using the bin width ch* is larger than

 the minimum IMSE by the factor (c3+ 2)/(3c). Thus a bin width 50% too small implies an
 IMSE 42% too large. We remark that a change of scale in the density function results in a

 similar scaling of the optimal hn since y = X/o leads to f f(y)2 dy= -a3 f f(X)2 dx. For Gaussian
 data, h* = 2 x 31/3 .71/6 an-1/3

 4. SMALL SAMPLE PROPERTIES

 The formula for h* is based on an asymptotic expression. To investigate the small sample

 properties of the IMSE, we undertook a fairly extensive Monte Carlo study of standardized

 Gaussian data. For a range of values of h, the integrated squared error was computed exactly
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 608 DAVID W. SCOTT

 for each of 1000 generated samples and then averaged over the number of repetitions to

 obtain an estimate of the IMSE. The optimal bin widths predicted by equation (5) were quite

 close to the empirically observed optimal bin widths for the Monte Carlo study even for

 samples as small as 25. The estimated IMSE also increased as (c3 + 2)/(3c) for bin widths
 differing from the empirically optimal bin width by the factor c.

 5. DATA-BASED HISTOGRAMS

 The optimal choice for hn requires knowledge of the true underlying densityf. This know-

 ledge is rare. In another context Tukey (1977, p. 623) has suggested using the Gaussian

 density as a reference standard, to be used cautiously but frequently. Therefore, we propose

 the data-based choice for the bin width

 hn = 3 49sn1/3, (6)

 where s is an estimate of the standard deviation. Although the Gaussian density forms the

 basis of (6), this assumption is not so strong as a parametric Gaussian assumption, i.e. use of
 equation (6) on non-Gaussian data will not result in a histogram that looks Gaussian. For

 density functions with equal variances, the data-based choice (6) results in the same bin

 width. To show that (6) is useful for a large class of densities, we considered Gaussian and

 non-Gaussian densities with equal variances and observed how their theoretically optimal

 bin widths (5) differed. In particular we considered three models of non-Gaussian behaviour:
 skewed, heavy-tailed and bimodal densities.

 As a model of skewed data, we used a log normal density with variance equal to

 W2(W2 _ 1) exp (- 2y/8) and skewness (W2 + 2) (W2 _1 )1, where w = exp ( 28-2). In Fig. 1 (a) we
 plot the ratio of the optimal bin width for the log normal density to the optimal bin width

 for a Gaussian density with the same variance as a function of the log normal skewness.

 This ratio does not depend on the sample size. We see that using the Gaussian h* over-
 smoothes a log normal density; however, for skewnesses as great as one, the difference is

 less than 30%. A similar plot results when using a gamma probability density model.
 We used Student's tr density to model heavy-tailed data. The variance and kurtosis are

 r/(r -2) and 6/(r -4), respectively. In Fig. 1(b) we plot the ratio of bin widths as a function

 of the kurtosis, connecting the discrete points by a solid line for convenience. The insensitivity

 of the data-based choice for hn for any moderate kurtosis is apparent.
 (a) Log normal density (b) Student's density (c) Mixture of two Gaussians

 7 O O 1O0

 -0 0*5 0.5 O*05
 0

 0

 M 0 1 2 3 0 2 4 6 0 2 4 6

 Skewness coefficient Kurtosis coefficient Distance between modes

 Fig. 1. Ratio of theoretical bin width for several non-Gaussian probability densities to the
 theoretical bin width for a Gaussian density with the same variance.

 Finally as a model of bimodal data, we used a mixture of Gaussian distributions,
 2N( -pt, 1) + 1N(u, 1), with variance 1 + 2. In Fig. l(c) we give a similar ratio of theoretical
 bin widths as a function of 2p, the distance between the two modes. For strongly bimodal
 da.ta ( > 1.5), the ratio falls below 0-8, corresponding to oversmoothing of the bimodal data.

 When distinctly bimodal data are encountered, the data-based histogram may be inadequate.
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 Thus the data-based algorithm leads to hn's that are generally too big for all our models of
 non-Gaussian data. A correction factor may be applied to the data-based hn by computing
 the sample skewness or kurtosis and reading the correction factor from Fig. 1. A histogram

 does not exhibit sensitivity to small changes from the optimal h. as is evident from the
 discussion after (5). We do not advocate using exactly the h. suggested by (6), but rather a
 convenient choice either slightly larger or smaller.

 6. EXAMPLES

 In Fig. 2 we display three histograms of a Monte Carlo N(0, 1) sample of size 1000 which

 has a sample standard deviation equal to 1 011 with h = 0-176, 0 353 and 0-706, the second

 choice obtained from (6). Many statisticians prefer a smaller bin width and a rougher histo-
 gram, leaving the final smoothing to be done by eye.

 (a) h = 02176 (b) h = 0-353 (c) h = 0-706

 60 -120 -240-

 40 - 80 - 160 -

 20 - 40 - 80

 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

 Scale of observations Scale of observations Scale of observations

 Fig. 2. Histograms of 1000 pseudorandom Gaussian numbers for three bin widths: the data-based
 choice and that choice perturbed by a factor of 2.

 To illustrate extremely large sample sizes, Kendall & Stuart (1969, p. 8) consider a histo-
 gram of the ages of 301,785 Australian bridegrooms (1907-14) with a bin width of 3 years.
 The sample standard deviation and skewness for these data are 7-97 and 1-93, respectively.
 Thus the data-based choice for h is 0-41 years. Applying a skewness correction factor of
 0-43 using Fig. 1(a), the final data-based choice is 0-18 years. Thus the sample is of sufficient
 size to use a bin width of 1 year or even 3 months if the data were recorded to sufficient
 accuracy.

 7. DISCUSSION

 We have considered the optimal construction of histograms given either knowledge of the
 true underlying density or, more commonly, given only the data. Waterman & Whiteman
 (1978) have recently carried out a similar attack for Rosenblatt's kernel estimator. Kernel

 estimates converge faster than histograms to the true density, and therefore integrated mean
 squared error is more sensitive to the choice of the smoothing parameter; see also Silverman

 (1978). Furthermore, kernel estimates require the entire data set for evaluation. Thus in
 some modern automated data collectors, it is often more economical to summarize sequenti-

 ally relatively more samples, calibrating the histogram using a small training sample.

 Some recently developed nonparametric techniques for density estimation start with a
 histogram and then smooth it; see, for example, Boneva, Kendall & Stefanov (1971). Our
 procedures could be used to construct the required histogram directly from the data. We
 remark that our analysis extends easily to histograms in higher dimensions.

 34
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 610 DAVID W. SCOTT

 It should be possible to further reduce the integrated mean squared error by using an

 unequally spaced mesh. However, the algorithms required would surely be iterative and

 would require the entire data set. It is easier to discount rougher estimates in the tails or to

 construct a rootgram as suggested by Tukey (1977, p. 543).

 This research was supported in part by the National Heart, Lung, and Blood Institute, the

 National Institutes of Health, the Department of Health, Education and Welfare. The

 author would like to thank a referee for helpful comments.
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