
Tools we wish we’d known
more about as grad students

Daniel Cross and Robert Kosar

Github link to Robert’s code:
https://github.com/r-kosar/MVDE_RKOSAR

https://github.com/r-kosar/MVDE_RKOSAR

What we hope you’ll get out of this presentation.

Working with data is essential to the practice of statistics. Statistics as a field may give short
shrift to practical knowledge. We hope this presentation will expose you to some practical
tools that will help you in school and later.

In school:
● Speed up your research. Time you spend installing/munging is time you aren’t spending

doing more valuable things.
● Research exposure. It’s a lot easier to be convinced a technique is useful if you can

easily try it rather than having to implement it yourself. Exposing your research as an
app is useful to other researchers. I still get inquiries about an app of mine half a decade
later.

● Some of these tools can streamline tutorials you might give
After school:

● Data tends to get bigger, messier, and more collaborative after school, particularly in
industry. Many tools that exist to help with these problems can be helpful during school.

● Having experience with these tools before you leave school puts you a step ahead of
others!

https://rkspok.shinyapps.io/CarnegieClassifications/

Brief Survey
How many of you have experience with:

● Spark?
● Docker?
● Python?
● Ray?
● Elastic computing?
● Git/Github?
● Building an R package?
● Automated testing?
● Wikidata/any RDF?

About Robert

Rice Ph.D. Dec 2017

Lives in Santa Clara (SF Bay Area), CA

Data Scientist @eBay for ~4 years

I work on the search product building
models/ testing features.

You have data-munging
options!
There’s more out there than dplyr!

● Link to benchmarks
● What questions should you ask before you

get started?
○ Which tools will integrate most easily

with my current workflow?
○ Do I have an eventual dataset size in

mind?
○ Can I take advantage of distributed

computing?
○ What will make it easy for my

collaborators?
○ How fast does this need to be? Do I

have an application in mind?
● How big can data be? Eventually you will

need to do resort to distributed computing.

https://h2oai.github.io/db-benchmark/

Running example for Robert’s
portion
The IRS requires publishes non-profit tax returns.

● ~500,000 non-profit returns / year
● Includes things like:

○ Assets
○ Directors
○ Highest-paid employees
○ etc.

● ~14 GB of XML data uncompressed
● Not quite ‘big data’ but processing speed

/memory constraints come into the picture
● How can we speedily parse it?

name title total_comp ($)

David Leebron President 2264425

Allison Thacker

Chief Investment
Officer, Treasurer,
Assistant Secretary 1254590

Brent Smith Associate Professor 991800

Peter Rodriguez

Dean of Jones
Graduate Business
School of Business 948917

Michael Bloomgren Football Coach 926208

Carmen Thompson Investment Manager 833274

Robert Yekovich

Dean of Shepherd
School of Music (Jul
- Aug) 808250

Reginald Desroches Provost 781300

John Lawrence Investment Manager 772854

Kevin Kirby
VP for
Administration 656324

● Hierarchical data structure
● Designed to be both machine and human readable

○ Fails at both
■ hard for humans to read
■ slow for computers to parse

● Can add new data without screwing up the old data
● In principle, html is a subset of xml.

Aside: What’s XML? Example
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this
weekend!</body>

</note>
(from https://www.w3schools.com/xml/note.xml)

https://www.w3schools.com/xml/note.xml

Parsing the IRS data (basic R function)
parse_person = function(person){
 ns=c(irs="http://www.irs.gov/efile")
 name = xml_find_first(person, ".//irs:BusinessName/irs:BusinessNameLine1Txt", ns=ns) %>% xml_text()
 comp = xml_find_first(person, ".//irs:ReportableCompFromOrgAmt", ns=ns) %>% xml_text()
 title = xml_find_first(person, ".//irs:TitleTxt", ns=ns) %>% xml_text()
 other = xml_find_first(person, ".//irs:OtherCompensationAmt", ns=ns) %>% xml_text()
 return(c(name=name, comp=comp, title=title, other=other))
}
parse_irs_xml = function(filename){
 ns=c(irs="http://www.irs.gov/efile")
 tryCatch(
 expr={
 my_xml = read_xml(paste0(path_to_data, 'xml/', filename))
 xml_find_first(my_xml ,"//irs:Filer/irs:BusinessName/irs:BusinessNameLine1Txt", ns=ns) %>%
 xml_text() -> institution_name
 xml_find_all(my_xml ,"//irs:Form990PartVIISectionAGrp", ns=ns) -> people
 out_list = lapply(people, parse_person)
 comp_tibble = bind_rows(out_list)
 comp_tibble = comp_tibble %>% mutate(total_comp = as.numeric(comp) + as.numeric(other))
 comp_tibble['institution'] = institution_name
 comp_tibble['filename'] = filename
 return(comp_tibble)
 },
 error=function(e){return(tibble())}
)
}

files = list.files(paste0(path_to_data, 'xml/'))
s = system.time({
 parsed = lapply(files, parse_irs_xml)
})

How slow is it? (very)
Test Hardware:
2021 Macbook Pro
Apple M1 Pro 10 Cores
32 GB Ram

R loop
lapply(files, parse_irs_xml)
4228 seconds holy cow

python loop
[parse_irs_xml(filename) for filename in files]
351 seconds

How can we speed it up?

We could optimize the parsing function.

But it’s easier to throw more hardware at it!
R 4228 seconds -> 2228 seconds
mclapply(files, parse_irs_xml, mc.cores=9)

Python 351 seconds -> 67 seconds
from joblib import Parallel, delayed
start_time = time.time()
parsed = Parallel(n_jobs=9)(delayed(parse_irs_xml)(f) for f in files)

Python ray 351 -> 125 seconds
@ray.remote
def parse_irs_xml_ray(filename):
Kinda slow… we will cheat to make ray competitive and do chunked Ray

Python Chunked ray 125 seconds -> 74 seconds
@ray.remote
def parse_irs_xml_ray_chunked(file_list):

Why is Ray awesome?

● Even though it was not the fastest option for this example, the cool thing about Ray
is it can scale to multi-node clusters and still use the same basic code. So we could
continue to speed things up by adding more computers.

● Allows you to easily scale your python code from 1 core to ??? cores.
● Ray clusters can accommodate special hardware like GPUs. You can use it to train

the latest neural nets. OpenAI uses it for their models!
● It’s cost-effective. Ray Holds the cost efficiency record for sorting 100TB
● More info about Ray.

https://www.anyscale.com/blog/ray-breaks-the-usd1-tb-barrier-as-the-worlds-most-cost-efficient-sorting
https://www.ray.io/

What about spark?
Spark is similar to Ray in that it can be used on anything from
a pc to a big compute cluster to speed up data processing.

Pros:
● Very scaleable, petabyte+ possible
● Lots of integrations: pyspark, sparkR, sparklyR

Cons:
● Can be annoying to set up.
● May require a lot of hardware (use the cloud if you don’t

need to process all the time)
● Based on java/scala so making fundamental changes

may be hard
● I frankly don’t recommend spark unless you plan to scale

beyond a single machine

Getting started with spark requires more installation, so first
let’s understand docker

A distributed system is one in which the failure
of a computer you didn't even know existed can
render your own computer unusable.
–Leslie Lamport

Docker
A docker container is essentially a virtual computer. Why do you
want a virtual computer?

● Sometimes it can be hard to install software. With docker,
you can either find someone else who has already figured
out how, or at least record how you do it in a way.

○ They’re great for installing CUDA!
○ Complicated applications are easy to set up. For

instance, you can use the selenium grid docker
image to supercharge your web scraping!

○ Trying new software versions is safe and simple!
● The behavior of a docker image should be relatively

similar wherever it’s hosted. That makes it easy to share
software with others because it should behave the same
for them as it does for you!

○ This is great for tutorials. Everyone just needs to
have docker installed and you don’t have to worry
about people being on different software versions.

Docker

We’re going to use docker for two things:
1. Set up a spark cluster.
2. Create a docker client to use spark (this is optional, you

could just install the necessary packages on your
machine)

#1 is easy. Someone has already created this application
which can be downloaded and installed thusly:

curl -L -o ./spark/docker-compose.yml
https://raw.githubusercontent.com/bitnami/containers/main/bitn
ami/spark/docker-compose.yml

docker-compose -f ./spark up

Docker compose basically lets you create applications
involving multiple docker containers in an organized way.

This can be really useful for web testing. For instance, you
can setup a selenium grid to test your web application with
multiple browsers or to do web scraping in clever ways!

version: '3'

services:
 spark:
 image: docker.io/bitnami/spark:3.4.1
 environment:
 - SPARK_MODE=master
 - SPARK_RPC_AUTHENTICATION_ENABLED=no
 - SPARK_RPC_ENCRYPTION_ENABLED=no
 - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
 - SPARK_SSL_ENABLED=no
 - SPARK_USER=spark
 ports:
 - '8080:8080'
 - '7077:7077'
 networks:
 - spark
 volumes:
 - type: bind
 source: ../r
 target: /app

 spark-worker:
 image: docker.io/bitnami/spark:3.4.1
 environment:
 - SPARK_MODE=worker
 - SPARK_MASTER_URL=spark://spark:7077
 - SPARK_WORKER_MEMORY=10G
 - SPARK_WORKER_CORES=4
 - SPARK_RPC_AUTHENTICATION_ENABLED=no
 - SPARK_RPC_ENCRYPTION_ENABLED=no
 - SPARK_LOCAL_STORAGE_ENCRYPTION_ENABLED=no
 - SPARK_SSL_ENABLED=no
 - SPARK_USER=spark
 networks:
 - spark
 volumes:
 - type: bind
 source: ../r
 target: /app

networks:
 spark:
 driver: bridge

https://raw.githubusercontent.com/bitnami/containers/main/bitnami/spark/docker-compose.yml
https://raw.githubusercontent.com/bitnami/containers/main/bitnami/spark/docker-compose.yml

Check Spark is running

If that worked, you can navigate to
localhost:8080 in your browser and examine
your spark cluster!

Docker Example
Use a base image that includes R
FROM rocker/r2u

Install necessary packages
RUN apt-get update && \
 apt-get install -y openjdk-8-jdk scala wget && \
 apt-get clean

Download and install Apache Spark 3.4.1
WORKDIR /opt
RUN wget
https://downloads.apache.org/spark/spark-3.4.1/spark-3.4.1-bin-hadoop3.tgz
&& \
 tar -xvzf spark-3.4.1-bin-hadoop3.tgz && \
 mv spark-3.4.1-bin-hadoop3.tgz spark

Set environment variables
ENV SPARK_HOME=/opt/spark
ENV PATH=$SPARK_HOME/bin:$PATH

Install R dependencies
RUN R -e "install.packages('tidyverse', dependencies=TRUE)"
match your spark cluster version
RUN R -e "install.packages('sparklyR', dependencies=TRUE)"

Set the working directory
WORKDIR /app

Almost all the docker work has been
done for you by others

See
https://journal.r-project.org/archive/2017/
RJ-2017-065/RJ-2017-065.pdf for more
information on the rocker dockers
(portable etc.)

And https://eddelbuettel.github.io/r2u/ on
why r2u is particularly good (it’s fast
basically)

These dockers are a great way to try out
new packages without affecting your local
R installation

https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf
https://journal.r-project.org/archive/2017/RJ-2017-065/RJ-2017-065.pdf
https://eddelbuettel.github.io/r2u/

Using spark

Now that we have a spark cluster and a spark client,
let’s do some analysis!

To start the client (the cluster is already running)

docker run --network="host" -v ./r:/app -it my_docker

Load connect R to spark and load some data:

library(sparklyr)
spark_home='/opt/spark-3.4.1-bin-hadoop3'
config <- spark_config()
config$sparklyr.connect.enablehivesupport = FALSE
this command may take a minute
sc <- spark_connect(spark_home=spark_home,
 master = "spark://172.19.0.2:7077",
 config=config)
data = spark_read_csv(sc, name = "credit_data",
 path = "nonprofit_salaries.csv",
 header = TRUE, delimiter = ",")

Find the address of your spark cluster
docker ps

…

docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' spark-spark-1

I think it would be also possible to:
1. Set a static ip address so you don’t have to

look it up.
2. (better) Just launch you client as part of your

docker-compose.
…
 rclient:
 image: my_docker
 command: tail -F anything
 networks:
 - spark

Then set
master=spark://spark:7077

Using spark (cont’d)

fix_names = data %>%
 mutate(name=case_when(name=='NA' ~ NA,
 TRUE ~ name)) %>%
 mutate(alt_name=case_when(alt_name=='NA' ~ NA,
 TRUE ~ alt_name)) %>%
 mutate(derived_name = coalesce(name, alt_name))
%>%
 mutate(total_comp = as.numeric(total_comp))

fix_names %>%
 arrange(desc(total_comp)) %>%
 filter(row_number() <= 20) %>%
 print(width=200, n=12)

Ascension Health is a ‘nonprofit’ Catholic health
network that has been criticized for its executives’
pay WSJ.

https://www.wsj.com/articles/charity-officials-are-increasingly-receiving-million-dollar-paydays-1488754532

Using spark (cont’d)

 fix_names %>%
 filter(total_comp > 0) %>%
 group_by(derived_name, total_comp) %>%
 summarize(count = n()) %>%
 mutate(total_total_comp = count * total_comp) %>%
 arrange(desc(total_total_comp)) %>%
 print(n=25)

Using spark (cont’d)

fix_names %>%
 filter(derived_name == 'CRAIG A CORDOLA FACHE' &
 total_comp == 1052538) %>%
 pull(institution)

Alas, checking the paper returns this
appears to just be a poorly named
XML tag.

<ReportableCompFromOrgAmt>0</ReportableCompFromOrgAmt>
<ReportableCompFromRltdOrgAmt>4633536</ReportableCompFromRltdOrgAmt>
<OtherCompensationAmt>1052538</OtherCompensationAmt>

More Docker Resources
Docker Overview

Install Docker Desktop (free for individuals)

Chat GPT is pretty good at building images for you!

https://docs.docker.com/get-started/overview/
https://www.docker.com/products/docker-desktop/

Consider Using RDF!

From https://www.w3.org/TR/rdf11-primer/

RDF represents data as a set of
subject-predicate-object triples

Allows for very flexible data relationships

https://www.w3.org/TR/rdf11-primer/

Wikidata has tons of info!

Rice University - Wikidata

query link

● 15B+ triples
● Great way to

annotate your data.

https://www.wikidata.org/wiki/Q842909
https://query.wikidata.org/#SELECT%20DISTINCT%20%3Funi%20%3FuniLabel%20%3Faddress%20WHERE%20%7B%0A%20%20%3Funi%20wdt%3AP31%2Fwdt%3AP279%2a%20wd%3AQ3918.%0A%20%20%3Funi%20wdt%3AP6375%20%3Faddress.%0A%20%20SERVICE%20wikibase%3Alabel%20%7B%0A%20%20%20%20bd%3AserviceParam%20wikibase%3Alanguage%20%22%5BAUTO_LANGUAGE%5D%2Cen%22.%0A%20%20%7D%0A%7D%0A

Bonus Section: What should I know if I’m
thinking about getting a job in big tech?

Big tech data job breakdown
Data Scientist:

● Most general position, jack-of-all-trades
● Actual job will vary by company
● Most natural position for statistician
● Pay $$-$$$

Data Analyst
● Bridge between businesspeople and engineers
● Careful, sometimes just SQL
● Pay $-$$

Data Engineer
● Software engineer that specializes in data
● More of an engineering discipline than a stats discipline.
● Pay $$$

ML Engineer
● Software engineer that focuses on machine learning
● Possible for statisticians to transition with a little CS prep
● Pay $$$-$$$$

$-ranges are within a given level. You may be more likely to reach a
higher level for something you enjoy!

Graphic from
https://www.hibernian-recruitment.com/whats-a-data-scientist-explai
ning-roles-in-big-data/
(but I don’t think their idea)

https://www.hibernian-recruitment.com/whats-a-data-scientist-explaining-roles-in-big-data/
https://www.hibernian-recruitment.com/whats-a-data-scientist-explaining-roles-in-big-data/

Big Tech Must-Have resources

https://www.levels.fyi

● The best site for big tech companies is
○ https://www.levels.fyi

● Example for Amazon data scientist pictured right.
● Tech interviews tend to include the following:

○ Coding interview
■ SQL
■ Algorithms

○ ‘Behavioral’ Interviews
■ Tell me about a time you were in some

situation you’re about to lie about.
○ ‘Methods’ Interviews

■ How would you test some product
change

○ Math Interviews
■ Compute some probability

● The coding interviews have been gamified to the
point where it’s hard to pass without preparation.
See https://leetcode.com/problemset/all/

https://www.levels.fyi/?compare=Google,Facebook,Salesforce&track=Software%20Engineer
https://www.levels.fyi/?compare=Google,Facebook,Salesforce&track=Software%20Engineer
https://leetcode.com/problemset/all/

Job application Wisdom

1. For large companies, there is usually information out there about the
interview process. Check reddit/blind/etc.

2. Don’t hesitate to reach out to weak connections for referrals to big tech
companies, there’s often no downside to providing a referral to someone,
only upside.

3. Don’t take rejection personally. Often the reason is ridiculous.

Miscellaneous Advice
When creating an application for your research/project, try to maintain as much control
as possible.

● When providing a link to some application, use a link shortener so you can
change the host later if need be.

Questions?

About Daniel

Energy sector Data Scientist for Shell E&P, retail energy providers, and vendors

Works on creating and maintaining models for oil well planning and load/price forecasting

Hedge and price optimization

Weather hedging

Life in Energy Industry / ‘Small’ Tech

SaaS vs Retail Energy Provider vs Shell E&P

Smaller company means less red-tape

Work from home is prevalent

Requires home workspace

Server resources may be less/harder to get

Data scientists may need to work in areas not in job description

May be only employee with significant statistical knowledge

SME on sales/customer calls

Tight timelines for new products/improvements

Life in Energy Industry / ‘Small’ Tech Cont.

Seasonal workloads

Time of day dependant

Driven by Eastern and Central time

Mix of R&D and operations

Work closely with traders, finance, and pricing

Regulated vs Deregulated markets

Third party results

L2E Partial Mixture Modelling

L2E Partial Mixture Estimation

https://www.stat.rice.edu/~scottdw/papers/l2e/icors03.pdf

L2E Partial Mixture Modelling Cont.

Normal model often used

Symmetric, smooth, etc

Useful for “messy” data

Can be used in many applications

Downside: Can be slow to minimize

ERCOT Price Example

dplyr Pipelines

Medium speed

Easy to code and understand

Operator ‘>%>’ has a shortcut in RStudio (Ctrl + Shift + M)

Can be combined with purrr and other packages easily

‘do’ function is versatile

Robust and easy to parse error/warning messages

SQL Integration with R

SQL is widely used in industry

Easy to learn hard to master

‘rodbc’ package and others

You can simply copy and paste most queries into R with minimal alterations

Easy to pull data from SQL/postgresql servers

Easy to insert data as well

Set nocount to on if using temp tables

SQL Integration with R Example

Simple to use:

Integration With R Cont.

RCPP for C++

Reticulate for Python

R.matlab for MATLAB

R Package Creation

Useful for sharing functions in professional environment

Help texts are useful to others using content

Simple to create and update

Make Vignettes (package descriptions) to help other users/yourself

Code organization

Consistent documentation

Code distribution

R Package Creation Cont.

Package “devtools” and “roxygen” useful

Create one or more R files with functions (grouping by type may be beneficial)

Do NOT use ‘library’ or ‘require’ functions - may cause conflicts

Use ‘::’ instead

Use #’ to comment your functions’ help texts

Use ‘use_data’ to include datasets

Advice

When creating a product make sure to return descriptive error messages

Current and future users may not be well versed in the language

Ask more experienced coworkers for advice and explanations

Try to get references from in-sector workers if possible

Use interviews for suboptimal jobs as practice if needed

LaTeX for resume - avoid Word

Be customer focused (internal or external)

Pad ETAs to account for emergencies that may arise

