Solution Homework 4 Stat 550 (11-9-23)

1. Problem 5.2 (with typo; see sentence after equation (5.5))

$$
\begin{aligned}
& \hat{f}(x)=\frac{1}{n h} \sum_{i=1-m}^{m-1} w_{m}(i) \nu_{k+i} \\
& \int_{-\infty}^{\infty} \hat{f}(x)=\sum_{k=-\infty}^{\infty} \int_{B_{k}} \hat{f}(x) d x \\
&=\sum_{k=-\infty}^{\infty} \frac{1}{n h} \sum_{i=1-m}^{m-1} w_{m}(i) \nu_{k+i} \times \frac{h}{m} \\
&=\frac{1}{n m} \sum_{i=1-m}^{m-1} w_{m}(i) \sum_{k=-\infty}^{\infty} \nu_{k+i} \\
&=\frac{1}{n m} \sum_{i=1-m}^{m-1} w_{m}(i) \times n \\
&=\frac{1}{m} \sum_{i=1-m}^{m-1} w_{m}(i) \\
&=1 \\
& \text { when weights to } m .
\end{aligned}
$$

2. Consider the 2 -component normal mixture

$$
f(x)=\frac{1}{2} \phi\left(x \mid \mu_{1}, \sigma\right)+\frac{1}{2} \phi\left(x \mid \mu_{2}, \sigma\right) .
$$

How large must $\left|\mu_{1}-\mu_{2}\right|$ be so that the mixture is bimodal?

$$
\text { Answer: } \quad\left|\frac{\mu_{1}-\mu_{2}}{\sigma}\right|=2 \text {. }
$$

3. Enter the Swiss Franc data into R. (The read.table command is in the file.) The data are 6 measurments on the old 1000 franc bills, 100 genuine and 100 counterfeit; see figure below. Which variables seem to suggest the 2 clusters, using the ASH?

The 6th variable is strongly bimodal. See the file ash.q

