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What we hope you’ll get out of this presentation.

Working with data is essential to the practice of statistics.  Statistics as a field may give short 
shrift to practical knowledge.  We hope  this presentation will expose you to some practical 
tools that will help you in school and later.

In school:
● Speed up your research.  Time you spend installing/munging is time you aren’t spending 

doing more valuable things.
● Research exposure.  It’s a lot easier to be convinced a technique is useful if you can 

easily try it rather than having to implement it yourself.  Exposing your research as an 
app is useful to other researchers. I still get inquiries about an app of mine half a decade 
later.

● Some of these tools can streamline tutorials you might give
After school:

● Data tends to get bigger, messier, and more collaborative after school, particularly in 
industry.  Many tools that exist to help with these problems can be helpful during school.

● Having experience with these tools before you leave school puts you a step ahead of 
others!

https://rkspok.shinyapps.io/CarnegieClassifications/


Brief Survey
How many of you have experience with:

● Spark?
● Docker?
● Python?
● Ray?
● Elastic computing?
● Git/Github?
● Building an R package?
● Automated testing?
● Wikidata/any RDF?



About Robert
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You have data-munging 
options!
There’s more out there than dplyr!

● Link to benchmarks
● What questions should you ask before you 

get started?
○ Which tools will integrate most easily 

with my current workflow?
○ Do I have an eventual dataset size in 

mind?
○ Can I take advantage of distributed 

computing?
○ What will make it easy for my 

collaborators?
○ How fast does this need to be? Do I 

have an application in mind?
● How big can data be?  Eventually you will 

need to do resort to distributed computing.

https://h2oai.github.io/db-benchmark/


Running example for Robert’s 
portion
The IRS requires publishes non-profit tax returns.

● ~500,000 non-profit returns / year
● Includes things like:

○ Assets
○ Directors
○ Highest-paid employees
○ etc.

● ~14 GB of XML data uncompressed
● Not quite ‘big data’ but processing speed 

/memory constraints come into the picture
● How can we speedily parse it?

name title total_comp ($)

David Leebron President 2264425

Allison Thacker

Chief Investment 
Officer, Treasurer, 
Assistant Secretary 1254590

Brent Smith Associate Professor 991800

Peter Rodriguez

Dean of Jones 
Graduate Business 
School of Business 948917

Michael Bloomgren Football Coach 926208

Carmen Thompson Investment Manager 833274

Robert Yekovich

Dean of Shepherd 
School of Music (Jul 
- Aug) 808250

Reginald Desroches Provost 781300

John Lawrence Investment Manager 772854

Kevin Kirby
VP for 
Administration 656324



● Hierarchical data structure
● Designed to be both machine and human readable

○ Fails at both
■  hard for humans to read
■  slow for computers to parse

● Can add new data without screwing up the old data
● In principle, html is a subset of xml.

Aside: What’s XML? Example 
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this 
weekend!</body>

</note>
(from https://www.w3schools.com/xml/note.xml)

https://www.w3schools.com/xml/note.xml


Parsing the IRS data (basic R function)
parse_person = function(person){
    ns=c(irs="http://www.irs.gov/efile")
    name = xml_find_first(person, ".//irs:BusinessName/irs:BusinessNameLine1Txt", ns=ns) %>% xml_text() 
    comp = xml_find_first(person, ".//irs:ReportableCompFromOrgAmt", ns=ns) %>% xml_text() 
    title = xml_find_first(person, ".//irs:TitleTxt", ns=ns) %>% xml_text() 
    other = xml_find_first(person, ".//irs:OtherCompensationAmt", ns=ns) %>% xml_text()
    return(c(name=name, comp=comp, title=title, other=other))
}
parse_irs_xml = function(filename){
    ns=c(irs="http://www.irs.gov/efile")
    tryCatch(
        expr={
            my_xml = read_xml(paste0(path_to_data, 'xml/', filename))
            xml_find_first(my_xml ,"//irs:Filer/irs:BusinessName/irs:BusinessNameLine1Txt", ns=ns) %>%
                xml_text() -> institution_name
            xml_find_all(my_xml ,"//irs:Form990PartVIISectionAGrp", ns=ns) -> people
            out_list = lapply(people, parse_person)
            comp_tibble = bind_rows(out_list)
            comp_tibble = comp_tibble %>% mutate(total_comp = as.numeric(comp) + as.numeric(other))
            comp_tibble['institution'] = institution_name
            comp_tibble['filename'] = filename
            return(comp_tibble)
        },
        error=function(e){return(tibble())}
    )
}

files = list.files(paste0(path_to_data, 'xml/'))
s = system.time({
    parsed = lapply(files, parse_irs_xml)
})



How slow is it? (very)
Test Hardware:
2021 Macbook Pro 
Apple M1 Pro 10 Cores
32 GB Ram

R loop
lapply(files, parse_irs_xml)
4228 seconds holy cow

python loop
[parse_irs_xml(filename) for filename in files]
351 seconds



How can we speed it up?

We could optimize the parsing function.

But it’s easier to throw more hardware at it!
R 4228 seconds -> 2228 seconds
mclapply(files, parse_irs_xml, mc.cores=9)

Python 351 seconds -> 67 seconds
from joblib import Parallel, delayed
start_time = time.time()
parsed = Parallel(n_jobs=9)(delayed(parse_irs_xml)(f) for f in files)

Python ray 351 -> 125 seconds
@ray.remote
def parse_irs_xml_ray(filename):
Kinda slow… we will cheat to make ray competitive and do chunked Ray

Python Chunked ray 125 seconds -> 74 seconds 
@ray.remote
def parse_irs_xml_ray_chunked(file_list):



Why is Ray awesome?

● Even though it was not the fastest option for this example, the cool thing about Ray 
is it can scale to multi-node clusters and still use the same basic code. So we could 
continue to speed things up by adding more computers.

● Allows you to easily scale your python code from 1 core to ??? cores.
● Ray clusters can accommodate special hardware like GPUs.  You can use it to train 

the latest neural nets. OpenAI uses it for their models!
● It’s cost-effective. Ray Holds the cost efficiency record for sorting 100TB 
● More info about Ray. 

https://www.anyscale.com/blog/ray-breaks-the-usd1-tb-barrier-as-the-worlds-most-cost-efficient-sorting
https://www.ray.io/


What about spark?
Spark is similar to Ray in that it can be used on anything from 
a pc to a big compute cluster to speed up data processing.

Pros:
● Very scaleable, petabyte+ possible
● Lots of integrations: pyspark, sparkR, sparklyR

Cons: 
● Can be annoying to set up.
● May require a lot of hardware (use the cloud if you don’t 

need to process all the time)
● Based on java/scala so making fundamental changes 

may be hard
● I frankly don’t recommend spark unless you plan to scale 

beyond a single machine

Getting started with spark requires more installation, so first 
let’s understand docker

A distributed system is one in which the failure 
of a computer you didn't even know existed can 
render your own computer unusable.
–Leslie Lamport



Docker
A docker container is essentially a virtual computer. Why do you 
want a virtual computer?

● Sometimes it can be hard to install software.  With docker, 
you can either find someone else who has already figured 
out how, or at least record how you do it in a way.

○ They’re great for installing CUDA!
○ Complicated applications are easy to set up.  For 

instance, you can use the selenium grid docker 
image to supercharge your web scraping!

○ Trying new software versions is safe and simple!
● The behavior of a docker image should be relatively 

similar wherever it’s hosted.  That makes it easy to share 
software with others because it should behave the same 
for them as it does for you!

○ This is great for tutorials.  Everyone just needs to 
have docker installed and you don’t have to worry 
about people being on different software versions.



Docker

We’re going to use docker for two things:
1. Set up a spark cluster.
2. Create a docker client to use spark (this is optional, you 

could just install the necessary packages on your 
machine)

#1 is easy.  Someone has already created this application 
which can be downloaded and installed thusly:

curl -L -o ./spark/docker-compose.yml  
https://raw.githubusercontent.com/bitnami/containers/main/bitn
ami/spark/docker-compose.yml

docker-compose -f ./spark up 

Docker compose basically lets you create applications 
involving multiple docker containers in an organized way.

This can be really useful for web testing. For instance, you 
can setup a selenium grid to test your web application with 
multiple browsers or to do web scraping in clever ways!

version: '3'

services:
  spark:
    image: docker.io/bitnami/spark:3.4.1
    environment:
      - SPARK_MODE=master
      - SPARK_RPC_AUTHENTICATION_ENABLED=no
      - SPARK_RPC_ENCRYPTION_ENABLED=no
      - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
      - SPARK_SSL_ENABLED=no
      - SPARK_USER=spark
    ports:
      - '8080:8080'
      - '7077:7077'
    networks:
      - spark
    volumes:
      - type: bind
        source: ../r
        target: /app
      
  spark-worker:
    image: docker.io/bitnami/spark:3.4.1
    environment:
      - SPARK_MODE=worker
      - SPARK_MASTER_URL=spark://spark:7077
      - SPARK_WORKER_MEMORY=10G
      - SPARK_WORKER_CORES=4
      - SPARK_RPC_AUTHENTICATION_ENABLED=no
      - SPARK_RPC_ENCRYPTION_ENABLED=no
      - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
      - SPARK_SSL_ENABLED=no
      - SPARK_USER=spark
    networks:
      - spark
    volumes:
      - type: bind
        source: ../r
        target: /app
    
networks:
  spark:
    driver: bridge

https://raw.githubusercontent.com/bitnami/containers/main/bitnami/spark/docker-compose.yml
https://raw.githubusercontent.com/bitnami/containers/main/bitnami/spark/docker-compose.yml


Check Spark is running

If that worked, you can navigate to 
localhost:8080 in your browser and examine 
your spark cluster!



Docker Example
# Use a base image that includes R 
FROM rocker/r2u

# Install necessary packages
RUN apt-get update && \
    apt-get install -y openjdk-8-jdk scala wget && \
    apt-get clean

# Download and install Apache Spark 3.4.1
WORKDIR /opt
RUN wget 
https://downloads.apache.org/spark/spark-3.4.1/spark-3.4.1-bin-hadoop3.tgz  
&& \
    tar -xvzf spark-3.4.1-bin-hadoop3.tgz  && \
    mv spark-3.4.1-bin-hadoop3.tgz spark

# Set environment variables
ENV SPARK_HOME=/opt/spark
ENV PATH=$SPARK_HOME/bin:$PATH

# Install R dependencies
RUN R -e "install.packages('tidyverse', dependencies=TRUE)"
# match your spark cluster version
RUN R -e "install.packages('sparklyR', dependencies=TRUE)"

# Set the working directory
WORKDIR /app

Almost all the docker work has been 
done for you by others

See 
https://journal.r-project.org/archive/2017/
RJ-2017-065/RJ-2017-065.pdf for more 
information on the rocker dockers
(portable etc.)

And https://eddelbuettel.github.io/r2u/ on 
why r2u is particularly good (it’s fast 
basically)

These dockers are a great way to try out 
new packages without affecting your local 
R installation

https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf
https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf
https://eddelbuettel.github.io/r2u/


Using spark

Now that we have a spark cluster and a spark client, 
let’s do some analysis!

To start the client (the cluster is already running) 

docker run  --network="host" -v ./r:/app -it my_docker

Load connect R to spark and load some data:

library(sparklyr)
spark_home='/opt/spark-3.4.1-bin-hadoop3'
config <- spark_config()
config$sparklyr.connect.enablehivesupport = FALSE
# this command may take a minute
sc <- spark_connect(spark_home=spark_home,
                    master = "spark://172.19.0.2:7077",
                    config=config)
data = spark_read_csv(sc, name = "credit_data",
                      path = "nonprofit_salaries.csv",
                      header = TRUE, delimiter = ",")

Find the address of your spark cluster
docker ps

…

docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' spark-spark-1

I think it would be also possible to:
1. Set a static ip address so you don’t have to 

look it up.
2. (better) Just launch you client as part of your 

docker-compose. 
…
  rclient:
    image: my_docker
    command: tail -F anything
    networks:
      - spark
    

Then set 
master=spark://spark:7077



Using spark (cont’d)

fix_names = data %>%
    mutate(name=case_when(name=='NA' ~ NA,
                          TRUE ~ name)) %>%
    mutate(alt_name=case_when(alt_name=='NA' ~ NA,
                              TRUE ~ alt_name)) %>%
    mutate(derived_name = coalesce(name, alt_name)) 
%>%
    mutate(total_comp = as.numeric(total_comp))

fix_names  %>%
    arrange(desc(total_comp)) %>%
    filter(row_number() <= 20) %>%
    print(width=200, n=12)

Ascension Health is a ‘nonprofit’ Catholic health 
network that has been criticized for its executives’ 
pay WSJ.

https://www.wsj.com/articles/charity-officials-are-increasingly-receiving-million-dollar-paydays-1488754532


Using spark (cont’d)

 fix_names %>%
    filter(total_comp > 0) %>%
    group_by(derived_name, total_comp) %>%
    summarize(count = n()) %>%
    mutate(total_total_comp = count * total_comp) %>%
    arrange(desc(total_total_comp)) %>%
    print(n=25)



Using spark (cont’d)

fix_names %>%
    filter(derived_name == 'CRAIG A CORDOLA FACHE' &
           total_comp == 1052538) %>%
    pull(institution)

Alas, checking the paper returns this 
appears to just be a poorly named 
XML tag.

<ReportableCompFromOrgAmt>0</ReportableCompFromOrgAmt>
<ReportableCompFromRltdOrgAmt>4633536</ReportableCompFromRltdOrgAmt>
<OtherCompensationAmt>1052538</OtherCompensationAmt>



More Docker Resources
Docker Overview

Install Docker Desktop (free for individuals)

Chat GPT is pretty good at building images for you!

https://docs.docker.com/get-started/overview/
https://www.docker.com/products/docker-desktop/


Consider Using RDF!

From https://www.w3.org/TR/rdf11-primer/

RDF represents data as a set of 
subject-predicate-object triples

Allows for very flexible data relationships

https://www.w3.org/TR/rdf11-primer/


Wikidata has tons of info!

Rice University - Wikidata

query link

● 15B+ triples
● Great way to 

annotate your data.

https://www.wikidata.org/wiki/Q842909
https://query.wikidata.org/#SELECT%20DISTINCT%20%3Funi%20%3FuniLabel%20%3Faddress%20WHERE%20%7B%0A%20%20%3Funi%20wdt%3AP31%2Fwdt%3AP279%2a%20wd%3AQ3918.%0A%20%20%3Funi%20wdt%3AP6375%20%3Faddress.%0A%20%20SERVICE%20wikibase%3Alabel%20%7B%0A%20%20%20%20bd%3AserviceParam%20wikibase%3Alanguage%20%22%5BAUTO_LANGUAGE%5D%2Cen%22.%0A%20%20%7D%0A%7D%0A


Bonus Section: What should I know if I’m 
thinking about getting a job in big tech?



Big tech data job breakdown
Data Scientist: 

● Most general position, jack-of-all-trades
● Actual job will vary by company
● Most natural position for statistician
● Pay $$-$$$

Data Analyst
● Bridge between businesspeople and engineers
● Careful, sometimes just SQL
● Pay $-$$

Data Engineer
● Software engineer that specializes in data
● More of an engineering discipline than a stats discipline.
● Pay $$$

ML Engineer
● Software engineer that focuses on machine learning
● Possible for statisticians to transition with a little CS prep
● Pay $$$-$$$$

$-ranges are within a given level.  You may be more likely to reach a 
higher level for something you enjoy!

Graphic from 
https://www.hibernian-recruitment.com/whats-a-data-scientist-explai
ning-roles-in-big-data/ 
(but I don’t think their idea)

https://www.hibernian-recruitment.com/whats-a-data-scientist-explaining-roles-in-big-data/
https://www.hibernian-recruitment.com/whats-a-data-scientist-explaining-roles-in-big-data/


Big Tech Must-Have resources

https://www.levels.fyi

● The best site for big tech companies is
○ https://www.levels.fyi

● Example for Amazon data scientist pictured right.
● Tech interviews tend to include the following:

○ Coding interview
■ SQL
■ Algorithms

○ ‘Behavioral’ Interviews
■ Tell me about a time you were in some 

situation you’re about to lie about.
○ ‘Methods’ Interviews

■ How would you test some product 
change

○ Math Interviews
■ Compute some probability

● The coding interviews have been gamified to the 
point where it’s hard to pass without preparation.  
See https://leetcode.com/problemset/all/  

https://www.levels.fyi/?compare=Google,Facebook,Salesforce&track=Software%20Engineer
https://www.levels.fyi/?compare=Google,Facebook,Salesforce&track=Software%20Engineer
https://leetcode.com/problemset/all/


Job application Wisdom

1. For large companies, there is usually information out there about the 
interview process.  Check reddit/blind/etc.

2. Don’t hesitate to reach out to weak connections for referrals to big tech 
companies, there’s often no downside to providing a referral to someone, 
only upside.

3. Don’t take rejection personally.  Often the reason is ridiculous.



Miscellaneous Advice
When creating an application for your research/project, try to maintain as much control 
as possible.

● When providing a link to some application, use a link shortener so you can 
change the host later if need be.



Questions?



About Daniel

Energy sector Data Scientist for Shell E&P, retail energy providers, and vendors

Works on creating and maintaining models for oil well planning and load/price forecasting

Hedge and price optimization

Weather hedging



Life in Energy Industry / ‘Small’ Tech

SaaS vs Retail Energy Provider vs Shell E&P

Smaller company means less red-tape

Work from home is prevalent 

Requires home workspace

Server resources may be less/harder to get

Data scientists may need to work in areas not in job description

May be only employee with significant statistical knowledge

SME on sales/customer calls

Tight timelines for new products/improvements



Life in Energy Industry / ‘Small’ Tech Cont.

Seasonal workloads

Time of day dependant

Driven by Eastern and Central time

Mix of R&D and operations

Work closely with traders, finance, and pricing

Regulated vs Deregulated markets

Third party results



L2E Partial Mixture Modelling

L2E Partial Mixture Estimation

https://www.stat.rice.edu/~scottdw/papers/l2e/icors03.pdf


L2E Partial Mixture Modelling Cont.

Normal model often used

Symmetric, smooth, etc

Useful for “messy” data

Can be used in many applications

Downside: Can be slow to minimize



ERCOT Price Example



dplyr Pipelines

Medium speed

Easy to code and understand

Operator ‘>%>’ has a shortcut in RStudio (Ctrl + Shift + M)

Can be combined with purrr and other packages easily

‘do’ function is versatile

Robust and easy to parse error/warning messages



SQL Integration with R

SQL is widely used in industry

Easy to learn hard to master

‘rodbc’ package and others

You can simply copy and paste most queries into R with minimal alterations

Easy to pull data from SQL/postgresql servers

Easy to insert data as well

Set nocount to on if using temp tables



SQL Integration with R Example

Simple to use:



Integration With R Cont.

RCPP for C++

Reticulate for Python

R.matlab for MATLAB



R Package Creation

Useful for sharing functions in professional environment

Help texts are useful to others using content

Simple to create and update

Make Vignettes (package descriptions) to help other users/yourself

Code organization

Consistent documentation

Code distribution



R Package Creation Cont.

Package “devtools” and “roxygen” useful

Create one or more R files with functions (grouping by type may be beneficial)

Do NOT use ‘library’ or ‘require’ functions - may cause conflicts

Use ‘::’ instead

Use #’ to comment your functions’ help texts

Use ‘use_data’ to include datasets



Advice

When creating a product make sure to return descriptive error messages

Current and future users may not be well versed in the language

Ask more experienced coworkers for advice and explanations

Try to get references from in-sector workers if possible

Use interviews for suboptimal jobs as practice if needed

LaTeX for resume - avoid Word

Be customer focused (internal or external)

Pad ETAs to account for emergencies that may arise


