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We propose  a widely applicable  method  for  choosing the  smoothing parameters for nonparametric density estimators. It  has
come to be realized in recent  years (e.g., see Hall and  Marron  1987; Scott and Terrell  1987) that  cross-validation  methods  for
finding reasonable smoothing parameters from raw data  are of very limited practical value.  Their sampling variability is simply
too large. The alternative discussed here, the maximal smoothing principle,  suggests that we consider using the  most smoothing
that  is consistent with the estimated scale of our data.  This greatly generalizes  and exploits a phenomenon noted  in Terrell  and
Scott  (1985), that  measures  of scale tend  to place upper bounds on  the  smoothing parameters that  minimize asymptotic  mean
integrated squared error of  density  estimates  such  as  histograms  and  frequency  polygons.  The  method  avoids  the  extreme
sampling variability of cross-validation by using ordinary scale estimators such as the standard deviation and interquartile range,
which have order n -1 variability;  cross-validated parameters have orders of variability such as n -liS. The  disadvantage  is that
maximal smoothing parameters are  conservative, rather than  asymptotically optimal.  Because  they  tend  to  lose information,
they  should  be  used  in conjunction  with other  data  displays that  retain  more  of  the  features  of  the  original  sample.  On  the
other hand,  such conservative  methods  are  widely valued  by statisticians  because  they discourage  naive overinterpretation of
one's data.  Maximal smoothing parameters are  here  derived  for histograms  and  kernel  methods,  using not only the standard
deviation but several more resistant  methods  of scale estimation. The method  is then  applied  to density estimation  on the half-
line,  on finite intervals,  and  in several  variables.
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1. INTRODUCTION
Nonparametric density estimates attempt to reconstruct

the probability density  from  which a random sample  has
come,  using the  sample values and  as few assumptions  as
possible about the density.  These methods are smoothing
operations on the  sample distribution. When we choose a
density estimate, therefore, we  must  decide  how  much
smoothing is appropriate; the  larger  the  sample  size the
less smoothing required. A large part  of the literature on
density estimation is concerned with  the  issue of  how  to
choose the degree  of smoothness of the estimate. We pro-
pose  as  one  possible  guideline  the maximal smoothing
principle: Choose  the  largest  degree  of  smoothing  com-
patible  with the estimated scale of the  density.

This generalizes the method of Terrell and Scott (1985).
The argument for  the  principle  will proceed as  follows:
We will briefly discuss some earlier methods for choosing
the  degree  of  smoothing.  The  next  section  will develop
the  principle  for  two important density estimation tech-

individualistic approach does not lead to replicable results;
nor does  it lead reliably to sensible estimates  from a nov-
ice.

There is an  extensive literature on  the  process  of  au-
tomatically  choosing  the  best smoothing parameters; see
Silverman  (1986) for  an extended discussion and  bibliog-
raphy.  The most important include assuming a parametric
family,  which has  the disadvantage of often  being  some-
what arbitrary, and cross-validation techniques such  as
least-squares cross-validation (Bowman   1984; Rudemo
1982) and biased cross-validation (Scott and Terrell 1987).
Cross-validation techniques seem  to  be subject to  enor-
mous sampling variation (see Hall and Marron 1987; Scott
and  Terrell  1987).

To choose the  best degree  of smoothing, we must have
a criterion for  optimality  of density  estimates.  Purely  for
reasons  of tractability in  the arguments that  follow,  our
goal will be to  make the expected L2 metric E «JJ(y) -
f(y»)Z), or  mean integrated squared error (MISE), as
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